Mercurial > hg > CbC > CbC_llvm
comparison lib/CodeGen/MachineLICM.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This pass performs loop invariant code motion on machine instructions. We | |
11 // attempt to remove as much code from the body of a loop as possible. | |
12 // | |
13 // This pass does not attempt to throttle itself to limit register pressure. | |
14 // The register allocation phases are expected to perform rematerialization | |
15 // to recover when register pressure is high. | |
16 // | |
17 // This pass is not intended to be a replacement or a complete alternative | |
18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple | |
19 // constructs that are not exposed before lowering and instruction selection. | |
20 // | |
21 //===----------------------------------------------------------------------===// | |
22 | |
23 #define DEBUG_TYPE "machine-licm" | |
24 #include "llvm/CodeGen/Passes.h" | |
25 #include "llvm/ADT/DenseMap.h" | |
26 #include "llvm/ADT/SmallSet.h" | |
27 #include "llvm/ADT/Statistic.h" | |
28 #include "llvm/Analysis/AliasAnalysis.h" | |
29 #include "llvm/CodeGen/MachineDominators.h" | |
30 #include "llvm/CodeGen/MachineFrameInfo.h" | |
31 #include "llvm/CodeGen/MachineLoopInfo.h" | |
32 #include "llvm/CodeGen/MachineMemOperand.h" | |
33 #include "llvm/CodeGen/MachineRegisterInfo.h" | |
34 #include "llvm/CodeGen/PseudoSourceValue.h" | |
35 #include "llvm/MC/MCInstrItineraries.h" | |
36 #include "llvm/Support/CommandLine.h" | |
37 #include "llvm/Support/Debug.h" | |
38 #include "llvm/Support/raw_ostream.h" | |
39 #include "llvm/Target/TargetInstrInfo.h" | |
40 #include "llvm/Target/TargetLowering.h" | |
41 #include "llvm/Target/TargetMachine.h" | |
42 #include "llvm/Target/TargetRegisterInfo.h" | |
43 using namespace llvm; | |
44 | |
45 static cl::opt<bool> | |
46 AvoidSpeculation("avoid-speculation", | |
47 cl::desc("MachineLICM should avoid speculation"), | |
48 cl::init(true), cl::Hidden); | |
49 | |
50 STATISTIC(NumHoisted, | |
51 "Number of machine instructions hoisted out of loops"); | |
52 STATISTIC(NumLowRP, | |
53 "Number of instructions hoisted in low reg pressure situation"); | |
54 STATISTIC(NumHighLatency, | |
55 "Number of high latency instructions hoisted"); | |
56 STATISTIC(NumCSEed, | |
57 "Number of hoisted machine instructions CSEed"); | |
58 STATISTIC(NumPostRAHoisted, | |
59 "Number of machine instructions hoisted out of loops post regalloc"); | |
60 | |
61 namespace { | |
62 class MachineLICM : public MachineFunctionPass { | |
63 const TargetMachine *TM; | |
64 const TargetInstrInfo *TII; | |
65 const TargetLoweringBase *TLI; | |
66 const TargetRegisterInfo *TRI; | |
67 const MachineFrameInfo *MFI; | |
68 MachineRegisterInfo *MRI; | |
69 const InstrItineraryData *InstrItins; | |
70 bool PreRegAlloc; | |
71 | |
72 // Various analyses that we use... | |
73 AliasAnalysis *AA; // Alias analysis info. | |
74 MachineLoopInfo *MLI; // Current MachineLoopInfo | |
75 MachineDominatorTree *DT; // Machine dominator tree for the cur loop | |
76 | |
77 // State that is updated as we process loops | |
78 bool Changed; // True if a loop is changed. | |
79 bool FirstInLoop; // True if it's the first LICM in the loop. | |
80 MachineLoop *CurLoop; // The current loop we are working on. | |
81 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. | |
82 | |
83 // Exit blocks for CurLoop. | |
84 SmallVector<MachineBasicBlock*, 8> ExitBlocks; | |
85 | |
86 bool isExitBlock(const MachineBasicBlock *MBB) const { | |
87 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != | |
88 ExitBlocks.end(); | |
89 } | |
90 | |
91 // Track 'estimated' register pressure. | |
92 SmallSet<unsigned, 32> RegSeen; | |
93 SmallVector<unsigned, 8> RegPressure; | |
94 | |
95 // Register pressure "limit" per register class. If the pressure | |
96 // is higher than the limit, then it's considered high. | |
97 SmallVector<unsigned, 8> RegLimit; | |
98 | |
99 // Register pressure on path leading from loop preheader to current BB. | |
100 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; | |
101 | |
102 // For each opcode, keep a list of potential CSE instructions. | |
103 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; | |
104 | |
105 enum { | |
106 SpeculateFalse = 0, | |
107 SpeculateTrue = 1, | |
108 SpeculateUnknown = 2 | |
109 }; | |
110 | |
111 // If a MBB does not dominate loop exiting blocks then it may not safe | |
112 // to hoist loads from this block. | |
113 // Tri-state: 0 - false, 1 - true, 2 - unknown | |
114 unsigned SpeculationState; | |
115 | |
116 public: | |
117 static char ID; // Pass identification, replacement for typeid | |
118 MachineLICM() : | |
119 MachineFunctionPass(ID), PreRegAlloc(true) { | |
120 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); | |
121 } | |
122 | |
123 explicit MachineLICM(bool PreRA) : | |
124 MachineFunctionPass(ID), PreRegAlloc(PreRA) { | |
125 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); | |
126 } | |
127 | |
128 virtual bool runOnMachineFunction(MachineFunction &MF); | |
129 | |
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const { | |
131 AU.addRequired<MachineLoopInfo>(); | |
132 AU.addRequired<MachineDominatorTree>(); | |
133 AU.addRequired<AliasAnalysis>(); | |
134 AU.addPreserved<MachineLoopInfo>(); | |
135 AU.addPreserved<MachineDominatorTree>(); | |
136 MachineFunctionPass::getAnalysisUsage(AU); | |
137 } | |
138 | |
139 virtual void releaseMemory() { | |
140 RegSeen.clear(); | |
141 RegPressure.clear(); | |
142 RegLimit.clear(); | |
143 BackTrace.clear(); | |
144 for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator | |
145 CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI) | |
146 CI->second.clear(); | |
147 CSEMap.clear(); | |
148 } | |
149 | |
150 private: | |
151 /// CandidateInfo - Keep track of information about hoisting candidates. | |
152 struct CandidateInfo { | |
153 MachineInstr *MI; | |
154 unsigned Def; | |
155 int FI; | |
156 CandidateInfo(MachineInstr *mi, unsigned def, int fi) | |
157 : MI(mi), Def(def), FI(fi) {} | |
158 }; | |
159 | |
160 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop | |
161 /// invariants out to the preheader. | |
162 void HoistRegionPostRA(); | |
163 | |
164 /// HoistPostRA - When an instruction is found to only use loop invariant | |
165 /// operands that is safe to hoist, this instruction is called to do the | |
166 /// dirty work. | |
167 void HoistPostRA(MachineInstr *MI, unsigned Def); | |
168 | |
169 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also | |
170 /// gather register def and frame object update information. | |
171 void ProcessMI(MachineInstr *MI, | |
172 BitVector &PhysRegDefs, | |
173 BitVector &PhysRegClobbers, | |
174 SmallSet<int, 32> &StoredFIs, | |
175 SmallVectorImpl<CandidateInfo> &Candidates); | |
176 | |
177 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the | |
178 /// current loop. | |
179 void AddToLiveIns(unsigned Reg); | |
180 | |
181 /// IsLICMCandidate - Returns true if the instruction may be a suitable | |
182 /// candidate for LICM. e.g. If the instruction is a call, then it's | |
183 /// obviously not safe to hoist it. | |
184 bool IsLICMCandidate(MachineInstr &I); | |
185 | |
186 /// IsLoopInvariantInst - Returns true if the instruction is loop | |
187 /// invariant. I.e., all virtual register operands are defined outside of | |
