comparison lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33
34 namespace {
35 class VectorLegalizer {
36 SelectionDAG& DAG;
37 const TargetLowering &TLI;
38 bool Changed; // Keep track of whether anything changed
39
40 /// LegalizedNodes - For nodes that are of legal width, and that have more
41 /// than one use, this map indicates what regularized operand to use. This
42 /// allows us to avoid legalizing the same thing more than once.
43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45 // Adds a node to the translation cache
46 void AddLegalizedOperand(SDValue From, SDValue To) {
47 LegalizedNodes.insert(std::make_pair(From, To));
48 // If someone requests legalization of the new node, return itself.
49 if (From != To)
50 LegalizedNodes.insert(std::make_pair(To, To));
51 }
52
53 // Legalizes the given node
54 SDValue LegalizeOp(SDValue Op);
55 // Assuming the node is legal, "legalize" the results
56 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
57 // Implements unrolling a VSETCC.
58 SDValue UnrollVSETCC(SDValue Op);
59 // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB
60 // isn't legal.
61 // Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
62 // SINT_TO_FLOAT and SHR on vectors isn't legal.
63 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
64 // Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
65 SDValue ExpandSEXTINREG(SDValue Op);
66 // Implement vselect in terms of XOR, AND, OR when blend is not supported
67 // by the target.
68 SDValue ExpandVSELECT(SDValue Op);
69 SDValue ExpandSELECT(SDValue Op);
70 SDValue ExpandLoad(SDValue Op);
71 SDValue ExpandStore(SDValue Op);
72 SDValue ExpandFNEG(SDValue Op);
73 // Implements vector promotion; this is essentially just bitcasting the
74 // operands to a different type and bitcasting the result back to the
75 // original type.
76 SDValue PromoteVectorOp(SDValue Op);
77 // Implements [SU]INT_TO_FP vector promotion; this is a [zs]ext of the input
78 // operand to the next size up.
79 SDValue PromoteVectorOpINT_TO_FP(SDValue Op);
80
81 public:
82 bool Run();
83 VectorLegalizer(SelectionDAG& dag) :
84 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
85 };
86
87 bool VectorLegalizer::Run() {
88 // Before we start legalizing vector nodes, check if there are any vectors.
89 bool HasVectors = false;
90 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
91 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) {
92 // Check if the values of the nodes contain vectors. We don't need to check
93 // the operands because we are going to check their values at some point.
94 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
95 J != E; ++J)
96 HasVectors |= J->isVector();
97
98 // If we found a vector node we can start the legalization.
99 if (HasVectors)
100 break;
101 }
102
103 // If this basic block has no vectors then no need to legalize vectors.
104 if (!HasVectors)
105 return false;
106
107 // The legalize process is inherently a bottom-up recursive process (users
108 // legalize their uses before themselves). Given infinite stack space, we
109 // could just start legalizing on the root and traverse the whole graph. In
110 // practice however, this causes us to run out of stack space on large basic
111 // blocks. To avoid this problem, compute an ordering of the nodes where each
112 // node is only legalized after all of its operands are legalized.
113 DAG.AssignTopologicalOrder();
114 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
115 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
116 LegalizeOp(SDValue(I, 0));
117
118 // Finally, it's possible the root changed. Get the new root.
119 SDValue OldRoot = DAG.getRoot();
120 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
121 DAG.setRoot(LegalizedNodes[OldRoot]);
122
123 LegalizedNodes.clear();
124
125 // Remove dead nodes now.
126 DAG.RemoveDeadNodes();
127
128 return Changed;
129 }
130
131 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
132 // Generic legalization: just pass the operand through.
133 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
134 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
135 return Result.getValue(Op.getResNo());
136 }
137
138 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
139 // Note that LegalizeOp may be reentered even from single-use nodes, which
140 // means that we always must cache transformed nodes.
