comparison lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "pre-RA-sched"
19 #include "llvm/CodeGen/SchedulerRegistry.h"
20 #include "ScheduleDAGSDNodes.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include <climits>
37 using namespace llvm;
38
39 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
40 STATISTIC(NumUnfolds, "Number of nodes unfolded");
41 STATISTIC(NumDups, "Number of duplicated nodes");
42 STATISTIC(NumPRCopies, "Number of physical register copies");
43
44 static RegisterScheduler
45 burrListDAGScheduler("list-burr",
46 "Bottom-up register reduction list scheduling",
47 createBURRListDAGScheduler);
48 static RegisterScheduler
49 sourceListDAGScheduler("source",
50 "Similar to list-burr but schedules in source "
51 "order when possible",
52 createSourceListDAGScheduler);
53
54 static RegisterScheduler
55 hybridListDAGScheduler("list-hybrid",
56 "Bottom-up register pressure aware list scheduling "
57 "which tries to balance latency and register pressure",
58 createHybridListDAGScheduler);
59
60 static RegisterScheduler
61 ILPListDAGScheduler("list-ilp",
62 "Bottom-up register pressure aware list scheduling "
63 "which tries to balance ILP and register pressure",
64 createILPListDAGScheduler);
65
66 static cl::opt<bool> DisableSchedCycles(
67 "disable-sched-cycles", cl::Hidden, cl::init(false),
68 cl::desc("Disable cycle-level precision during preRA scheduling"));
69
70 // Temporary sched=list-ilp flags until the heuristics are robust.
71 // Some options are also available under sched=list-hybrid.
72 static cl::opt<bool> DisableSchedRegPressure(
73 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
74 cl::desc("Disable regpressure priority in sched=list-ilp"));
75 static cl::opt<bool> DisableSchedLiveUses(
76 "disable-sched-live-uses", cl::Hidden, cl::init(true),
77 cl::desc("Disable live use priority in sched=list-ilp"));
78 static cl::opt<bool> DisableSchedVRegCycle(
79 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
80 cl::desc("Disable virtual register cycle interference checks"));
81 static cl::opt<bool> DisableSchedPhysRegJoin(
82 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
83 cl::desc("Disable physreg def-use affinity"));
84 static cl::opt<bool> DisableSchedStalls(
85 "disable-sched-stalls", cl::Hidden, cl::init(true),
86 cl::desc("Disable no-stall priority in sched=list-ilp"));
87 static cl::opt<bool> DisableSchedCriticalPath(
88 "disable-sched-critical-path", cl::Hidden, cl::init(false),
89 cl::desc("Disable critical path priority in sched=list-ilp"));
90 static cl::opt<bool> DisableSchedHeight(
91 "disable-sched-height", cl::Hidden, cl::init(false),
92 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
93 static cl::opt<bool> Disable2AddrHack(
94 "disable-2addr-hack", cl::Hidden, cl::init(true),
95 cl::desc("Disable scheduler's two-address hack"));
96
97 static cl::opt<int> MaxReorderWindow(
98 "max-sched-reorder", cl::Hidden, cl::init(6),
99 cl::desc("Number of instructions to allow ahead of the critical path "
100 "in sched=list-ilp"));
101
102 static cl::opt<unsigned> AvgIPC(
103 "sched-avg-ipc", cl::Hidden, cl::init(1),
104 cl::desc("Average inst/cycle whan no target itinerary exists."));
105
106 namespace {
107 //===----------------------------------------------------------------------===//
108 /// ScheduleDAGRRList - The actual register reduction list scheduler
109 /// implementation. This supports both top-down and bottom-up scheduling.
110 ///
111 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
112 private:
113 /// NeedLatency - True if the scheduler will make use of latency information.
114 ///
115 bool NeedLatency;
116
117 /// AvailableQueue - The priority queue to use for the available SUnits.
118 SchedulingPriorityQueue *AvailableQueue;
119
120 /// PendingQueue - This contains all of the instructions whose operands have
121 /// been issued, but their results are not ready yet (due to the latency of
122 /// the operation). Once the operands becomes available, the instruction is
123 /// added to the AvailableQueue.
124 std::vector<SUnit*> PendingQueue;
125
126 /// HazardRec - The hazard recognizer to use.
127 ScheduleHazardRecognizer *HazardRec;
128
129 /// CurCycle - The current scheduler state corresponds to this cycle.
130 unsigned CurCycle;
131
132 /// MinAvailableCycle - Cycle of the soonest available instruction.
133 unsigned MinAvailableCycle;
134
135 /// IssueCount - Count instructions issued in this cycle
136 /// Currently valid only for bottom-up scheduling.
137 unsigned IssueCount;
138
139 /// LiveRegDefs - A set of physical registers and their definition
140 /// that are "live". These nodes must be scheduled before any other nodes that
141 /// modifies the registers can be scheduled.
142 unsigned NumLiveRegs;
143 std::vector<SUnit*> LiveRegDefs;
144 std::vector<SUnit*> LiveRegGens;
145
146 // Collect interferences between physical register use/defs.
147 // Each interference is an SUnit and set of physical registers.
148 SmallVector<SUnit*, 4> Interferences;
149 typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
150 LRegsMapT LRegsMap;
151
152 /// Topo - A topological ordering for SUnits which permits fast IsReachable
153 /// and similar queries.
154 ScheduleDAGTopologicalSort Topo;
155
156 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
157 // DAG crawling.
158 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
159
160 public:
161 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
162 SchedulingPriorityQueue *availqueue,
163 CodeGenOpt::Level OptLevel)
164 : ScheduleDAGSDNodes(mf),
165 NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
166 Topo(SUnits, NULL) {
167
168 const TargetMachine &tm = mf.getTarget();
169 if (DisableSchedCycles || !NeedLatency)
170 HazardRec = new ScheduleHazardRecognizer();
171 else
172 HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
173 }
174
175 ~ScheduleDAGRRList() {
176 delete HazardRec;
177 delete AvailableQueue;
178 }
179
180 void Schedule();
181
182 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
183
184 /// IsReachable - Checks if SU is reachable from TargetSU.
185 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
186 return Topo.IsReachable(SU, TargetSU);
187 }
188
189 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
190 /// create a cycle.
191 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
192 return Topo.WillCreateCycle(SU, TargetSU);
193 }
194
195 /// AddPred - adds a predecessor edge to SUnit SU.
196 /// This returns true if this is a new predecessor.
197 /// Updates the topological ordering if required.
198 void AddPred(SUnit *SU, const SDep &D) {
199 Topo.AddPred(SU, D.getSUnit());
200 SU->addPred(D);
201 }
202
203 /// RemovePred - removes a predecessor edge from SUnit SU.
204 /// This returns true if an edge was removed.
205 /// Updates the topological ordering if required.
206 void RemovePred(SUnit *SU, const SDep &D) {
207 Topo.RemovePred(SU, D.getSUnit());
208 SU->removePred(D);
209 }
210
211 private:
212 bool isReady(SUnit *SU) {
213 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
214 AvailableQueue->isReady(SU);
215 }
216
217 void ReleasePred(SUnit *SU, const SDep *PredEdge);
218 void ReleasePredecessors(SUnit *SU);
219 void ReleasePending();
220 void AdvanceToCycle(unsigned NextCycle);
221 void AdvancePastStalls(SUnit *SU);
222 void EmitNode(SUnit *SU);
223 void ScheduleNodeBottomUp(SUnit*);
224 void CapturePred(SDep *PredEdge);
225 void UnscheduleNodeBottomUp(SUnit*);
226 void RestoreHazardCheckerBottomUp();
227 void BacktrackBottomUp(SUnit*, SUnit*);
228 SUnit *CopyAndMoveSuccessors(SUnit*);
229 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
230 const TargetRegisterClass*,
231 const TargetRegisterClass*,
232 SmallVectorImpl<SUnit*>&);
233 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
234
235 void releaseInterferences(unsigned Reg = 0);
236
237 SUnit *PickNodeToScheduleBottomUp();
238 void ListScheduleBottomUp();
239
240 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
241 /// Updates the topological ordering if required.