188 /// the loop, physical registers aren't accessed (explicitly or implicitly), | |
189 /// and the instruction is hoistable. | |
190 /// | |
191 bool IsLoopInvariantInst(MachineInstr &I); | |
192 | |
193 /// HasLoopPHIUse - Return true if the specified instruction is used by any | |
194 /// phi node in the current loop. | |
195 bool HasLoopPHIUse(const MachineInstr *MI) const; | |
196 | |
197 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' | |
198 /// and an use in the current loop, return true if the target considered | |
199 /// it 'high'. | |
200 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, | |
201 unsigned Reg) const; | |
202 | |
203 bool IsCheapInstruction(MachineInstr &MI) const; | |
204 | |
205 /// CanCauseHighRegPressure - Visit BBs from header to current BB, | |
206 /// check if hoisting an instruction of the given cost matrix can cause high | |
207 /// register pressure. | |
208 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); | |
209 | |
210 /// UpdateBackTraceRegPressure - Traverse the back trace from header to | |
211 /// the current block and update their register pressures to reflect the | |
212 /// effect of hoisting MI from the current block to the preheader. | |
213 void UpdateBackTraceRegPressure(const MachineInstr *MI); | |
214 | |
215 /// IsProfitableToHoist - Return true if it is potentially profitable to | |
216 /// hoist the given loop invariant. | |
217 bool IsProfitableToHoist(MachineInstr &MI); | |
218 | |
219 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. | |
220 /// If not then a load from this mbb may not be safe to hoist. | |
221 bool IsGuaranteedToExecute(MachineBasicBlock *BB); | |
222 | |
223 void EnterScope(MachineBasicBlock *MBB); | |
224 | |
225 void ExitScope(MachineBasicBlock *MBB); | |
226 | |
227 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given | |
228 /// dominator tree node if its a leaf or all of its children are done. Walk | |
229 /// up the dominator tree to destroy ancestors which are now done. | |
230 void ExitScopeIfDone(MachineDomTreeNode *Node, | |
231 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, | |
232 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); | |
233 | |
234 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all | |
235 /// blocks dominated by the specified header block, and that are in the | |
236 /// current loop) in depth first order w.r.t the DominatorTree. This allows | |
237 /// us to visit definitions before uses, allowing us to hoist a loop body in | |
238 /// one pass without iteration. | |
239 /// | |
240 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); | |
241 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); | |
242 | |
243 /// getRegisterClassIDAndCost - For a given MI, register, and the operand | |
244 /// index, return the ID and cost of its representative register class by | |
245 /// reference. | |
246 void getRegisterClassIDAndCost(const MachineInstr *MI, | |
247 unsigned Reg, unsigned OpIdx, | |
248 unsigned &RCId, unsigned &RCCost) const; | |
249 | |
250 /// InitRegPressure - Find all virtual register references that are liveout | |
251 /// of the preheader to initialize the starting "register pressure". Note | |
252 /// this does not count live through (livein but not used) registers. | |
253 void InitRegPressure(MachineBasicBlock *BB); | |
254 | |
255 /// UpdateRegPressure - Update estimate of register pressure after the | |
256 /// specified instruction. | |
257 void UpdateRegPressure(const MachineInstr *MI); | |
258 | |
259 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if | |
260 /// the load itself could be hoisted. Return the unfolded and hoistable | |
261 /// load, or null if the load couldn't be unfolded or if it wouldn't | |
262 /// be hoistable. | |
263 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); | |
264 | |
265 /// LookForDuplicate - Find an instruction amount PrevMIs that is a | |
266 /// duplicate of MI. Return this instruction if it's found. | |
267 const MachineInstr *LookForDuplicate(const MachineInstr *MI, | |
268 std::vector<const MachineInstr*> &PrevMIs); | |
269 | |
270 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on | |
271 /// the preheader that compute the same value. If it's found, do a RAU on | |
272 /// with the definition of the existing instruction rather than hoisting | |
273 /// the instruction to the preheader. | |
274 bool EliminateCSE(MachineInstr *MI, | |
275 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); | |
276 | |
277 /// MayCSE - Return true if the given instruction will be CSE'd if it's | |
278 /// hoisted out of the loop. | |
279 bool MayCSE(MachineInstr *MI); | |
280 | |
281 /// Hoist - When an instruction is found to only use loop invariant operands | |
282 /// that is safe to hoist, this instruction is called to do the dirty work. | |
283 /// It returns true if the instruction is hoisted. | |
284 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); | |
285 | |
286 /// InitCSEMap - Initialize the CSE map with instructions that are in the | |
287 /// current loop preheader that may become duplicates of instructions that | |
288 /// are hoisted out of the loop. | |
289 void InitCSEMap(MachineBasicBlock *BB); | |
290 | |
291 /// getCurPreheader - Get the preheader for the current loop, splitting | |
292 /// a critical edge if needed. | |
293 MachineBasicBlock *getCurPreheader(); | |
294 }; | |
295 } // end anonymous namespace | |
296 | |
297 char MachineLICM::ID = 0; | |
298 char &llvm::MachineLICMID = MachineLICM::ID; | |
299 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", | |
300 "Machine Loop Invariant Code Motion", false, false) | |
301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | |
302 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | |
303 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) | |
304 INITIALIZE_PASS_END(MachineLICM, "machinelicm", | |
305 "Machine Loop Invariant Code Motion", false, false) | |
306 | |
307 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most | |
308 /// loop that has a unique predecessor. | |
309 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { | |
310 // Check whether this loop even has a unique predecessor. | |
311 if (!CurLoop->getLoopPredecessor()) | |
312 return false; | |
313 // Ok, now check to see if any of its outer loops do. | |
314 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) | |
315 if (L->getLoopPredecessor()) | |
316 return false; | |
317 // None of them did, so this is the outermost with a unique predecessor. | |
318 return true; | |
319 } | |
320 | |
321 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { | |
322 Changed = FirstInLoop = false; | |
323 TM = &MF.getTarget(); | |
324 TII = TM->getInstrInfo(); | |
325 TLI = TM->getTargetLowering(); | |
326 TRI = TM->getRegisterInfo(); | |
327 MFI = MF.getFrameInfo(); | |
328 MRI = &MF.getRegInfo(); | |
329 InstrItins = TM->getInstrItineraryData(); | |
330 | |
331 PreRegAlloc = MRI->isSSA(); | |
332 | |
333 if (PreRegAlloc) | |
334 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); | |
335 else | |
336 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); | |
337 DEBUG(dbgs() << MF.getName() << " ********\n"); | |
338 | |
339 if (PreRegAlloc) { | |
340 // Estimate register pressure during pre-regalloc pass. | |
341 unsigned NumRC = TRI->getNumRegClasses(); | |
342 RegPressure.resize(NumRC); | |