141 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
142 if (I != LegalizedNodes.end()) return I->second;
143
144 SDNode* Node = Op.getNode();
145
146 // Legalize the operands
147 SmallVector<SDValue, 8> Ops;
148 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
149 Ops.push_back(LegalizeOp(Node->getOperand(i)));
150
151 SDValue Result =
152 SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0);
153
154 if (Op.getOpcode() == ISD::LOAD) {
155 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
156 ISD::LoadExtType ExtType = LD->getExtensionType();
157 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
158 if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT()))
159 return TranslateLegalizeResults(Op, Result);
160 Changed = true;
161 return LegalizeOp(ExpandLoad(Op));
162 }
163 } else if (Op.getOpcode() == ISD::STORE) {
164 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
165 EVT StVT = ST->getMemoryVT();
166 MVT ValVT = ST->getValue().getSimpleValueType();
167 if (StVT.isVector() && ST->isTruncatingStore())
168 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
169 default: llvm_unreachable("This action is not supported yet!");
170 case TargetLowering::Legal:
171 return TranslateLegalizeResults(Op, Result);
172 case TargetLowering::Custom:
173 Changed = true;
174 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG));
175 case TargetLowering::Expand:
176 Changed = true;
177 return LegalizeOp(ExpandStore(Op));
178 }
179 }
180
181 bool HasVectorValue = false;
182 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
183 J != E;
184 ++J)
185 HasVectorValue |= J->isVector();
186 if (!HasVectorValue)
187 return TranslateLegalizeResults(Op, Result);
188
189 EVT QueryType;
190 switch (Op.getOpcode()) {
191 default:
192 return TranslateLegalizeResults(Op, Result);
193 case ISD::ADD:
194 case ISD::SUB:
195 case ISD::MUL:
196 case ISD::SDIV:
197 case ISD::UDIV:
198 case ISD::SREM:
199 case ISD::UREM:
200 case ISD::FADD:
201 case ISD::FSUB:
202 case ISD::FMUL:
203 case ISD::FDIV:
204 case ISD::FREM:
205 case ISD::AND:
206 case ISD::OR:
207 case ISD::XOR:
208 case ISD::SHL:
209 case ISD::SRA:
210 case ISD::SRL:
211 case ISD::ROTL:
212 case ISD::ROTR:
213 case ISD::CTLZ:
214 case ISD::CTTZ:
215 case ISD::CTLZ_ZERO_UNDEF:
216 case ISD::CTTZ_ZERO_UNDEF:
217 case ISD::CTPOP:
218 case ISD::SELECT:
219 case ISD::VSELECT:
220 case ISD::SELECT_CC:
221 case ISD::SETCC:
222 case ISD::ZERO_EXTEND:
223 case ISD::ANY_EXTEND:
224 case ISD::TRUNCATE:
225 case ISD::SIGN_EXTEND:
226 case ISD::FP_TO_SINT:
227 case ISD::FP_TO_UINT:
228 case ISD::FNEG:
229 case ISD::FABS:
230 case ISD::FCOPYSIGN:
231 case ISD::FSQRT:
232 case ISD::FSIN:
233 case ISD::FCOS:
234 case ISD::FPOWI:
235 case ISD::FPOW:
236 case ISD::FLOG:
237 case ISD::FLOG2:
238 case ISD::FLOG10:
239 case ISD::FEXP:
240 case ISD::FEXP2:
241 case ISD::FCEIL:
242 case ISD::FTRUNC:
243 case ISD::FRINT:
244 case ISD::FNEARBYINT:
245 case ISD::FROUND:
246 case ISD::FFLOOR:
247 case ISD::FP_ROUND:
248 case ISD::FP_EXTEND:
249 case ISD::FMA:
250 case ISD::SIGN_EXTEND_INREG:
251 QueryType = Node->getValueType(0);
252 break;
253 case ISD::FP_ROUND_INREG:
254 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
255 break;
256 case ISD::SINT_TO_FP:
257 case ISD::UINT_TO_FP:
258 QueryType = Node->getOperand(0).getValueType();
259 break;
260 }
261
262 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
263 case TargetLowering::Promote:
264 switch (Op.getOpcode()) {
265 default:
266 // "Promote" the operation by bitcasting
267 Result = PromoteVectorOp(Op);
268 Changed = true;
269 break;
270 case ISD::SINT_TO_FP:
271 case ISD::UINT_TO_FP:
272 // "Promote" the operation by extending the operand.