242 SUnit *CreateNewSUnit(SDNode *N) {
243 unsigned NumSUnits = SUnits.size();
244 SUnit *NewNode = newSUnit(N);
245 // Update the topological ordering.
246 if (NewNode->NodeNum >= NumSUnits)
247 Topo.InitDAGTopologicalSorting();
248 return NewNode;
249 }
250
251 /// CreateClone - Creates a new SUnit from an existing one.
252 /// Updates the topological ordering if required.
253 SUnit *CreateClone(SUnit *N) {
254 unsigned NumSUnits = SUnits.size();
255 SUnit *NewNode = Clone(N);
256 // Update the topological ordering.
257 if (NewNode->NodeNum >= NumSUnits)
258 Topo.InitDAGTopologicalSorting();
259 return NewNode;
260 }
261
262 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
263 /// need actual latency information but the hybrid scheduler does.
264 bool forceUnitLatencies() const {
265 return !NeedLatency;
266 }
267 };
268 } // end anonymous namespace
269
270 /// GetCostForDef - Looks up the register class and cost for a given definition.
271 /// Typically this just means looking up the representative register class,
272 /// but for untyped values (MVT::Untyped) it means inspecting the node's
273 /// opcode to determine what register class is being generated.
274 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
275 const TargetLowering *TLI,
276 const TargetInstrInfo *TII,
277 const TargetRegisterInfo *TRI,
278 unsigned &RegClass, unsigned &Cost,
279 const MachineFunction &MF) {
280 MVT VT = RegDefPos.GetValue();
281
282 // Special handling for untyped values. These values can only come from
283 // the expansion of custom DAG-to-DAG patterns.
284 if (VT == MVT::Untyped) {
285 const SDNode *Node = RegDefPos.GetNode();
286
287 // Special handling for CopyFromReg of untyped values.
288 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
289 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
290 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
291 RegClass = RC->getID();
292 Cost = 1;
293 return;
294 }
295
296 unsigned Opcode = Node->getMachineOpcode();
297 if (Opcode == TargetOpcode::REG_SEQUENCE) {
298 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
299 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
300 RegClass = RC->getID();
301 Cost = 1;
302 return;
303 }
304
305 unsigned Idx = RegDefPos.GetIdx();
306 const MCInstrDesc Desc = TII->get(Opcode);
307 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
308 RegClass = RC->getID();
309 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
310 // better way to determine it.
311 Cost = 1;
312 } else {
313 RegClass = TLI->getRepRegClassFor(VT)->getID();
314 Cost = TLI->getRepRegClassCostFor(VT);
315 }
316 }
317
318 /// Schedule - Schedule the DAG using list scheduling.
319 void ScheduleDAGRRList::Schedule() {
320 DEBUG(dbgs()
321 << "********** List Scheduling BB#" << BB->getNumber()
322 << " '" << BB->getName() << "' **********\n");
323
324 CurCycle = 0;
325 IssueCount = 0;
326 MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
327 NumLiveRegs = 0;
328 // Allocate slots for each physical register, plus one for a special register
329 // to track the virtual resource of a calling sequence.
330 LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
331 LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
332 CallSeqEndForStart.clear();
333 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
334
335 // Build the scheduling graph.
336 BuildSchedGraph(NULL);
337
338 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
339 SUnits[su].dumpAll(this));
340 Topo.InitDAGTopologicalSorting();
341
342 AvailableQueue->initNodes(SUnits);
343
344 HazardRec->Reset();
345
346 // Execute the actual scheduling loop.
347 ListScheduleBottomUp();
348
349 AvailableQueue->releaseState();
350
351 DEBUG({
352 dbgs() << "*** Final schedule ***\n";
353 dumpSchedule();
354 dbgs() << '\n';
355 });
356 }
357
358 //===----------------------------------------------------------------------===//
359 // Bottom-Up Scheduling
360 //===----------------------------------------------------------------------===//
361
362 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
363 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
364 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
365 SUnit *PredSU = PredEdge->getSUnit();
366
367 #ifndef NDEBUG
368 if (PredSU->NumSuccsLeft == 0) {
369 dbgs() << "*** Scheduling failed! ***\n";
370 PredSU->dump(this);
371 dbgs() << " has been released too many times!\n";
372 llvm_unreachable(0);
373 }
374 #endif
375 --PredSU->NumSuccsLeft;
376
377 if (!forceUnitLatencies()) {
378 // Updating predecessor's height. This is now the cycle when the
379 // predecessor can be scheduled without causing a pipeline stall.
380 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
381 }
382
383 // If all the node's successors are scheduled, this node is ready
384 // to be scheduled. Ignore the special EntrySU node.
385 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
386 PredSU->isAvailable = true;
387
388 unsigned Height = PredSU->getHeight();
389 if (Height < MinAvailableCycle)
390 MinAvailableCycle = Height;
391
392 if (isReady(PredSU)) {
393 AvailableQueue->push(PredSU);
394 }
395 // CapturePred and others may have left the node in the pending queue, avoid
396 // adding it twice.
397 else if (!PredSU->isPending) {
398 PredSU->isPending = true;
399 PendingQueue.push_back(PredSU);
400 }
401 }
402 }
403
404 /// IsChainDependent - Test if Outer is reachable from Inner through
405 /// chain dependencies.
406 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
407 unsigned NestLevel,
408 const TargetInstrInfo *TII) {
409 SDNode *N = Outer;
410 for (;;) {
411 if (N == Inner)
412 return true;
413 // For a TokenFactor, examine each operand. There may be multiple ways
414 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
415 // most nesting in order to ensure that we find the corresponding match.
416 if (N->getOpcode() == ISD::TokenFactor) {
417 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
418 if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
419 return true;
420 return false;
421 }
422 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
423 if (N->isMachineOpcode()) {
424 if (N->getMachineOpcode() ==
425 (unsigned)TII->getCallFrameDestroyOpcode()) {
426 ++NestLevel;
427 } else if (N->getMachineOpcode() ==
428 (unsigned)TII->getCallFrameSetupOpcode()) {
429 if (NestLevel == 0)
430 return false;
431 --NestLevel;
432 }
433 }
434 // Otherwise, find the chain and continue climbing.
435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
436 if (N->getOperand(i).getValueType() == MVT::Other) {
437 N = N->getOperand(i).getNode();
438 goto found_chain_operand;
439 }
440 return false;
441 found_chain_operand:;
442 if (N->getOpcode() == ISD::EntryToken)
443 return false;
444 }
445 }
446
447 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
448 /// the corresponding (lowered) CALLSEQ_BEGIN node.
449 ///
450 /// NestLevel and MaxNested are used in recursion to indcate the current level
451 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
452 /// level seen so far.
453 ///
454 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
455 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
456 static SDNode *
457 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
458 const TargetInstrInfo *TII) {
459 for (;;) {
460 // For a TokenFactor, examine each operand. There may be multiple ways
461 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
462 // most nesting in order to ensure that we find the corresponding match.