343 std::fill(RegPressure.begin(), RegPressure.end(), 0); | |
344 RegLimit.resize(NumRC); | |
345 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), | |
346 E = TRI->regclass_end(); I != E; ++I) | |
347 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); | |
348 } | |
349 | |
350 // Get our Loop information... | |
351 MLI = &getAnalysis<MachineLoopInfo>(); | |
352 DT = &getAnalysis<MachineDominatorTree>(); | |
353 AA = &getAnalysis<AliasAnalysis>(); | |
354 | |
355 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); | |
356 while (!Worklist.empty()) { | |
357 CurLoop = Worklist.pop_back_val(); | |
358 CurPreheader = 0; | |
359 ExitBlocks.clear(); | |
360 | |
361 // If this is done before regalloc, only visit outer-most preheader-sporting | |
362 // loops. | |
363 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { | |
364 Worklist.append(CurLoop->begin(), CurLoop->end()); | |
365 continue; | |
366 } | |
367 | |
368 CurLoop->getExitBlocks(ExitBlocks); | |
369 | |
370 if (!PreRegAlloc) | |
371 HoistRegionPostRA(); | |
372 else { | |
373 // CSEMap is initialized for loop header when the first instruction is | |
374 // being hoisted. | |
375 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); | |
376 FirstInLoop = true; | |
377 HoistOutOfLoop(N); | |
378 CSEMap.clear(); | |
379 } | |
380 } | |
381 | |
382 return Changed; | |
383 } | |
384 | |
385 /// InstructionStoresToFI - Return true if instruction stores to the | |
386 /// specified frame. | |
387 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { | |
388 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | |
389 oe = MI->memoperands_end(); o != oe; ++o) { | |
390 if (!(*o)->isStore() || !(*o)->getValue()) | |
391 continue; | |
392 if (const FixedStackPseudoSourceValue *Value = | |
393 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { | |
394 if (Value->getFrameIndex() == FI) | |
395 return true; | |
396 } | |
397 } | |
398 return false; | |
399 } | |
400 | |
401 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also | |
402 /// gather register def and frame object update information. | |
403 void MachineLICM::ProcessMI(MachineInstr *MI, | |
404 BitVector &PhysRegDefs, | |
405 BitVector &PhysRegClobbers, | |
406 SmallSet<int, 32> &StoredFIs, | |
407 SmallVectorImpl<CandidateInfo> &Candidates) { | |
408 bool RuledOut = false; | |
409 bool HasNonInvariantUse = false; | |
410 unsigned Def = 0; | |
411 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
412 const MachineOperand &MO = MI->getOperand(i); | |
413 if (MO.isFI()) { | |
414 // Remember if the instruction stores to the frame index. | |
415 int FI = MO.getIndex(); | |
416 if (!StoredFIs.count(FI) && | |
417 MFI->isSpillSlotObjectIndex(FI) && | |
418 InstructionStoresToFI(MI, FI)) | |
419 StoredFIs.insert(FI); | |
420 HasNonInvariantUse = true; | |
421 continue; | |
422 } | |
423 | |
424 // We can't hoist an instruction defining a physreg that is clobbered in | |
425 // the loop. | |
426 if (MO.isRegMask()) { | |
427 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); | |
428 continue; | |
429 } | |
430 | |
431 if (!MO.isReg()) | |
432 continue; | |
433 unsigned Reg = MO.getReg(); | |
434 if (!Reg) | |
435 continue; | |
436 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && | |
437 "Not expecting virtual register!"); | |
438 | |
439 if (!MO.isDef()) { | |
440 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) | |
441 // If it's using a non-loop-invariant register, then it's obviously not | |
442 // safe to hoist. | |
443 HasNonInvariantUse = true; | |
444 continue; | |
445 } | |
446 | |
447 if (MO.isImplicit()) { | |
448 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | |
449 PhysRegClobbers.set(*AI); | |
450 if (!MO.isDead()) | |
451 // Non-dead implicit def? This cannot be hoisted. | |
452 RuledOut = true; | |
453 // No need to check if a dead implicit def is also defined by | |
454 // another instruction. | |
455 continue; | |
456 } | |
457 | |
458 // FIXME: For now, avoid instructions with multiple defs, unless | |
459 // it's a dead implicit def. | |
460 if (Def) | |
461 RuledOut = true; | |
462 else | |
463 Def = Reg; | |
464 | |
465 // If we have already seen another instruction that defines the same | |
466 // register, then this is not safe. Two defs is indicated by setting a | |
467 // PhysRegClobbers bit. | |
468 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { | |
469 if (PhysRegDefs.test(*AS)) | |
470 PhysRegClobbers.set(*AS); | |
471 PhysRegDefs.set(*AS); | |
472 } | |
473 if (PhysRegClobbers.test(Reg)) | |
474 // MI defined register is seen defined by another instruction in | |
475 // the loop, it cannot be a LICM candidate. | |
476 RuledOut = true; | |
477 } | |
478 | |
479 // Only consider reloads for now and remats which do not have register | |
480 // operands. FIXME: Consider unfold load folding instructions. | |
481 if (Def && !RuledOut) { | |
482 int FI = INT_MIN; | |
483 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || | |
484 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) | |
485 Candidates.push_back(CandidateInfo(MI, Def, FI)); | |
486 } | |
487 } | |
488 | |
489 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop | |
490 /// invariants out to the preheader. | |
491 void MachineLICM::HoistRegionPostRA() { | |
492 MachineBasicBlock *Preheader = getCurPreheader(); | |
493 if (!Preheader) | |
494 return; | |
495 | |
496 unsigned NumRegs = TRI->getNumRegs(); | |
497 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. | |
498 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. | |
499 | |
500 SmallVector<CandidateInfo, 32> Candidates; | |
501 SmallSet<int, 32> StoredFIs; | |
502 | |
503 // Walk the entire region, count number of defs for each register, and | |
504 // collect potential LICM candidates. | |
505 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); | |
506 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { | |
507 MachineBasicBlock *BB = Blocks[i]; | |
508 | |
509 // If the header of the loop containing this basic block is a landing pad, | |
510 // then don't try to hoist instructions out of this loop. | |
511 const MachineLoop *ML = MLI->getLoopFor(BB); | |
512 if (ML && ML->getHeader()->isLandingPad()) continue; | |
513 | |
514 // Conservatively treat live-in's as an external def. | |
515 // FIXME: That means a reload that're reused in successor block(s) will not | |
516 // be LICM'ed. | |
517 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), | |
518 E = BB->livein_end(); I != E; ++I) { | |
519 unsigned Reg = *I; | |
520 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | |
521 PhysRegDefs.set(*AI); | |
522 } | |
523 | |
524 SpeculationState = SpeculateUnknown; | |
525 for (MachineBasicBlock::iterator | |
526 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { | |
527 MachineInstr *MI = &*MII; | |
528 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); | |
529 } | |
530 } | |
531 | |
532 // Gather the registers read / clobbered by the terminator. | |
533 BitVector TermRegs(NumRegs); | |
534 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); | |
535 if (TI != Preheader->end()) { | |
536 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { | |
537 const MachineOperand &MO = TI->getOperand(i); | |
538 if (!MO.isReg()) | |
539 continue; | |
540 unsigned Reg = MO.getReg(); | |
541 if (!Reg) | |
542 continue; | |