273 Result = PromoteVectorOpINT_TO_FP(Op);
274 Changed = true;
275 break;
276 }
277 break;
278 case TargetLowering::Legal: break;
279 case TargetLowering::Custom: {
280 SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
281 if (Tmp1.getNode()) {
282 Result = Tmp1;
283 break;
284 }
285 // FALL THROUGH
286 }
287 case TargetLowering::Expand:
288 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG)
289 Result = ExpandSEXTINREG(Op);
290 else if (Node->getOpcode() == ISD::VSELECT)
291 Result = ExpandVSELECT(Op);
292 else if (Node->getOpcode() == ISD::SELECT)
293 Result = ExpandSELECT(Op);
294 else if (Node->getOpcode() == ISD::UINT_TO_FP)
295 Result = ExpandUINT_TO_FLOAT(Op);
296 else if (Node->getOpcode() == ISD::FNEG)
297 Result = ExpandFNEG(Op);
298 else if (Node->getOpcode() == ISD::SETCC)
299 Result = UnrollVSETCC(Op);
300 else
301 Result = DAG.UnrollVectorOp(Op.getNode());
302 break;
303 }
304
305 // Make sure that the generated code is itself legal.
306 if (Result != Op) {
307 Result = LegalizeOp(Result);
308 Changed = true;
309 }
310
311 // Note that LegalizeOp may be reentered even from single-use nodes, which
312 // means that we always must cache transformed nodes.
313 AddLegalizedOperand(Op, Result);
314 return Result;
315 }
316
317 SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
318 // Vector "promotion" is basically just bitcasting and doing the operation
319 // in a different type. For example, x86 promotes ISD::AND on v2i32 to
320 // v1i64.
321 MVT VT = Op.getSimpleValueType();
322 assert(Op.getNode()->getNumValues() == 1 &&
323 "Can't promote a vector with multiple results!");
324 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
325 SDLoc dl(Op);
326 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
327
328 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
329 if (Op.getOperand(j).getValueType().isVector())
330 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
331 else
332 Operands[j] = Op.getOperand(j);
333 }
334
335 Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
336
337 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
338 }
339
340 SDValue VectorLegalizer::PromoteVectorOpINT_TO_FP(SDValue Op) {
341 // INT_TO_FP operations may require the input operand be promoted even
342 // when the type is otherwise legal.
343 EVT VT = Op.getOperand(0).getValueType();
344 assert(Op.getNode()->getNumValues() == 1 &&
345 "Can't promote a vector with multiple results!");
346
347 // Normal getTypeToPromoteTo() doesn't work here, as that will promote
348 // by widening the vector w/ the same element width and twice the number
349 // of elements. We want the other way around, the same number of elements,
350 // each twice the width.
351 //
352 // Increase the bitwidth of the element to the next pow-of-two
353 // (which is greater than 8 bits).
354 unsigned NumElts = VT.getVectorNumElements();
355 EVT EltVT = VT.getVectorElementType();
356 EltVT = EVT::getIntegerVT(*DAG.getContext(), 2 * EltVT.getSizeInBits());
357 assert(EltVT.isSimple() && "Promoting to a non-simple vector type!");
358
359 // Build a new vector type and check if it is legal.
360 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
361
362 SDLoc dl(Op);
363 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
364
365 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
366 ISD::SIGN_EXTEND;
367 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
368 if (Op.getOperand(j).getValueType().isVector())
369 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
370 else
371 Operands[j] = Op.getOperand(j);
372 }
373
374 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), &Operands[0],
375 Operands.size());
376 }
377
378
379 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
380 SDLoc dl(Op);
381 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
382 SDValue Chain = LD->getChain();
383 SDValue BasePTR = LD->getBasePtr();
384 EVT SrcVT = LD->getMemoryVT();
385 ISD::LoadExtType ExtType = LD->getExtensionType();
386
387 SmallVector<SDValue, 8> Vals;
388 SmallVector<SDValue, 8> LoadChains;
389 unsigned NumElem = SrcVT.getVectorNumElements();
390
391 EVT SrcEltVT = SrcVT.getScalarType();
392 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
393
394 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
395 // When elements in a vector is not byte-addressable, we cannot directly
396 // load each element by advancing pointer, which could only address bytes.