463 if (N->getOpcode() == ISD::TokenFactor) {
464 SDNode *Best = 0;
465 unsigned BestMaxNest = MaxNest;
466 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
467 unsigned MyNestLevel = NestLevel;
468 unsigned MyMaxNest = MaxNest;
469 if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
470 MyNestLevel, MyMaxNest, TII))
471 if (!Best || (MyMaxNest > BestMaxNest)) {
472 Best = New;
473 BestMaxNest = MyMaxNest;
474 }
475 }
476 assert(Best);
477 MaxNest = BestMaxNest;
478 return Best;
479 }
480 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
481 if (N->isMachineOpcode()) {
482 if (N->getMachineOpcode() ==
483 (unsigned)TII->getCallFrameDestroyOpcode()) {
484 ++NestLevel;
485 MaxNest = std::max(MaxNest, NestLevel);
486 } else if (N->getMachineOpcode() ==
487 (unsigned)TII->getCallFrameSetupOpcode()) {
488 assert(NestLevel != 0);
489 --NestLevel;
490 if (NestLevel == 0)
491 return N;
492 }
493 }
494 // Otherwise, find the chain and continue climbing.
495 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
496 if (N->getOperand(i).getValueType() == MVT::Other) {
497 N = N->getOperand(i).getNode();
498 goto found_chain_operand;
499 }
500 return 0;
501 found_chain_operand:;
502 if (N->getOpcode() == ISD::EntryToken)
503 return 0;
504 }
505 }
506
507 /// Call ReleasePred for each predecessor, then update register live def/gen.
508 /// Always update LiveRegDefs for a register dependence even if the current SU
509 /// also defines the register. This effectively create one large live range
510 /// across a sequence of two-address node. This is important because the
511 /// entire chain must be scheduled together. Example:
512 ///
513 /// flags = (3) add
514 /// flags = (2) addc flags
515 /// flags = (1) addc flags
516 ///
517 /// results in
518 ///
519 /// LiveRegDefs[flags] = 3
520 /// LiveRegGens[flags] = 1
521 ///
522 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
523 /// interference on flags.
524 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
525 // Bottom up: release predecessors
526 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
527 I != E; ++I) {
528 ReleasePred(SU, &*I);
529 if (I->isAssignedRegDep()) {
530 // This is a physical register dependency and it's impossible or
531 // expensive to copy the register. Make sure nothing that can
532 // clobber the register is scheduled between the predecessor and
533 // this node.
534 SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
535 assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
536 "interference on register dependence");
537 LiveRegDefs[I->getReg()] = I->getSUnit();
538 if (!LiveRegGens[I->getReg()]) {
539 ++NumLiveRegs;
540 LiveRegGens[I->getReg()] = SU;
541 }
542 }
543 }
544
545 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
546 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
547 // these nodes, to prevent other calls from being interscheduled with them.
548 unsigned CallResource = TRI->getNumRegs();
549 if (!LiveRegDefs[CallResource])
550 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
551 if (Node->isMachineOpcode() &&
552 Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
553 unsigned NestLevel = 0;
554 unsigned MaxNest = 0;
555 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
556
557 SUnit *Def = &SUnits[N->getNodeId()];
558 CallSeqEndForStart[Def] = SU;
559
560 ++NumLiveRegs;
561 LiveRegDefs[CallResource] = Def;
562 LiveRegGens[CallResource] = SU;
563 break;
564 }
565 }
566
567 /// Check to see if any of the pending instructions are ready to issue. If
568 /// so, add them to the available queue.
569 void ScheduleDAGRRList::ReleasePending() {
570 if (DisableSchedCycles) {
571 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
572 return;
573 }
574
575 // If the available queue is empty, it is safe to reset MinAvailableCycle.
576 if (AvailableQueue->empty())
577 MinAvailableCycle = UINT_MAX;
578
579 // Check to see if any of the pending instructions are ready to issue. If
580 // so, add them to the available queue.
581 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
582 unsigned ReadyCycle = PendingQueue[i]->getHeight();
583 if (ReadyCycle < MinAvailableCycle)
584 MinAvailableCycle = ReadyCycle;
585
586 if (PendingQueue[i]->isAvailable) {
587 if (!isReady(PendingQueue[i]))
588 continue;
589 AvailableQueue->push(PendingQueue[i]);
590 }
591 PendingQueue[i]->isPending = false;
592 PendingQueue[i] = PendingQueue.back();
593 PendingQueue.pop_back();
594 --i; --e;
595 }
596 }
597
598 /// Move the scheduler state forward by the specified number of Cycles.
599 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
600 if (NextCycle <= CurCycle)
601 return;
602
603 IssueCount = 0;
604 AvailableQueue->setCurCycle(NextCycle);
605 if (!HazardRec->isEnabled()) {
606 // Bypass lots of virtual calls in case of long latency.
607 CurCycle = NextCycle;
608 }
609 else {
610 for (; CurCycle != NextCycle; ++CurCycle) {
611 HazardRec->RecedeCycle();
612 }
613 }
614 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
615 // available Q to release pending nodes at least once before popping.
616 ReleasePending();
617 }
618
619 /// Move the scheduler state forward until the specified node's dependents are
620 /// ready and can be scheduled with no resource conflicts.
621 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
622 if (DisableSchedCycles)
623 return;
624
625 // FIXME: Nodes such as CopyFromReg probably should not advance the current
626 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
627 // has predecessors the cycle will be advanced when they are scheduled.
628 // But given the crude nature of modeling latency though such nodes, we
629 // currently need to treat these nodes like real instructions.
630 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
631
632 unsigned ReadyCycle = SU->getHeight();
633
634 // Bump CurCycle to account for latency. We assume the latency of other
635 // available instructions may be hidden by the stall (not a full pipe stall).
636 // This updates the hazard recognizer's cycle before reserving resources for
637 // this instruction.
638 AdvanceToCycle(ReadyCycle);
639
640 // Calls are scheduled in their preceding cycle, so don't conflict with
641 // hazards from instructions after the call. EmitNode will reset the
642 // scoreboard state before emitting the call.
643 if (SU->isCall)
644 return;
645
646 // FIXME: For resource conflicts in very long non-pipelined stages, we
647 // should probably skip ahead here to avoid useless scoreboard checks.
648 int Stalls = 0;
649 while (true) {
650 ScheduleHazardRecognizer::HazardType HT =
651 HazardRec->getHazardType(SU, -Stalls);
652
653 if (HT == ScheduleHazardRecognizer::NoHazard)
654 break;
655
656 ++Stalls;
657 }
658 AdvanceToCycle(CurCycle + Stalls);
659 }
660
661 /// Record this SUnit in the HazardRecognizer.
662 /// Does not update CurCycle.
663 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
664 if (!HazardRec->isEnabled())
665 return;
666
667 // Check for phys reg copy.
668 if (!SU->getNode())
669 return;
670
671 switch (SU->getNode()->getOpcode()) {
672 default:
673 assert(SU->getNode()->isMachineOpcode() &&
674 "This target-independent node should not be scheduled.");
675 break;
676 case ISD::MERGE_VALUES:
677 case ISD::TokenFactor:
678 case ISD::LIFETIME_START:
679 case ISD::LIFETIME_END:
680 case ISD::CopyToReg:
681 case ISD::CopyFromReg:
682 case ISD::EH_LABEL:
683 // Noops don't affect the scoreboard state. Copies are likely to be
684 // removed.
685 return;
686 case ISD::INLINEASM:
687 // For inline asm, clear the pipeline state.
688 HazardRec->Reset();
689 return;
690 }
691 if (SU->isCall) {
692 // Calls are scheduled with their preceding instructions. For bottom-up
693 // scheduling, clear the pipeline state before emitting.