543 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | |
544 TermRegs.set(*AI); | |
545 } | |
546 } | |
547 | |
548 // Now evaluate whether the potential candidates qualify. | |
549 // 1. Check if the candidate defined register is defined by another | |
550 // instruction in the loop. | |
551 // 2. If the candidate is a load from stack slot (always true for now), | |
552 // check if the slot is stored anywhere in the loop. | |
553 // 3. Make sure candidate def should not clobber | |
554 // registers read by the terminator. Similarly its def should not be | |
555 // clobbered by the terminator. | |
556 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { | |
557 if (Candidates[i].FI != INT_MIN && | |
558 StoredFIs.count(Candidates[i].FI)) | |
559 continue; | |
560 | |
561 unsigned Def = Candidates[i].Def; | |
562 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { | |
563 bool Safe = true; | |
564 MachineInstr *MI = Candidates[i].MI; | |
565 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { | |
566 const MachineOperand &MO = MI->getOperand(j); | |
567 if (!MO.isReg() || MO.isDef() || !MO.getReg()) | |
568 continue; | |
569 unsigned Reg = MO.getReg(); | |
570 if (PhysRegDefs.test(Reg) || | |
571 PhysRegClobbers.test(Reg)) { | |
572 // If it's using a non-loop-invariant register, then it's obviously | |
573 // not safe to hoist. | |
574 Safe = false; | |
575 break; | |
576 } | |
577 } | |
578 if (Safe) | |
579 HoistPostRA(MI, Candidates[i].Def); | |
580 } | |
581 } | |
582 } | |
583 | |
584 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current | |
585 /// loop, and make sure it is not killed by any instructions in the loop. | |
586 void MachineLICM::AddToLiveIns(unsigned Reg) { | |
587 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); | |
588 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { | |
589 MachineBasicBlock *BB = Blocks[i]; | |
590 if (!BB->isLiveIn(Reg)) | |
591 BB->addLiveIn(Reg); | |
592 for (MachineBasicBlock::iterator | |
593 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { | |
594 MachineInstr *MI = &*MII; | |
595 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
596 MachineOperand &MO = MI->getOperand(i); | |
597 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; | |
598 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) | |
599 MO.setIsKill(false); | |
600 } | |
601 } | |
602 } | |
603 } | |
604 | |
605 /// HoistPostRA - When an instruction is found to only use loop invariant | |
606 /// operands that is safe to hoist, this instruction is called to do the | |
607 /// dirty work. | |
608 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { | |
609 MachineBasicBlock *Preheader = getCurPreheader(); | |
610 | |
611 // Now move the instructions to the predecessor, inserting it before any | |
612 // terminator instructions. | |
613 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" | |
614 << MI->getParent()->getNumber() << ": " << *MI); | |
615 | |
616 // Splice the instruction to the preheader. | |
617 MachineBasicBlock *MBB = MI->getParent(); | |
618 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); | |
619 | |
620 // Add register to livein list to all the BBs in the current loop since a | |
621 // loop invariant must be kept live throughout the whole loop. This is | |
622 // important to ensure later passes do not scavenge the def register. | |
623 AddToLiveIns(Def); | |
624 | |
625 ++NumPostRAHoisted; | |
626 Changed = true; | |
627 } | |
628 | |
629 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. | |
630 // If not then a load from this mbb may not be safe to hoist. | |
631 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { | |
632 if (SpeculationState != SpeculateUnknown) | |
633 return SpeculationState == SpeculateFalse; | |
634 | |
635 if (BB != CurLoop->getHeader()) { | |
636 // Check loop exiting blocks. | |
637 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; | |
638 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); | |
639 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) | |
640 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { | |
641 SpeculationState = SpeculateTrue; | |
642 return false; | |
643 } | |
644 } | |
645 | |
646 SpeculationState = SpeculateFalse; | |
647 return true; | |
648 } | |
649 | |
650 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { | |
651 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); | |
652 | |
653 // Remember livein register pressure. | |
654 BackTrace.push_back(RegPressure); | |
655 } | |
656 | |
657 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { | |
658 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); | |
659 BackTrace.pop_back(); | |
660 } | |
661 | |
662 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given | |
663 /// dominator tree node if its a leaf or all of its children are done. Walk | |
664 /// up the dominator tree to destroy ancestors which are now done. | |
665 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, | |
666 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, | |
667 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { | |
668 if (OpenChildren[Node]) | |
669 return; | |
670 | |
671 // Pop scope. | |
672 ExitScope(Node->getBlock()); | |
673 | |
674 // Now traverse upwards to pop ancestors whose offsprings are all done. | |
675 while (MachineDomTreeNode *Parent = ParentMap[Node]) { | |
676 unsigned Left = --OpenChildren[Parent]; | |
677 if (Left != 0) | |
678 break; | |
679 ExitScope(Parent->getBlock()); | |
680 Node = Parent; | |
681 } | |
682 } | |
683 | |
684 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all | |
685 /// blocks dominated by the specified header block, and that are in the | |
686 /// current loop) in depth first order w.r.t the DominatorTree. This allows | |
687 /// us to visit definitions before uses, allowing us to hoist a loop body in | |
688 /// one pass without iteration. | |
689 /// | |
690 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { | |
691 SmallVector<MachineDomTreeNode*, 32> Scopes; | |
692 SmallVector<MachineDomTreeNode*, 8> WorkList; | |
693 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; | |
694 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; | |
695 | |
696 // Perform a DFS walk to determine the order of visit. | |
697 WorkList.push_back(HeaderN); | |
698 do { | |
699 MachineDomTreeNode *Node = WorkList.pop_back_val(); | |
700 assert(Node != 0 && "Null dominator tree node?"); | |
701 MachineBasicBlock *BB = Node->getBlock(); | |
702 | |
703 // If the header of the loop containing this basic block is a landing pad, | |
704 // then don't try to hoist instructions out of this loop. | |
705 const MachineLoop *ML = MLI->getLoopFor(BB); | |
706 if (ML && ML->getHeader()->isLandingPad()) | |
707 continue; | |
708 | |
709 // If this subregion is not in the top level loop at all, exit. | |
710 if (!CurLoop->contains(BB)) | |
711 continue; | |
712 | |
713 Scopes.push_back(Node); | |
714 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); | |
715 unsigned NumChildren = Children.size(); | |
716 | |
717 // Don't hoist things out of a large switch statement. This often causes | |
718 // code to be hoisted that wasn't going to be executed, and increases | |
719 // register pressure in a situation where it's likely to matter. | |
720 if (BB->succ_size() >= 25) | |
721 NumChildren = 0; | |
722 | |