397 // Instead, we load all significant words, mask bits off, and concatenate
398 // them to form each element. Finally, they are extended to destination
399 // scalar type to build the destination vector.
400 EVT WideVT = TLI.getPointerTy();
401
402 assert(WideVT.isRound() &&
403 "Could not handle the sophisticated case when the widest integer is"
404 " not power of 2.");
405 assert(WideVT.bitsGE(SrcEltVT) &&
406 "Type is not legalized?");
407
408 unsigned WideBytes = WideVT.getStoreSize();
409 unsigned Offset = 0;
410 unsigned RemainingBytes = SrcVT.getStoreSize();
411 SmallVector<SDValue, 8> LoadVals;
412
413 while (RemainingBytes > 0) {
414 SDValue ScalarLoad;
415 unsigned LoadBytes = WideBytes;
416
417 if (RemainingBytes >= LoadBytes) {
418 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
419 LD->getPointerInfo().getWithOffset(Offset),
420 LD->isVolatile(), LD->isNonTemporal(),
421 LD->isInvariant(), LD->getAlignment(),
422 LD->getTBAAInfo());
423 } else {
424 EVT LoadVT = WideVT;
425 while (RemainingBytes < LoadBytes) {
426 LoadBytes >>= 1; // Reduce the load size by half.
427 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
428 }
429 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
430 LD->getPointerInfo().getWithOffset(Offset),
431 LoadVT, LD->isVolatile(),
432 LD->isNonTemporal(), LD->getAlignment(),
433 LD->getTBAAInfo());
434 }
435
436 RemainingBytes -= LoadBytes;
437 Offset += LoadBytes;
438 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
439 DAG.getConstant(LoadBytes, BasePTR.getValueType()));
440
441 LoadVals.push_back(ScalarLoad.getValue(0));
442 LoadChains.push_back(ScalarLoad.getValue(1));
443 }
444
445 // Extract bits, pack and extend/trunc them into destination type.
446 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
447 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
448
449 unsigned BitOffset = 0;
450 unsigned WideIdx = 0;
451 unsigned WideBits = WideVT.getSizeInBits();
452
453 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
454 SDValue Lo, Hi, ShAmt;
455
456 if (BitOffset < WideBits) {
457 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
458 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
459 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
460 }
461
462 BitOffset += SrcEltBits;
463 if (BitOffset >= WideBits) {
464 WideIdx++;
465 Offset -= WideBits;
466 if (Offset > 0) {
467 ShAmt = DAG.getConstant(SrcEltBits - Offset,
468 TLI.getShiftAmountTy(WideVT));
469 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
470 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
471 }
472 }
473
474 if (Hi.getNode())
475 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
476
477 switch (ExtType) {
478 default: llvm_unreachable("Unknown extended-load op!");
479 case ISD::EXTLOAD:
480 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
481 break;
482 case ISD::ZEXTLOAD:
483 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
484 break;
485 case ISD::SEXTLOAD:
486 ShAmt = DAG.getConstant(WideBits - SrcEltBits,
487 TLI.getShiftAmountTy(WideVT));
488 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
489 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
490 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
491 break;
492 }
493 Vals.push_back(Lo);
494 }
495 } else {
496 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
497
498 for (unsigned Idx=0; Idx<NumElem; Idx++) {
499 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
500 Op.getNode()->getValueType(0).getScalarType(),
501 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
502 SrcVT.getScalarType(),
503 LD->isVolatile(), LD->isNonTemporal(),
504 LD->getAlignment(), LD->getTBAAInfo());
505
506 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
507 DAG.getConstant(Stride, BasePTR.getValueType()));
508
509 Vals.push_back(ScalarLoad.getValue(0));
510 LoadChains.push_back(ScalarLoad.getValue(1));
511 }
512 }
513
514 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
515 &LoadChains[0], LoadChains.size());
516 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
517 Op.getNode()->getValueType(0), &Vals[0], Vals.size());
518
519 AddLegalizedOperand(Op.getValue(0), Value);
520 AddLegalizedOperand(Op.getValue(1), NewChain);
521
522 return (Op.getResNo() ? NewChain : Value);
523 }
524
525 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
526 SDLoc dl(Op);
527 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
528 SDValue Chain = ST->getChain();
529 SDValue BasePTR = ST->getBasePtr();
530 SDValue Value = ST->getValue();
531 EVT StVT = ST->getMemoryVT();
532
533 unsigned Alignment = ST->getAlignment();
534 bool isVolatile = ST->isVolatile();
535 bool isNonTemporal = ST->isNonTemporal();
536 const MDNode *TBAAInfo = ST->getTBAAInfo();
537
538 unsigned NumElem = StVT.getVectorNumElements();
539 // The type of the data we want to save
540 EVT RegVT = Value.getValueType();
541 EVT RegSclVT = RegVT.getScalarType();
542 // The type of data as saved in memory.