694 HazardRec->Reset();
695 }
696
697 HazardRec->EmitInstruction(SU);
698 }
699
700 static void resetVRegCycle(SUnit *SU);
701
702 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
703 /// count of its predecessors. If a predecessor pending count is zero, add it to
704 /// the Available queue.
705 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
706 DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
707 DEBUG(SU->dump(this));
708
709 #ifndef NDEBUG
710 if (CurCycle < SU->getHeight())
711 DEBUG(dbgs() << " Height [" << SU->getHeight()
712 << "] pipeline stall!\n");
713 #endif
714
715 // FIXME: Do not modify node height. It may interfere with
716 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
717 // node its ready cycle can aid heuristics, and after scheduling it can
718 // indicate the scheduled cycle.
719 SU->setHeightToAtLeast(CurCycle);
720
721 // Reserve resources for the scheduled instruction.
722 EmitNode(SU);
723
724 Sequence.push_back(SU);
725
726 AvailableQueue->scheduledNode(SU);
727
728 // If HazardRec is disabled, and each inst counts as one cycle, then
729 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
730 // PendingQueue for schedulers that implement HasReadyFilter.
731 if (!HazardRec->isEnabled() && AvgIPC < 2)
732 AdvanceToCycle(CurCycle + 1);
733
734 // Update liveness of predecessors before successors to avoid treating a
735 // two-address node as a live range def.
736 ReleasePredecessors(SU);
737
738 // Release all the implicit physical register defs that are live.
739 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
740 I != E; ++I) {
741 // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
742 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
743 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
744 --NumLiveRegs;
745 LiveRegDefs[I->getReg()] = NULL;
746 LiveRegGens[I->getReg()] = NULL;
747 releaseInterferences(I->getReg());
748 }
749 }
750 // Release the special call resource dependence, if this is the beginning
751 // of a call.
752 unsigned CallResource = TRI->getNumRegs();
753 if (LiveRegDefs[CallResource] == SU)
754 for (const SDNode *SUNode = SU->getNode(); SUNode;
755 SUNode = SUNode->getGluedNode()) {
756 if (SUNode->isMachineOpcode() &&
757 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
758 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
759 --NumLiveRegs;
760 LiveRegDefs[CallResource] = NULL;
761 LiveRegGens[CallResource] = NULL;
762 releaseInterferences(CallResource);
763 }
764 }
765
766 resetVRegCycle(SU);
767
768 SU->isScheduled = true;
769
770 // Conditions under which the scheduler should eagerly advance the cycle:
771 // (1) No available instructions
772 // (2) All pipelines full, so available instructions must have hazards.
773 //
774 // If HazardRec is disabled, the cycle was pre-advanced before calling
775 // ReleasePredecessors. In that case, IssueCount should remain 0.
776 //
777 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
778 if (HazardRec->isEnabled() || AvgIPC > 1) {
779 if (SU->getNode() && SU->getNode()->isMachineOpcode())
780 ++IssueCount;
781 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
782 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
783 AdvanceToCycle(CurCycle + 1);
784 }
785 }
786
787 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
788 /// unscheduled, incrcease the succ left count of its predecessors. Remove
789 /// them from AvailableQueue if necessary.
790 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
791 SUnit *PredSU = PredEdge->getSUnit();
792 if (PredSU->isAvailable) {
793 PredSU->isAvailable = false;
794 if (!PredSU->isPending)
795 AvailableQueue->remove(PredSU);
796 }
797
798 assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
799 ++PredSU->NumSuccsLeft;
800 }
801
802 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
803 /// its predecessor states to reflect the change.
804 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
805 DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
806 DEBUG(SU->dump(this));
807
808 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
809 I != E; ++I) {
810 CapturePred(&*I);
811 if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
812 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
813 assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
814 "Physical register dependency violated?");
815 --NumLiveRegs;
816 LiveRegDefs[I->getReg()] = NULL;
817 LiveRegGens[I->getReg()] = NULL;
818 releaseInterferences(I->getReg());
819 }
820 }
821
822 // Reclaim the special call resource dependence, if this is the beginning
823 // of a call.
824 unsigned CallResource = TRI->getNumRegs();
825 for (const SDNode *SUNode = SU->getNode(); SUNode;
826 SUNode = SUNode->getGluedNode()) {
827 if (SUNode->isMachineOpcode() &&
828 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
829 ++NumLiveRegs;
830 LiveRegDefs[CallResource] = SU;
831 LiveRegGens[CallResource] = CallSeqEndForStart[SU];
832 }
833 }
834
835 // Release the special call resource dependence, if this is the end
836 // of a call.
837 if (LiveRegGens[CallResource] == SU)
838 for (const SDNode *SUNode = SU->getNode(); SUNode;
839 SUNode = SUNode->getGluedNode()) {
840 if (SUNode->isMachineOpcode() &&
841 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
842 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
843 --NumLiveRegs;
844 LiveRegDefs[CallResource] = NULL;
845 LiveRegGens[CallResource] = NULL;
846 releaseInterferences(CallResource);
847 }
848 }
849
850 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
851 I != E; ++I) {
852 if (I->isAssignedRegDep()) {
853 if (!LiveRegDefs[I->getReg()])
854 ++NumLiveRegs;
855 // This becomes the nearest def. Note that an earlier def may still be
856 // pending if this is a two-address node.
857 LiveRegDefs[I->getReg()] = SU;
858 if (LiveRegGens[I->getReg()] == NULL ||
859 I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
860 LiveRegGens[I->getReg()] = I->getSUnit();
861 }
862 }
863 if (SU->getHeight() < MinAvailableCycle)
864 MinAvailableCycle = SU->getHeight();
865
866 SU->setHeightDirty();
867 SU->isScheduled = false;
868 SU->isAvailable = true;
869 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
870 // Don't make available until backtracking is complete.
871 SU->isPending = true;
872 PendingQueue.push_back(SU);
873 }
874 else {
875 AvailableQueue->push(SU);
876 }
877 AvailableQueue->unscheduledNode(SU);
878 }
879
880 /// After backtracking, the hazard checker needs to be restored to a state
881 /// corresponding the current cycle.
882 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
883 HazardRec->Reset();
884
885 unsigned LookAhead = std::min((unsigned)Sequence.size(),
886 HazardRec->getMaxLookAhead());
887 if (LookAhead == 0)
888 return;
889
890 std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
891 unsigned HazardCycle = (*I)->getHeight();
892 for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
893 SUnit *SU = *I;
894 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
895 HazardRec->RecedeCycle();
896 }
897 EmitNode(SU);
898 }
899 }
900
901 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
902 /// BTCycle in order to schedule a specific node.
903 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
904 SUnit *OldSU = Sequence.back();
905 while (true) {
906 Sequence.pop_back();
907 // FIXME: use ready cycle instead of height
908 CurCycle = OldSU->getHeight();
909 UnscheduleNodeBottomUp(OldSU);
910 AvailableQueue->setCurCycle(CurCycle);
911 if (OldSU == BtSU)
912 break;
913 OldSU = Sequence.back();
914 }
915
916 assert(!SU->isSucc(OldSU) && "Something is wrong!");
917
918 RestoreHazardCheckerBottomUp();
919
920 ReleasePending();
921
922 ++NumBacktracks;
923 }
924
925 static bool isOperandOf(const SUnit *SU, SDNode *N) {
926 for (const SDNode *SUNode = SU->getNode(); SUNode;
927 SUNode = SUNode->getGluedNode()) {
928 if (SUNode->isOperandOf(N))
929 return true;
930 }
931 return false;
932 }
933
934 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
935 /// successors to the newly created node.