723 OpenChildren[Node] = NumChildren; | |
724 // Add children in reverse order as then the next popped worklist node is | |
725 // the first child of this node. This means we ultimately traverse the | |
726 // DOM tree in exactly the same order as if we'd recursed. | |
727 for (int i = (int)NumChildren-1; i >= 0; --i) { | |
728 MachineDomTreeNode *Child = Children[i]; | |
729 ParentMap[Child] = Node; | |
730 WorkList.push_back(Child); | |
731 } | |
732 } while (!WorkList.empty()); | |
733 | |
734 if (Scopes.size() != 0) { | |
735 MachineBasicBlock *Preheader = getCurPreheader(); | |
736 if (!Preheader) | |
737 return; | |
738 | |
739 // Compute registers which are livein into the loop headers. | |
740 RegSeen.clear(); | |
741 BackTrace.clear(); | |
742 InitRegPressure(Preheader); | |
743 } | |
744 | |
745 // Now perform LICM. | |
746 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { | |
747 MachineDomTreeNode *Node = Scopes[i]; | |
748 MachineBasicBlock *MBB = Node->getBlock(); | |
749 | |
750 MachineBasicBlock *Preheader = getCurPreheader(); | |
751 if (!Preheader) | |
752 continue; | |
753 | |
754 EnterScope(MBB); | |
755 | |
756 // Process the block | |
757 SpeculationState = SpeculateUnknown; | |
758 for (MachineBasicBlock::iterator | |
759 MII = MBB->begin(), E = MBB->end(); MII != E; ) { | |
760 MachineBasicBlock::iterator NextMII = MII; ++NextMII; | |
761 MachineInstr *MI = &*MII; | |
762 if (!Hoist(MI, Preheader)) | |
763 UpdateRegPressure(MI); | |
764 MII = NextMII; | |
765 } | |
766 | |
767 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. | |
768 ExitScopeIfDone(Node, OpenChildren, ParentMap); | |
769 } | |
770 } | |
771 | |
772 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { | |
773 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); | |
774 } | |
775 | |
776 /// getRegisterClassIDAndCost - For a given MI, register, and the operand | |
777 /// index, return the ID and cost of its representative register class. | |
778 void | |
779 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, | |
780 unsigned Reg, unsigned OpIdx, | |
781 unsigned &RCId, unsigned &RCCost) const { | |
782 const TargetRegisterClass *RC = MRI->getRegClass(Reg); | |
783 MVT VT = *RC->vt_begin(); | |
784 if (VT == MVT::Untyped) { | |
785 RCId = RC->getID(); | |
786 RCCost = 1; | |
787 } else { | |
788 RCId = TLI->getRepRegClassFor(VT)->getID(); | |
789 RCCost = TLI->getRepRegClassCostFor(VT); | |
790 } | |
791 } | |
792 | |
793 /// InitRegPressure - Find all virtual register references that are liveout of | |
794 /// the preheader to initialize the starting "register pressure". Note this | |
795 /// does not count live through (livein but not used) registers. | |
796 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { | |
797 std::fill(RegPressure.begin(), RegPressure.end(), 0); | |
798 | |
799 // If the preheader has only a single predecessor and it ends with a | |
800 // fallthrough or an unconditional branch, then scan its predecessor for live | |
801 // defs as well. This happens whenever the preheader is created by splitting | |
802 // the critical edge from the loop predecessor to the loop header. | |
803 if (BB->pred_size() == 1) { | |
804 MachineBasicBlock *TBB = 0, *FBB = 0; | |
805 SmallVector<MachineOperand, 4> Cond; | |
806 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) | |
807 InitRegPressure(*BB->pred_begin()); | |
808 } | |
809 | |
810 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); | |
811 MII != E; ++MII) { | |
812 MachineInstr *MI = &*MII; | |
813 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { | |
814 const MachineOperand &MO = MI->getOperand(i); | |
815 if (!MO.isReg() || MO.isImplicit()) | |
816 continue; | |
817 unsigned Reg = MO.getReg(); | |
818 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
819 continue; | |
820 | |
821 bool isNew = RegSeen.insert(Reg); | |
822 unsigned RCId, RCCost; | |
823 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); | |
824 if (MO.isDef()) | |
825 RegPressure[RCId] += RCCost; | |
826 else { | |
827 bool isKill = isOperandKill(MO, MRI); | |
828 if (isNew && !isKill) | |
829 // Haven't seen this, it must be a livein. | |
830 RegPressure[RCId] += RCCost; | |
831 else if (!isNew && isKill) | |
832 RegPressure[RCId] -= RCCost; | |
833 } | |
834 } | |
835 } | |
836 } | |
837 | |
838 /// UpdateRegPressure - Update estimate of register pressure after the | |
839 /// specified instruction. | |
840 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { | |
841 if (MI->isImplicitDef()) | |
842 return; | |
843 | |
844 SmallVector<unsigned, 4> Defs; | |
845 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { | |
846 const MachineOperand &MO = MI->getOperand(i); | |
847 if (!MO.isReg() || MO.isImplicit()) | |
848 continue; | |
849 unsigned Reg = MO.getReg(); | |
850 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
851 continue; | |
852 | |
853 bool isNew = RegSeen.insert(Reg); | |
854 if (MO.isDef()) | |
855 Defs.push_back(Reg); | |
856 else if (!isNew && isOperandKill(MO, MRI)) { | |
857 unsigned RCId, RCCost; | |
858 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); | |
859 if (RCCost > RegPressure[RCId]) | |
860 RegPressure[RCId] = 0; | |
861 else | |
862 RegPressure[RCId] -= RCCost; | |
863 } | |
864 } | |
865 | |
866 unsigned Idx = 0; | |
867 while (!Defs.empty()) { | |
868 unsigned Reg = Defs.pop_back_val(); | |
869 unsigned RCId, RCCost; | |
870 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); | |
871 RegPressure[RCId] += RCCost; | |
872 ++Idx; | |
873 } | |
874 } | |
875 | |
876 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction | |
877 /// loads from global offset table or constant pool. | |
878 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { | |
879 assert (MI.mayLoad() && "Expected MI that loads!"); | |
880 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), | |
881 E = MI.memoperands_end(); I != E; ++I) { | |
882 if (const Value *V = (*I)->getValue()) { | |
883 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) | |
884 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) | |
885 return true; | |
886 } | |
887 } | |
888 return false; | |
889 } | |
890 | |
891 /// IsLICMCandidate - Returns true if the instruction may be a suitable | |
892 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously | |
893 /// not safe to hoist it. | |
894 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { | |
895 // Check if it's safe to move the instruction. | |
896 bool DontMoveAcrossStore = true; | |
897 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) | |
898 return false; | |
899 | |
900 // If it is load then check if it is guaranteed to execute by making sure that | |
901 // it dominates all exiting blocks. If it doesn't, then there is a path out of | |
902 // the loop which does not execute this load, so we can't hoist it. Loads | |
903 // from constant memory are not safe to speculate all the time, for example | |
904 // indexed load from a jump table. | |
905 // Stores and side effects are already checked by isSafeToMove. | |
906 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && | |
907 !IsGuaranteedToExecute(I.getParent())) | |
908 return false; | |
909 | |
910 return true; | |
911 } | |
912 | |
913 /// IsLoopInvariantInst - Returns true if the instruction is loop | |
914 /// invariant. I.e., all virtual register operands are defined outside of the | |