543 EVT MemSclVT = StVT.getScalarType();
544
545 // Cast floats into integers
546 unsigned ScalarSize = MemSclVT.getSizeInBits();
547
548 // Round odd types to the next pow of two.
549 if (!isPowerOf2_32(ScalarSize))
550 ScalarSize = NextPowerOf2(ScalarSize);
551
552 // Store Stride in bytes
553 unsigned Stride = ScalarSize/8;
554 // Extract each of the elements from the original vector
555 // and save them into memory individually.
556 SmallVector<SDValue, 8> Stores;
557 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
558 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
559 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
560
561 // This scalar TruncStore may be illegal, but we legalize it later.
562 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
563 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
564 isVolatile, isNonTemporal, Alignment, TBAAInfo);
565
566 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
567 DAG.getConstant(Stride, BasePTR.getValueType()));
568
569 Stores.push_back(Store);
570 }
571 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
572 &Stores[0], Stores.size());
573 AddLegalizedOperand(Op, TF);
574 return TF;
575 }
576
577 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
578 // Lower a select instruction where the condition is a scalar and the
579 // operands are vectors. Lower this select to VSELECT and implement it
580 // using XOR AND OR. The selector bit is broadcasted.
581 EVT VT = Op.getValueType();
582 SDLoc DL(Op);
583
584 SDValue Mask = Op.getOperand(0);
585 SDValue Op1 = Op.getOperand(1);
586 SDValue Op2 = Op.getOperand(2);
587
588 assert(VT.isVector() && !Mask.getValueType().isVector()
589 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
590
591 unsigned NumElem = VT.getVectorNumElements();
592
593 // If we can't even use the basic vector operations of
594 // AND,OR,XOR, we will have to scalarize the op.
595 // Notice that the operation may be 'promoted' which means that it is
596 // 'bitcasted' to another type which is handled.
597 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
598 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
599 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
600 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
601 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
602 return DAG.UnrollVectorOp(Op.getNode());
603
604 // Generate a mask operand.
605 EVT MaskTy = VT.changeVectorElementTypeToInteger();
606
607 // What is the size of each element in the vector mask.
608 EVT BitTy = MaskTy.getScalarType();
609
610 Mask = DAG.getSelect(DL, BitTy, Mask,
611 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
612 DAG.getConstant(0, BitTy));
613
614 // Broadcast the mask so that the entire vector is all-one or all zero.
615 SmallVector<SDValue, 8> Ops(NumElem, Mask);
616 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, &Ops[0], Ops.size());
617
618 // Bitcast the operands to be the same type as the mask.
619 // This is needed when we select between FP types because
620 // the mask is a vector of integers.
621 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
622 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
623
624 SDValue AllOnes = DAG.getConstant(
625 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
626 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
627
628 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
629 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
630 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
631 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
632 }
633
634 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
635 EVT VT = Op.getValueType();
636
637 // Make sure that the SRA and SHL instructions are available.