936 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
937 SDNode *N = SU->getNode();
938 if (!N)
939 return NULL;
940
941 if (SU->getNode()->getGluedNode())
942 return NULL;
943
944 SUnit *NewSU;
945 bool TryUnfold = false;
946 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
947 EVT VT = N->getValueType(i);
948 if (VT == MVT::Glue)
949 return NULL;
950 else if (VT == MVT::Other)
951 TryUnfold = true;
952 }
953 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
954 const SDValue &Op = N->getOperand(i);
955 EVT VT = Op.getNode()->getValueType(Op.getResNo());
956 if (VT == MVT::Glue)
957 return NULL;
958 }
959
960 if (TryUnfold) {
961 SmallVector<SDNode*, 2> NewNodes;
962 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
963 return NULL;
964
965 // unfolding an x86 DEC64m operation results in store, dec, load which
966 // can't be handled here so quit
967 if (NewNodes.size() == 3)
968 return NULL;
969
970 DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
971 assert(NewNodes.size() == 2 && "Expected a load folding node!");
972
973 N = NewNodes[1];
974 SDNode *LoadNode = NewNodes[0];
975 unsigned NumVals = N->getNumValues();
976 unsigned OldNumVals = SU->getNode()->getNumValues();
977 for (unsigned i = 0; i != NumVals; ++i)
978 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
979 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
980 SDValue(LoadNode, 1));
981
982 // LoadNode may already exist. This can happen when there is another
983 // load from the same location and producing the same type of value
984 // but it has different alignment or volatileness.
985 bool isNewLoad = true;
986 SUnit *LoadSU;
987 if (LoadNode->getNodeId() != -1) {
988 LoadSU = &SUnits[LoadNode->getNodeId()];
989 isNewLoad = false;
990 } else {
991 LoadSU = CreateNewSUnit(LoadNode);
992 LoadNode->setNodeId(LoadSU->NodeNum);
993
994 InitNumRegDefsLeft(LoadSU);
995 computeLatency(LoadSU);
996 }
997
998 SUnit *NewSU = CreateNewSUnit(N);
999 assert(N->getNodeId() == -1 && "Node already inserted!");
1000 N->setNodeId(NewSU->NodeNum);
1001
1002 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1003 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1004 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1005 NewSU->isTwoAddress = true;
1006 break;
1007 }
1008 }
1009 if (MCID.isCommutable())
1010 NewSU->isCommutable = true;
1011
1012 InitNumRegDefsLeft(NewSU);
1013 computeLatency(NewSU);
1014
1015 // Record all the edges to and from the old SU, by category.
1016 SmallVector<SDep, 4> ChainPreds;
1017 SmallVector<SDep, 4> ChainSuccs;
1018 SmallVector<SDep, 4> LoadPreds;
1019 SmallVector<SDep, 4> NodePreds;
1020 SmallVector<SDep, 4> NodeSuccs;
1021 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1022 I != E; ++I) {
1023 if (I->isCtrl())
1024 ChainPreds.push_back(*I);
1025 else if (isOperandOf(I->getSUnit(), LoadNode))
1026 LoadPreds.push_back(*I);
1027 else
1028 NodePreds.push_back(*I);
1029 }
1030 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1031 I != E; ++I) {
1032 if (I->isCtrl())
1033 ChainSuccs.push_back(*I);
1034 else
1035 NodeSuccs.push_back(*I);
1036 }
1037
1038 // Now assign edges to the newly-created nodes.
1039 for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1040 const SDep &Pred = ChainPreds[i];
1041 RemovePred(SU, Pred);
1042 if (isNewLoad)
1043 AddPred(LoadSU, Pred);
1044 }
1045 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1046 const SDep &Pred = LoadPreds[i];
1047 RemovePred(SU, Pred);
1048 if (isNewLoad)
1049 AddPred(LoadSU, Pred);
1050 }
1051 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1052 const SDep &Pred = NodePreds[i];
1053 RemovePred(SU, Pred);
1054 AddPred(NewSU, Pred);
1055 }
1056 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1057 SDep D = NodeSuccs[i];
1058 SUnit *SuccDep = D.getSUnit();
1059 D.setSUnit(SU);
1060 RemovePred(SuccDep, D);
1061 D.setSUnit(NewSU);
1062 AddPred(SuccDep, D);
1063 // Balance register pressure.
1064 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1065 && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1066 --NewSU->NumRegDefsLeft;
1067 }
1068 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1069 SDep D = ChainSuccs[i];
1070 SUnit *SuccDep = D.getSUnit();
1071 D.setSUnit(SU);
1072 RemovePred(SuccDep, D);
1073 if (isNewLoad) {
1074 D.setSUnit(LoadSU);
1075 AddPred(SuccDep, D);
1076 }
1077 }
1078
1079 // Add a data dependency to reflect that NewSU reads the value defined
1080 // by LoadSU.
1081 SDep D(LoadSU, SDep::Data, 0);
1082 D.setLatency(LoadSU->Latency);
1083 AddPred(NewSU, D);
1084
1085 if (isNewLoad)
1086 AvailableQueue->addNode(LoadSU);
1087 AvailableQueue->addNode(NewSU);
1088
1089 ++NumUnfolds;
1090
1091 if (NewSU->NumSuccsLeft == 0) {
1092 NewSU->isAvailable = true;
1093 return NewSU;
1094 }
1095 SU = NewSU;
1096 }
1097
1098 DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1099 NewSU = CreateClone(SU);
1100
1101 // New SUnit has the exact same predecessors.
1102 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1103 I != E; ++I)
1104 if (!I->isArtificial())
1105 AddPred(NewSU, *I);
1106
1107 // Only copy scheduled successors. Cut them from old node's successor
1108 // list and move them over.
1109 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1110 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1111 I != E; ++I) {
1112 if (I->isArtificial())
1113 continue;
1114 SUnit *SuccSU = I->getSUnit();
1115 if (SuccSU->isScheduled) {
1116 SDep D = *I;
1117 D.setSUnit(NewSU);
1118 AddPred(SuccSU, D);
1119 D.setSUnit(SU);
1120 DelDeps.push_back(std::make_pair(SuccSU, D));
1121 }
1122 }
1123 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1124 RemovePred(DelDeps[i].first, DelDeps[i].second);
1125
1126 AvailableQueue->updateNode(SU);
1127 AvailableQueue->addNode(NewSU);
1128
1129 ++NumDups;
1130 return NewSU;
1131 }
1132
1133 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1134 /// scheduled successors of the given SUnit to the last copy.
1135 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1136 const TargetRegisterClass *DestRC,
1137 const TargetRegisterClass *SrcRC,
1138 SmallVectorImpl<SUnit*> &Copies) {
1139 SUnit *CopyFromSU = CreateNewSUnit(NULL);
1140 CopyFromSU->CopySrcRC = SrcRC;
1141 CopyFromSU->CopyDstRC = DestRC;
1142
1143 SUnit *CopyToSU = CreateNewSUnit(NULL);
1144 CopyToSU->CopySrcRC = DestRC;
1145 CopyToSU->CopyDstRC = SrcRC;
1146
1147 // Only copy scheduled successors. Cut them from old node's successor
1148 // list and move them over.
1149 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1150 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1151 I != E; ++I) {
1152 if (I->isArtificial())
1153 continue;
1154 SUnit *SuccSU = I->getSUnit();
1155 if (SuccSU->isScheduled) {
1156 SDep D = *I;
1157 D.setSUnit(CopyToSU);
1158 AddPred(SuccSU, D);
1159 DelDeps.push_back(std::make_pair(SuccSU, *I));
1160 }
1161 else {
1162 // Avoid scheduling the def-side copy before other successors. Otherwise
1163 // we could introduce another physreg interference on the copy and
1164 // continue inserting copies indefinitely.