915 /// loop, physical registers aren't accessed explicitly, and there are no side | |
916 /// effects that aren't captured by the operands or other flags. | |
917 /// | |
918 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { | |
919 if (!IsLICMCandidate(I)) | |
920 return false; | |
921 | |
922 // The instruction is loop invariant if all of its operands are. | |
923 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | |
924 const MachineOperand &MO = I.getOperand(i); | |
925 | |
926 if (!MO.isReg()) | |
927 continue; | |
928 | |
929 unsigned Reg = MO.getReg(); | |
930 if (Reg == 0) continue; | |
931 | |
932 // Don't hoist an instruction that uses or defines a physical register. | |
933 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | |
934 if (MO.isUse()) { | |
935 // If the physreg has no defs anywhere, it's just an ambient register | |
936 // and we can freely move its uses. Alternatively, if it's allocatable, | |
937 // it could get allocated to something with a def during allocation. | |
938 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) | |
939 return false; | |
940 // Otherwise it's safe to move. | |
941 continue; | |
942 } else if (!MO.isDead()) { | |
943 // A def that isn't dead. We can't move it. | |
944 return false; | |
945 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { | |
946 // If the reg is live into the loop, we can't hoist an instruction | |
947 // which would clobber it. | |
948 return false; | |
949 } | |
950 } | |
951 | |
952 if (!MO.isUse()) | |
953 continue; | |
954 | |
955 assert(MRI->getVRegDef(Reg) && | |
956 "Machine instr not mapped for this vreg?!"); | |
957 | |
958 // If the loop contains the definition of an operand, then the instruction | |
959 // isn't loop invariant. | |
960 if (CurLoop->contains(MRI->getVRegDef(Reg))) | |
961 return false; | |
962 } | |
963 | |
964 // If we got this far, the instruction is loop invariant! | |
965 return true; | |
966 } | |
967 | |
968 | |
969 /// HasLoopPHIUse - Return true if the specified instruction is used by a | |
970 /// phi node and hoisting it could cause a copy to be inserted. | |
971 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { | |
972 SmallVector<const MachineInstr*, 8> Work(1, MI); | |
973 do { | |
974 MI = Work.pop_back_val(); | |
975 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { | |
976 if (!MO->isReg() || !MO->isDef()) | |
977 continue; | |
978 unsigned Reg = MO->getReg(); | |
979 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
980 continue; | |
981 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), | |
982 UE = MRI->use_end(); UI != UE; ++UI) { | |
983 MachineInstr *UseMI = &*UI; | |
984 // A PHI may cause a copy to be inserted. | |
985 if (UseMI->isPHI()) { | |
986 // A PHI inside the loop causes a copy because the live range of Reg is | |
987 // extended across the PHI. | |
988 if (CurLoop->contains(UseMI)) | |
989 return true; | |
990 // A PHI in an exit block can cause a copy to be inserted if the PHI | |
991 // has multiple predecessors in the loop with different values. | |
992 // For now, approximate by rejecting all exit blocks. | |
993 if (isExitBlock(UseMI->getParent())) | |
994 return true; | |
995 continue; | |
996 } | |
997 // Look past copies as well. | |
998 if (UseMI->isCopy() && CurLoop->contains(UseMI)) | |
999 Work.push_back(UseMI); | |
1000 } | |
1001 } | |
1002 } while (!Work.empty()); | |
1003 return false; | |
1004 } | |
1005 | |
1006 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' | |
1007 /// and an use in the current loop, return true if the target considered | |
1008 /// it 'high'. | |
1009 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, | |
1010 unsigned DefIdx, unsigned Reg) const { | |
1011 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) | |
1012 return false; | |
1013 | |
1014 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), | |
1015 E = MRI->use_nodbg_end(); I != E; ++I) { | |
1016 MachineInstr *UseMI = &*I; | |
1017 if (UseMI->isCopyLike()) | |
1018 continue; | |
1019 if (!CurLoop->contains(UseMI->getParent())) | |
1020 continue; | |
1021 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { | |
1022 const MachineOperand &MO = UseMI->getOperand(i); | |
1023 if (!MO.isReg() || !MO.isUse()) | |
1024 continue; | |
1025 unsigned MOReg = MO.getReg(); | |
1026 if (MOReg != Reg) | |
1027 continue; | |
1028 | |
1029 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i)) | |
1030 return true; | |
1031 } | |
1032 | |
1033 // Only look at the first in loop use. | |
1034 break; | |
1035 } | |
1036 | |
1037 return false; | |
1038 } | |
1039 | |
1040 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or | |
1041 /// the operand latency between its def and a use is one or less. | |
1042 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { | |
1043 if (MI.isAsCheapAsAMove() || MI.isCopyLike()) | |
1044 return true; | |
1045 if (!InstrItins || InstrItins->isEmpty()) | |
1046 return false; | |
1047 | |
1048 bool isCheap = false; | |
1049 unsigned NumDefs = MI.getDesc().getNumDefs(); | |
1050 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { | |
1051 MachineOperand &DefMO = MI.getOperand(i); | |
1052 if (!DefMO.isReg() || !DefMO.isDef()) | |
1053 continue; | |
1054 --NumDefs; | |
1055 unsigned Reg = DefMO.getReg(); | |
1056 if (TargetRegisterInfo::isPhysicalRegister(Reg)) | |
1057 continue; | |
1058 | |
1059 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) | |
1060 return false; | |
1061 isCheap = true; | |
1062 } | |
1063 | |
1064 return isCheap; | |
1065 } | |
1066 | |
1067 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check | |
1068 /// if hoisting an instruction of the given cost matrix can cause high | |
1069 /// register pressure. | |
1070 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, | |
1071 bool CheapInstr) { | |
1072 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); | |
1073 CI != CE; ++CI) { | |
1074 if (CI->second <= 0) | |
1075 continue; | |
1076 | |
1077 unsigned RCId = CI->first; | |
1078 unsigned Limit = RegLimit[RCId]; | |
1079 int Cost = CI->second; | |
1080 | |
1081 // Don't hoist cheap instructions if they would increase register pressure, | |
1082 // even if we're under the limit. | |
1083 if (CheapInstr) | |
1084 return true; | |
1085 | |
1086 for (unsigned i = BackTrace.size(); i != 0; --i) { | |
1087 SmallVectorImpl<unsigned> &RP = BackTrace[i-1]; | |
1088 if (RP[RCId] + Cost >= Limit) | |
1089 return true; | |
1090 } | |
1091 } | |
1092 | |
1093 return false; | |
1094 } | |
1095 | |
1096 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the | |
1097 /// current block and update their register pressures to reflect the effect | |
1098 /// of hoisting MI from the current block to the preheader. | |
1099 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { | |
1100 if (MI->isImplicitDef()) | |
1101 return; | |
1102 | |
1103 // First compute the 'cost' of the instruction, i.e. its contribution | |
1104 // to register pressure. | |
1105 DenseMap<unsigned, int> Cost; | |
1106 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { | |
1107 const MachineOperand &MO = MI->getOperand(i); | |
1108 if (!MO.isReg() || MO.isImplicit()) | |
1109 continue; | |
1110 unsigned Reg = MO.getReg(); | |
1111 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
1112 continue; | |
1113 | |
1114 unsigned RCId, RCCost; | |