638 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
639 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
640 return DAG.UnrollVectorOp(Op.getNode());
641
642 SDLoc DL(Op);
643 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
644
645 unsigned BW = VT.getScalarType().getSizeInBits();
646 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
647 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
648
649 Op = Op.getOperand(0);
650 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
651 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
652 }
653
654 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
655 // Implement VSELECT in terms of XOR, AND, OR
656 // on platforms which do not support blend natively.
657 SDLoc DL(Op);
658
659 SDValue Mask = Op.getOperand(0);
660 SDValue Op1 = Op.getOperand(1);
661 SDValue Op2 = Op.getOperand(2);
662
663 EVT VT = Mask.getValueType();
664
665 // If we can't even use the basic vector operations of
666 // AND,OR,XOR, we will have to scalarize the op.
667 // Notice that the operation may be 'promoted' which means that it is
668 // 'bitcasted' to another type which is handled.
669 // This operation also isn't safe with AND, OR, XOR when the boolean
670 // type is 0/1 as we need an all ones vector constant to mask with.
671 // FIXME: Sign extend 1 to all ones if thats legal on the target.
672 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
673 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
674 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
675 TLI.getBooleanContents(true) !=
676 TargetLowering::ZeroOrNegativeOneBooleanContent)
677 return DAG.UnrollVectorOp(Op.getNode());
678
679 // If the mask and the type are different sizes, unroll the vector op. This
680 // can occur when getSetCCResultType returns something that is different in
681 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
682 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
683 return DAG.UnrollVectorOp(Op.getNode());
684
685 // Bitcast the operands to be the same type as the mask.
686 // This is needed when we select between FP types because
687 // the mask is a vector of integers.
688 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
689 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
690
691 SDValue AllOnes = DAG.getConstant(
692 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
693 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
694
695 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
696 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
697 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
698 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
699 }
700
701 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
702 EVT VT = Op.getOperand(0).getValueType();
703 SDLoc DL(Op);
704
705 // Make sure that the SINT_TO_FP and SRL instructions are available.
706 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
707 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
708 return DAG.UnrollVectorOp(Op.getNode());
709
710 EVT SVT = VT.getScalarType();
711 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
712 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
713
714 unsigned BW = SVT.getSizeInBits();
715 SDValue HalfWord = DAG.getConstant(BW/2, VT);
716
717 // Constants to clear the upper part of the word.
718 // Notice that we can also use SHL+SHR, but using a constant is slightly
719 // faster on x86.
720 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
721 SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
722
723 // Two to the power of half-word-size.
724 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
725
726 // Clear upper part of LO, lower HI
727 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
728 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
729
730 // Convert hi and lo to floats
731 // Convert the hi part back to the upper values
732 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
733 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
734 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
735
736 // Add the two halves
737 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
738 }
739
740
741 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
742 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
743 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
744 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
745 Zero, Op.getOperand(0));
746 }
747 return DAG.UnrollVectorOp(Op.getNode());
748 }
749
750 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
751 EVT VT = Op.getValueType();
752 unsigned NumElems = VT.getVectorNumElements();
753 EVT EltVT = VT.getVectorElementType();
754 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
755 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
756 SDLoc dl(Op);
757 SmallVector<SDValue, 8> Ops(NumElems);
758 for (unsigned i = 0; i < NumElems; ++i) {
759 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
760 DAG.getConstant(i, TLI.getVectorIdxTy()));
761 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
762 DAG.getConstant(i, TLI.getVectorIdxTy()));
763 Ops[i] = DAG.getNode(ISD::SETCC, dl,
764 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
765 LHSElem, RHSElem, CC);
766 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
767 DAG.getConstant(APInt::getAllOnesValue
768 (EltVT.getSizeInBits()), EltVT),
769 DAG.getConstant(0, EltVT));
770 }
771 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
772 }
773
774 }
775
776 bool SelectionDAG::LegalizeVectors() {
777 return VectorLegalizer(*this).Run();
778 }