1165 AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1166 }
1167 }
1168 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1169 RemovePred(DelDeps[i].first, DelDeps[i].second);
1170
1171 SDep FromDep(SU, SDep::Data, Reg);
1172 FromDep.setLatency(SU->Latency);
1173 AddPred(CopyFromSU, FromDep);
1174 SDep ToDep(CopyFromSU, SDep::Data, 0);
1175 ToDep.setLatency(CopyFromSU->Latency);
1176 AddPred(CopyToSU, ToDep);
1177
1178 AvailableQueue->updateNode(SU);
1179 AvailableQueue->addNode(CopyFromSU);
1180 AvailableQueue->addNode(CopyToSU);
1181 Copies.push_back(CopyFromSU);
1182 Copies.push_back(CopyToSU);
1183
1184 ++NumPRCopies;
1185 }
1186
1187 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1188 /// definition of the specified node.
1189 /// FIXME: Move to SelectionDAG?
1190 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1191 const TargetInstrInfo *TII) {
1192 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1193 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1194 unsigned NumRes = MCID.getNumDefs();
1195 for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1196 if (Reg == *ImpDef)
1197 break;
1198 ++NumRes;
1199 }
1200 return N->getValueType(NumRes);
1201 }
1202
1203 /// CheckForLiveRegDef - Return true and update live register vector if the
1204 /// specified register def of the specified SUnit clobbers any "live" registers.
1205 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1206 std::vector<SUnit*> &LiveRegDefs,
1207 SmallSet<unsigned, 4> &RegAdded,
1208 SmallVectorImpl<unsigned> &LRegs,
1209 const TargetRegisterInfo *TRI) {
1210 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1211
1212 // Check if Ref is live.
1213 if (!LiveRegDefs[*AliasI]) continue;
1214
1215 // Allow multiple uses of the same def.
1216 if (LiveRegDefs[*AliasI] == SU) continue;
1217
1218 // Add Reg to the set of interfering live regs.
1219 if (RegAdded.insert(*AliasI)) {
1220 LRegs.push_back(*AliasI);
1221 }
1222 }
1223 }
1224
1225 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1226 /// by RegMask, and add them to LRegs.
1227 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1228 std::vector<SUnit*> &LiveRegDefs,
1229 SmallSet<unsigned, 4> &RegAdded,
1230 SmallVectorImpl<unsigned> &LRegs) {
1231 // Look at all live registers. Skip Reg0 and the special CallResource.
1232 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1233 if (!LiveRegDefs[i]) continue;
1234 if (LiveRegDefs[i] == SU) continue;
1235 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1236 if (RegAdded.insert(i))
1237 LRegs.push_back(i);
1238 }
1239 }
1240
1241 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1242 static const uint32_t *getNodeRegMask(const SDNode *N) {
1243 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1244 if (const RegisterMaskSDNode *Op =
1245 dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1246 return Op->getRegMask();
1247 return NULL;
1248 }
1249
1250 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1251 /// scheduling of the given node to satisfy live physical register dependencies.
1252 /// If the specific node is the last one that's available to schedule, do
1253 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1254 bool ScheduleDAGRRList::
1255 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1256 if (NumLiveRegs == 0)
1257 return false;
1258
1259 SmallSet<unsigned, 4> RegAdded;
1260 // If this node would clobber any "live" register, then it's not ready.
1261 //
1262 // If SU is the currently live definition of the same register that it uses,
1263 // then we are free to schedule it.
1264 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1265 I != E; ++I) {
1266 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1267 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1268 RegAdded, LRegs, TRI);
1269 }
1270
1271 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1272 if (Node->getOpcode() == ISD::INLINEASM) {
1273 // Inline asm can clobber physical defs.
1274 unsigned NumOps = Node->getNumOperands();
1275 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1276 --NumOps; // Ignore the glue operand.
1277
1278 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1279 unsigned Flags =
1280 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1281 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1282
1283 ++i; // Skip the ID value.
1284 if (InlineAsm::isRegDefKind(Flags) ||
1285 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1286 InlineAsm::isClobberKind(Flags)) {
1287 // Check for def of register or earlyclobber register.
1288 for (; NumVals; --NumVals, ++i) {
1289 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1290 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1291 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1292 }
1293 } else
1294 i += NumVals;
1295 }
1296 continue;
1297 }
1298
1299 if (!Node->isMachineOpcode())
1300 continue;
1301 // If we're in the middle of scheduling a call, don't begin scheduling
1302 // another call. Also, don't allow any physical registers to be live across
1303 // the call.
1304 if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1305 // Check the special calling-sequence resource.
1306 unsigned CallResource = TRI->getNumRegs();
1307 if (LiveRegDefs[CallResource]) {
1308 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1309 while (SDNode *Glued = Gen->getGluedNode())
1310 Gen = Glued;
1311 if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1312 LRegs.push_back(CallResource);
1313 }
1314 }
1315 if (const uint32_t *RegMask = getNodeRegMask(Node))
1316 CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1317
1318 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1319 if (!MCID.ImplicitDefs)
1320 continue;
1321 for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1322 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1323 }
1324
1325 return !LRegs.empty();
1326 }
1327
1328 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1329 // Add the nodes that aren't ready back onto the available list.
1330 for (unsigned i = Interferences.size(); i > 0; --i) {
1331 SUnit *SU = Interferences[i-1];
1332 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1333 if (Reg) {
1334 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1335 if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
1336 continue;
1337 }
1338 SU->isPending = false;
1339 // The interfering node may no longer be available due to backtracking.
1340 // Furthermore, it may have been made available again, in which case it is
1341 // now already in the AvailableQueue.
1342 if (SU->isAvailable && !SU->NodeQueueId) {
1343 DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1344 AvailableQueue->push(SU);
1345 }
1346 if (i < Interferences.size())
1347 Interferences[i-1] = Interferences.back();
1348 Interferences.pop_back();
1349 LRegsMap.erase(LRegsPos);
1350 }
1351 }
1352
1353 /// Return a node that can be scheduled in this cycle. Requirements:
1354 /// (1) Ready: latency has been satisfied
1355 /// (2) No Hazards: resources are available
1356 /// (3) No Interferences: may unschedule to break register interferences.
1357 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1358 SUnit *CurSU = AvailableQueue->empty() ? 0 : AvailableQueue->pop();
1359 while (CurSU) {
1360 SmallVector<unsigned, 4> LRegs;
1361 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1362 break;
1363 DEBUG(dbgs() << " Interfering reg " <<
1364 (LRegs[0] == TRI->getNumRegs() ? "CallResource"
1365 : TRI->getName(LRegs[0]))
1366 << " SU #" << CurSU->NodeNum << '\n');
1367 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1368 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1369 if (LRegsPair.second) {
1370 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1371 Interferences.push_back(CurSU);
1372 }
1373 else {
1374 assert(CurSU->isPending && "Intereferences are pending");
1375 // Update the interference with current live regs.
1376 LRegsPair.first->second = LRegs;
1377 }
1378 CurSU = AvailableQueue->pop();
1379 }
1380 if (CurSU)
1381 return CurSU;
1382
1383 // All candidates are delayed due to live physical reg dependencies.
1384 // Try backtracking, code duplication, or inserting cross class copies
1385 // to resolve it.
1386 for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1387 SUnit *TrySU = Interferences[i];
1388 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1389
1390 // Try unscheduling up to the point where it's safe to schedule
1391 // this node.