1115 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); | |
1116 if (MO.isDef()) { | |
1117 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); | |
1118 if (CI != Cost.end()) | |
1119 CI->second += RCCost; | |
1120 else | |
1121 Cost.insert(std::make_pair(RCId, RCCost)); | |
1122 } else if (isOperandKill(MO, MRI)) { | |
1123 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); | |
1124 if (CI != Cost.end()) | |
1125 CI->second -= RCCost; | |
1126 else | |
1127 Cost.insert(std::make_pair(RCId, -RCCost)); | |
1128 } | |
1129 } | |
1130 | |
1131 // Update register pressure of blocks from loop header to current block. | |
1132 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { | |
1133 SmallVectorImpl<unsigned> &RP = BackTrace[i]; | |
1134 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); | |
1135 CI != CE; ++CI) { | |
1136 unsigned RCId = CI->first; | |
1137 RP[RCId] += CI->second; | |
1138 } | |
1139 } | |
1140 } | |
1141 | |
1142 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist | |
1143 /// the given loop invariant. | |
1144 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { | |
1145 if (MI.isImplicitDef()) | |
1146 return true; | |
1147 | |
1148 // Besides removing computation from the loop, hoisting an instruction has | |
1149 // these effects: | |
1150 // | |
1151 // - The value defined by the instruction becomes live across the entire | |
1152 // loop. This increases register pressure in the loop. | |
1153 // | |
1154 // - If the value is used by a PHI in the loop, a copy will be required for | |
1155 // lowering the PHI after extending the live range. | |
1156 // | |
1157 // - When hoisting the last use of a value in the loop, that value no longer | |
1158 // needs to be live in the loop. This lowers register pressure in the loop. | |
1159 | |
1160 bool CheapInstr = IsCheapInstruction(MI); | |
1161 bool CreatesCopy = HasLoopPHIUse(&MI); | |
1162 | |
1163 // Don't hoist a cheap instruction if it would create a copy in the loop. | |
1164 if (CheapInstr && CreatesCopy) { | |
1165 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); | |
1166 return false; | |
1167 } | |
1168 | |
1169 // Rematerializable instructions should always be hoisted since the register | |
1170 // allocator can just pull them down again when needed. | |
1171 if (TII->isTriviallyReMaterializable(&MI, AA)) | |
1172 return true; | |
1173 | |
1174 // Estimate register pressure to determine whether to LICM the instruction. | |
1175 // In low register pressure situation, we can be more aggressive about | |
1176 // hoisting. Also, favors hoisting long latency instructions even in | |
1177 // moderately high pressure situation. | |
1178 // Cheap instructions will only be hoisted if they don't increase register | |
1179 // pressure at all. | |
1180 // FIXME: If there are long latency loop-invariant instructions inside the | |
1181 // loop at this point, why didn't the optimizer's LICM hoist them? | |
1182 DenseMap<unsigned, int> Cost; | |
1183 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { | |
1184 const MachineOperand &MO = MI.getOperand(i); | |
1185 if (!MO.isReg() || MO.isImplicit()) | |
1186 continue; | |
1187 unsigned Reg = MO.getReg(); | |
1188 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
1189 continue; | |
1190 | |
1191 unsigned RCId, RCCost; | |
1192 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); | |
1193 if (MO.isDef()) { | |
1194 if (HasHighOperandLatency(MI, i, Reg)) { | |
1195 DEBUG(dbgs() << "Hoist High Latency: " << MI); | |
1196 ++NumHighLatency; | |
1197 return true; | |
1198 } | |
1199 Cost[RCId] += RCCost; | |
1200 } else if (isOperandKill(MO, MRI)) { | |
1201 // Is a virtual register use is a kill, hoisting it out of the loop | |
1202 // may actually reduce register pressure or be register pressure | |
1203 // neutral. | |
1204 Cost[RCId] -= RCCost; | |
1205 } | |
1206 } | |
1207 | |
1208 // Visit BBs from header to current BB, if hoisting this doesn't cause | |
1209 // high register pressure, then it's safe to proceed. | |
1210 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { | |
1211 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); | |
1212 ++NumLowRP; | |
1213 return true; | |
1214 } | |
1215 | |
1216 // Don't risk increasing register pressure if it would create copies. | |
1217 if (CreatesCopy) { | |
1218 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); | |
1219 return false; | |
1220 } | |
1221 | |
1222 // Do not "speculate" in high register pressure situation. If an | |
1223 // instruction is not guaranteed to be executed in the loop, it's best to be | |
1224 // conservative. | |
1225 if (AvoidSpeculation && | |
1226 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { | |
1227 DEBUG(dbgs() << "Won't speculate: " << MI); | |
1228 return false; | |
1229 } | |
1230 | |
1231 // High register pressure situation, only hoist if the instruction is going | |
1232 // to be remat'ed. | |
1233 if (!TII->isTriviallyReMaterializable(&MI, AA) && | |
1234 !MI.isInvariantLoad(AA)) { | |
1235 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); | |
1236 return false; | |
1237 } | |
1238 | |
1239 return true; | |
1240 } | |
1241 | |
1242 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { | |
1243 // Don't unfold simple loads. | |
1244 if (MI->canFoldAsLoad()) | |
1245 return 0; | |
1246 | |
1247 // If not, we may be able to unfold a load and hoist that. | |
1248 // First test whether the instruction is loading from an amenable | |
1249 // memory location. | |
1250 if (!MI->isInvariantLoad(AA)) | |
1251 return 0; | |
1252 | |
1253 // Next determine the register class for a temporary register. | |
1254 unsigned LoadRegIndex; | |
1255 unsigned NewOpc = | |
1256 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), | |
1257 /*UnfoldLoad=*/true, | |
1258 /*UnfoldStore=*/false, | |
1259 &LoadRegIndex); | |
1260 if (NewOpc == 0) return 0; | |
1261 const MCInstrDesc &MID = TII->get(NewOpc); | |
1262 if (MID.getNumDefs() != 1) return 0; | |
1263 MachineFunction &MF = *MI->getParent()->getParent(); | |
1264 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); | |
1265 // Ok, we're unfolding. Create a temporary register and do the unfold. | |
1266 unsigned Reg = MRI->createVirtualRegister(RC); | |
1267 | |
1268 SmallVector<MachineInstr *, 2> NewMIs; | |
1269 bool Success = | |
1270 TII->unfoldMemoryOperand(MF, MI, Reg, | |
1271 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, | |
1272 NewMIs); | |
1273 (void)Success; | |
1274 assert(Success && | |
1275 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " | |
1276 "succeeded!"); | |
1277 assert(NewMIs.size() == 2 && | |
1278 "Unfolded a load into multiple instructions!"); | |
1279 MachineBasicBlock *MBB = MI->getParent(); | |
1280 MachineBasicBlock::iterator Pos = MI; | |
1281 MBB->insert(Pos, NewMIs[0]); | |
1282 MBB->insert(Pos, NewMIs[1]); | |
1283 // If unfolding produced a load that wasn't loop-invariant or profitable to | |
1284 // hoist, discard the new instructions and bail. | |
1285 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { | |
1286 NewMIs[0]->eraseFromParent(); | |
1287 NewMIs[1]->eraseFromParent(); | |
1288 return 0; | |
1289 } | |
1290 | |
1291 // Update register pressure for the unfolded instruction. | |
1292 UpdateRegPressure(NewMIs[1]); | |
1293 | |
1294 // Otherwise we successfully unfolded a load that we can hoist. | |