1392 SUnit *BtSU = NULL;
1393 unsigned LiveCycle = UINT_MAX;
1394 for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1395 unsigned Reg = LRegs[j];
1396 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1397 BtSU = LiveRegGens[Reg];
1398 LiveCycle = BtSU->getHeight();
1399 }
1400 }
1401 if (!WillCreateCycle(TrySU, BtSU)) {
1402 // BacktrackBottomUp mutates Interferences!
1403 BacktrackBottomUp(TrySU, BtSU);
1404
1405 // Force the current node to be scheduled before the node that
1406 // requires the physical reg dep.
1407 if (BtSU->isAvailable) {
1408 BtSU->isAvailable = false;
1409 if (!BtSU->isPending)
1410 AvailableQueue->remove(BtSU);
1411 }
1412 DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
1413 << TrySU->NodeNum << ")\n");
1414 AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1415
1416 // If one or more successors has been unscheduled, then the current
1417 // node is no longer available.
1418 if (!TrySU->isAvailable)
1419 CurSU = AvailableQueue->pop();
1420 else {
1421 AvailableQueue->remove(TrySU);
1422 CurSU = TrySU;
1423 }
1424 // Interferences has been mutated. We must break.
1425 break;
1426 }
1427 }
1428
1429 if (!CurSU) {
1430 // Can't backtrack. If it's too expensive to copy the value, then try
1431 // duplicate the nodes that produces these "too expensive to copy"
1432 // values to break the dependency. In case even that doesn't work,
1433 // insert cross class copies.
1434 // If it's not too expensive, i.e. cost != -1, issue copies.
1435 SUnit *TrySU = Interferences[0];
1436 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1437 assert(LRegs.size() == 1 && "Can't handle this yet!");
1438 unsigned Reg = LRegs[0];
1439 SUnit *LRDef = LiveRegDefs[Reg];
1440 EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1441 const TargetRegisterClass *RC =
1442 TRI->getMinimalPhysRegClass(Reg, VT);
1443 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1444
1445 // If cross copy register class is the same as RC, then it must be possible
1446 // copy the value directly. Do not try duplicate the def.
1447 // If cross copy register class is not the same as RC, then it's possible to
1448 // copy the value but it require cross register class copies and it is
1449 // expensive.
1450 // If cross copy register class is null, then it's not possible to copy
1451 // the value at all.
1452 SUnit *NewDef = 0;
1453 if (DestRC != RC) {
1454 NewDef = CopyAndMoveSuccessors(LRDef);
1455 if (!DestRC && !NewDef)
1456 report_fatal_error("Can't handle live physical register dependency!");
1457 }
1458 if (!NewDef) {
1459 // Issue copies, these can be expensive cross register class copies.
1460 SmallVector<SUnit*, 2> Copies;
1461 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1462 DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1463 << " to SU #" << Copies.front()->NodeNum << "\n");
1464 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1465 NewDef = Copies.back();
1466 }
1467
1468 DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1469 << " to SU #" << TrySU->NodeNum << "\n");
1470 LiveRegDefs[Reg] = NewDef;
1471 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1472 TrySU->isAvailable = false;
1473 CurSU = NewDef;
1474 }
1475 assert(CurSU && "Unable to resolve live physical register dependencies!");
1476 return CurSU;
1477 }
1478
1479 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1480 /// schedulers.
1481 void ScheduleDAGRRList::ListScheduleBottomUp() {
1482 // Release any predecessors of the special Exit node.
1483 ReleasePredecessors(&ExitSU);
1484
1485 // Add root to Available queue.
1486 if (!SUnits.empty()) {
1487 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1488 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1489 RootSU->isAvailable = true;
1490 AvailableQueue->push(RootSU);
1491 }
1492
1493 // While Available queue is not empty, grab the node with the highest
1494 // priority. If it is not ready put it back. Schedule the node.
1495 Sequence.reserve(SUnits.size());
1496 while (!AvailableQueue->empty() || !Interferences.empty()) {
1497 DEBUG(dbgs() << "\nExamining Available:\n";
1498 AvailableQueue->dump(this));
1499
1500 // Pick the best node to schedule taking all constraints into
1501 // consideration.
1502 SUnit *SU = PickNodeToScheduleBottomUp();
1503
1504 AdvancePastStalls(SU);
1505
1506 ScheduleNodeBottomUp(SU);
1507
1508 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1509 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1510 assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1511 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1512 }
1513 }
1514
1515 // Reverse the order if it is bottom up.
1516 std::reverse(Sequence.begin(), Sequence.end());
1517
1518 #ifndef NDEBUG
1519 VerifyScheduledSequence(/*isBottomUp=*/true);
1520 #endif
1521 }
1522
1523 //===----------------------------------------------------------------------===//
1524 // RegReductionPriorityQueue Definition
1525 //===----------------------------------------------------------------------===//
1526 //
1527 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1528 // to reduce register pressure.
1529 //
1530 namespace {
1531 class RegReductionPQBase;
1532
1533 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1534 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1535 };
1536
1537 #ifndef NDEBUG
1538 template<class SF>
1539 struct reverse_sort : public queue_sort {
1540 SF &SortFunc;
1541 reverse_sort(SF &sf) : SortFunc(sf) {}
1542 reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1543
1544 bool operator()(SUnit* left, SUnit* right) const {
1545 // reverse left/right rather than simply !SortFunc(left, right)
1546 // to expose different paths in the comparison logic.
1547 return SortFunc(right, left);
1548 }
1549 };
1550 #endif // NDEBUG
1551
1552 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1553 // reduction scheduler.
1554 struct bu_ls_rr_sort : public queue_sort {
1555 enum {
1556 IsBottomUp = true,
1557 HasReadyFilter = false
1558 };
1559
1560 RegReductionPQBase *SPQ;
1561 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1562 bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1563
1564 bool operator()(SUnit* left, SUnit* right) const;
1565 };
1566
1567 // src_ls_rr_sort - Priority function for source order scheduler.
1568 struct src_ls_rr_sort : public queue_sort {
1569 enum {
1570 IsBottomUp = true,
1571 HasReadyFilter = false
1572 };
1573
1574 RegReductionPQBase *SPQ;
1575 src_ls_rr_sort(RegReductionPQBase *spq)
1576 : SPQ(spq) {}
1577 src_ls_rr_sort(const src_ls_rr_sort &RHS)
1578 : SPQ(RHS.SPQ) {}
1579
1580 bool operator()(SUnit* left, SUnit* right) const;
1581 };
1582
1583 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1584 struct hybrid_ls_rr_sort : public queue_sort {
1585 enum {
1586 IsBottomUp = true,
1587 HasReadyFilter = false
1588 };
1589
1590 RegReductionPQBase *SPQ;
1591 hybrid_ls_rr_sort(RegReductionPQBase *spq)
1592 : SPQ(spq) {}
1593 hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1594 : SPQ(RHS.SPQ) {}
1595
1596 bool isReady(SUnit *SU, unsigned CurCycle) const;
1597
1598 bool operator()(SUnit* left, SUnit* right) const;
1599 };
1600
1601 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1602 // scheduler.
1603 struct ilp_ls_rr_sort : public queue_sort {
1604 enum {
1605 IsBottomUp = true,
1606 HasReadyFilter = false
1607 };
1608
1609 RegReductionPQBase *SPQ;
1610 ilp_ls_rr_sort(RegReductionPQBase *spq)
1611 : SPQ(spq) {}
1612 ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1613 : SPQ(RHS.SPQ) {}
1614
1615 bool isReady(SUnit *SU, unsigned CurCycle) const;
1616
1617 bool operator()(SUnit* left, SUnit* right) const;
1618 };
1619
1620 class RegReductionPQBase : public SchedulingPriorityQueue {
1621 protected:
1622 std::vector<SUnit*> Queue;
1623 unsigned CurQueueId;
1624 bool TracksRegPressure;
1625 bool SrcOrder;
1626
1627 // SUnits - The SUnits for the current graph.