1295 MI->eraseFromParent(); | |
1296 return NewMIs[0]; | |
1297 } | |
1298 | |
1299 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { | |
1300 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { | |
1301 const MachineInstr *MI = &*I; | |
1302 unsigned Opcode = MI->getOpcode(); | |
1303 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator | |
1304 CI = CSEMap.find(Opcode); | |
1305 if (CI != CSEMap.end()) | |
1306 CI->second.push_back(MI); | |
1307 else { | |
1308 std::vector<const MachineInstr*> CSEMIs; | |
1309 CSEMIs.push_back(MI); | |
1310 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); | |
1311 } | |
1312 } | |
1313 } | |
1314 | |
1315 const MachineInstr* | |
1316 MachineLICM::LookForDuplicate(const MachineInstr *MI, | |
1317 std::vector<const MachineInstr*> &PrevMIs) { | |
1318 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { | |
1319 const MachineInstr *PrevMI = PrevMIs[i]; | |
1320 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0))) | |
1321 return PrevMI; | |
1322 } | |
1323 return 0; | |
1324 } | |
1325 | |
1326 bool MachineLICM::EliminateCSE(MachineInstr *MI, | |
1327 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { | |
1328 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate | |
1329 // the undef property onto uses. | |
1330 if (CI == CSEMap.end() || MI->isImplicitDef()) | |
1331 return false; | |
1332 | |
1333 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { | |
1334 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); | |
1335 | |
1336 // Replace virtual registers defined by MI by their counterparts defined | |
1337 // by Dup. | |
1338 SmallVector<unsigned, 2> Defs; | |
1339 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
1340 const MachineOperand &MO = MI->getOperand(i); | |
1341 | |
1342 // Physical registers may not differ here. | |
1343 assert((!MO.isReg() || MO.getReg() == 0 || | |
1344 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || | |
1345 MO.getReg() == Dup->getOperand(i).getReg()) && | |
1346 "Instructions with different phys regs are not identical!"); | |
1347 | |
1348 if (MO.isReg() && MO.isDef() && | |
1349 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) | |
1350 Defs.push_back(i); | |
1351 } | |
1352 | |
1353 SmallVector<const TargetRegisterClass*, 2> OrigRCs; | |
1354 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { | |
1355 unsigned Idx = Defs[i]; | |
1356 unsigned Reg = MI->getOperand(Idx).getReg(); | |
1357 unsigned DupReg = Dup->getOperand(Idx).getReg(); | |
1358 OrigRCs.push_back(MRI->getRegClass(DupReg)); | |
1359 | |
1360 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { | |
1361 // Restore old RCs if more than one defs. | |
1362 for (unsigned j = 0; j != i; ++j) | |
1363 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); | |
1364 return false; | |
1365 } | |
1366 } | |
1367 | |
1368 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { | |
1369 unsigned Idx = Defs[i]; | |
1370 unsigned Reg = MI->getOperand(Idx).getReg(); | |
1371 unsigned DupReg = Dup->getOperand(Idx).getReg(); | |
1372 MRI->replaceRegWith(Reg, DupReg); | |
1373 MRI->clearKillFlags(DupReg); | |
1374 } | |
1375 | |
1376 MI->eraseFromParent(); | |
1377 ++NumCSEed; | |
1378 return true; | |
1379 } | |
1380 return false; | |
1381 } | |
1382 | |
1383 /// MayCSE - Return true if the given instruction will be CSE'd if it's | |
1384 /// hoisted out of the loop. | |
1385 bool MachineLICM::MayCSE(MachineInstr *MI) { | |
1386 unsigned Opcode = MI->getOpcode(); | |
1387 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator | |
1388 CI = CSEMap.find(Opcode); | |
1389 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate | |
1390 // the undef property onto uses. | |
1391 if (CI == CSEMap.end() || MI->isImplicitDef()) | |
1392 return false; | |
1393 | |
1394 return LookForDuplicate(MI, CI->second) != 0; | |
1395 } | |
1396 | |
1397 /// Hoist - When an instruction is found to use only loop invariant operands | |
1398 /// that are safe to hoist, this instruction is called to do the dirty work. | |
1399 /// | |
1400 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { | |
1401 // First check whether we should hoist this instruction. | |
1402 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { | |
1403 // If not, try unfolding a hoistable load. | |
1404 MI = ExtractHoistableLoad(MI); | |
1405 if (!MI) return false; | |
1406 } | |
1407 | |
1408 // Now move the instructions to the predecessor, inserting it before any | |
1409 // terminator instructions. | |
1410 DEBUG({ | |
1411 dbgs() << "Hoisting " << *MI; | |
1412 if (Preheader->getBasicBlock()) | |
1413 dbgs() << " to MachineBasicBlock " | |
1414 << Preheader->getName(); | |
1415 if (MI->getParent()->getBasicBlock()) | |
1416 dbgs() << " from MachineBasicBlock " | |
1417 << MI->getParent()->getName(); | |
1418 dbgs() << "\n"; | |
1419 }); | |
1420 | |
1421 // If this is the first instruction being hoisted to the preheader, | |
1422 // initialize the CSE map with potential common expressions. | |
1423 if (FirstInLoop) { | |
1424 InitCSEMap(Preheader); | |
1425 FirstInLoop = false; | |
1426 } | |
1427 | |
1428 // Look for opportunity to CSE the hoisted instruction. | |
1429 unsigned Opcode = MI->getOpcode(); | |
1430 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator | |
1431 CI = CSEMap.find(Opcode); | |
1432 if (!EliminateCSE(MI, CI)) { | |
1433 // Otherwise, splice the instruction to the preheader. | |
1434 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); | |
1435 | |
1436 // Update register pressure for BBs from header to this block. | |
1437 UpdateBackTraceRegPressure(MI); | |
1438 | |
1439 // Clear the kill flags of any register this instruction defines, | |
1440 // since they may need to be live throughout the entire loop | |
1441 // rather than just live for part of it. | |
1442 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
1443 MachineOperand &MO = MI->getOperand(i); | |
1444 if (MO.isReg() && MO.isDef() && !MO.isDead()) | |
1445 MRI->clearKillFlags(MO.getReg()); | |
1446 } | |
1447 | |
1448 // Add to the CSE map. | |
1449 if (CI != CSEMap.end()) | |
1450 CI->second.push_back(MI); | |
1451 else { | |
1452 std::vector<const MachineInstr*> CSEMIs; | |
1453 CSEMIs.push_back(MI); | |
1454 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); | |
1455 } | |
1456 } | |
1457 | |
1458 ++NumHoisted; | |
1459 Changed = true; | |
1460 | |
1461 return true; | |
1462 } | |
1463 | |
1464 MachineBasicBlock *MachineLICM::getCurPreheader() { | |
1465 // Determine the block to which to hoist instructions. If we can't find a | |
1466 // suitable loop predecessor, we can't do any hoisting. | |
1467 | |
1468 // If we've tried to get a preheader and failed, don't try again. | |
1469 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) | |
1470 return 0; | |
1471 | |
1472 if (!CurPreheader) { | |
1473 CurPreheader = CurLoop->getLoopPreheader(); | |
1474 if (!CurPreheader) { | |
1475 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); | |
1476 if (!Pred) { | |
1477 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); | |
1478 return 0; | |
1479 } | |
1480 | |
1481 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); | |
1482 if (!CurPreheader) { | |
1483 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); | |
1484 return 0; | |
1485 } | |
1486 } | |
1487 } | |
1488 return CurPreheader; | |
1489 } |