1628 std::vector<SUnit> *SUnits;
1629
1630 MachineFunction &MF;
1631 const TargetInstrInfo *TII;
1632 const TargetRegisterInfo *TRI;
1633 const TargetLowering *TLI;
1634 ScheduleDAGRRList *scheduleDAG;
1635
1636 // SethiUllmanNumbers - The SethiUllman number for each node.
1637 std::vector<unsigned> SethiUllmanNumbers;
1638
1639 /// RegPressure - Tracking current reg pressure per register class.
1640 ///
1641 std::vector<unsigned> RegPressure;
1642
1643 /// RegLimit - Tracking the number of allocatable registers per register
1644 /// class.
1645 std::vector<unsigned> RegLimit;
1646
1647 public:
1648 RegReductionPQBase(MachineFunction &mf,
1649 bool hasReadyFilter,
1650 bool tracksrp,
1651 bool srcorder,
1652 const TargetInstrInfo *tii,
1653 const TargetRegisterInfo *tri,
1654 const TargetLowering *tli)
1655 : SchedulingPriorityQueue(hasReadyFilter),
1656 CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1657 MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1658 if (TracksRegPressure) {
1659 unsigned NumRC = TRI->getNumRegClasses();
1660 RegLimit.resize(NumRC);
1661 RegPressure.resize(NumRC);
1662 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1663 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1664 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1665 E = TRI->regclass_end(); I != E; ++I)
1666 RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1667 }
1668 }
1669
1670 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1671 scheduleDAG = scheduleDag;
1672 }
1673
1674 ScheduleHazardRecognizer* getHazardRec() {
1675 return scheduleDAG->getHazardRec();
1676 }
1677
1678 void initNodes(std::vector<SUnit> &sunits);
1679
1680 void addNode(const SUnit *SU);
1681
1682 void updateNode(const SUnit *SU);
1683
1684 void releaseState() {
1685 SUnits = 0;
1686 SethiUllmanNumbers.clear();
1687 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1688 }
1689
1690 unsigned getNodePriority(const SUnit *SU) const;
1691
1692 unsigned getNodeOrdering(const SUnit *SU) const {
1693 if (!SU->getNode()) return 0;
1694
1695 return SU->getNode()->getIROrder();
1696 }
1697
1698 bool empty() const { return Queue.empty(); }
1699
1700 void push(SUnit *U) {
1701 assert(!U->NodeQueueId && "Node in the queue already");
1702 U->NodeQueueId = ++CurQueueId;
1703 Queue.push_back(U);
1704 }
1705
1706 void remove(SUnit *SU) {
1707 assert(!Queue.empty() && "Queue is empty!");
1708 assert(SU->NodeQueueId != 0 && "Not in queue!");
1709 std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1710 SU);
1711 if (I != prior(Queue.end()))
1712 std::swap(*I, Queue.back());
1713 Queue.pop_back();
1714 SU->NodeQueueId = 0;
1715 }
1716
1717 bool tracksRegPressure() const { return TracksRegPressure; }
1718
1719 void dumpRegPressure() const;
1720
1721 bool HighRegPressure(const SUnit *SU) const;
1722
1723 bool MayReduceRegPressure(SUnit *SU) const;
1724
1725 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1726
1727 void scheduledNode(SUnit *SU);
1728
1729 void unscheduledNode(SUnit *SU);
1730
1731 protected:
1732 bool canClobber(const SUnit *SU, const SUnit *Op);
1733 void AddPseudoTwoAddrDeps();
1734 void PrescheduleNodesWithMultipleUses();
1735 void CalculateSethiUllmanNumbers();
1736 };
1737
1738 template<class SF>
1739 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1740 std::vector<SUnit *>::iterator Best = Q.begin();
1741 for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1742 E = Q.end(); I != E; ++I)
1743 if (Picker(*Best, *I))
1744 Best = I;
1745 SUnit *V = *Best;
1746 if (Best != prior(Q.end()))
1747 std::swap(*Best, Q.back());
1748 Q.pop_back();
1749 return V;
1750 }
1751
1752 template<class SF>
1753 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1754 #ifndef NDEBUG
1755 if (DAG->StressSched) {
1756 reverse_sort<SF> RPicker(Picker);
1757 return popFromQueueImpl(Q, RPicker);
1758 }
1759 #endif
1760 (void)DAG;
1761 return popFromQueueImpl(Q, Picker);
1762 }
1763
1764 template<class SF>
1765 class RegReductionPriorityQueue : public RegReductionPQBase {
1766 SF Picker;
1767
1768 public:
1769 RegReductionPriorityQueue(MachineFunction &mf,
1770 bool tracksrp,
1771 bool srcorder,
1772 const TargetInstrInfo *tii,
1773 const TargetRegisterInfo *tri,
1774 const TargetLowering *tli)
1775 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1776 tii, tri, tli),
1777 Picker(this) {}
1778
1779 bool isBottomUp() const { return SF::IsBottomUp; }
1780
1781 bool isReady(SUnit *U) const {
1782 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1783 }
1784
1785 SUnit *pop() {
1786 if (Queue.empty()) return NULL;
1787
1788 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1789 V->NodeQueueId = 0;
1790 return V;
1791 }
1792
1793 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1794 void dump(ScheduleDAG *DAG) const {
1795 // Emulate pop() without clobbering NodeQueueIds.
1796 std::vector<SUnit*> DumpQueue = Queue;
1797 SF DumpPicker = Picker;
1798 while (!DumpQueue.empty()) {
1799 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1800 dbgs() << "Height " << SU->getHeight() << ": ";
1801 SU->dump(DAG);
1802 }
1803 }
1804 #endif
1805 };
1806
1807 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1808 BURegReductionPriorityQueue;
1809
1810 typedef RegReductionPriorityQueue<src_ls_rr_sort>
1811 SrcRegReductionPriorityQueue;
1812
1813 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1814 HybridBURRPriorityQueue;
1815
1816 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1817 ILPBURRPriorityQueue;
1818 } // end anonymous namespace
1819
1820 //===----------------------------------------------------------------------===//
1821 // Static Node Priority for Register Pressure Reduction
1822 //===----------------------------------------------------------------------===//
1823
1824 // Check for special nodes that bypass scheduling heuristics.
1825 // Currently this pushes TokenFactor nodes down, but may be used for other
1826 // pseudo-ops as well.
1827 //
1828 // Return -1 to schedule right above left, 1 for left above right.
1829 // Return 0 if no bias exists.
1830 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1831 bool LSchedLow = left->isScheduleLow;
1832 bool RSchedLow = right->isScheduleLow;
1833 if (LSchedLow != RSchedLow)
1834 return LSchedLow < RSchedLow ? 1 : -1;
1835 return 0;
1836 }
1837
1838 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1839 /// Smaller number is the higher priority.
1840 static unsigned
1841 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1842 unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1843 if (SethiUllmanNumber != 0)
1844 return SethiUllmanNumber;
1845
1846 unsigned Extra = 0;
1847 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1848 I != E; ++I) {
1849 if (I->isCtrl()) continue; // ignore chain preds
1850 SUnit *PredSU = I->getSUnit();
1851 unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1852 if (PredSethiUllman > SethiUllmanNumber) {
1853 SethiUllmanNumber = PredSethiUllman;
1854 Extra = 0;
1855 } else if (PredSethiUllman == SethiUllmanNumber)
1856 ++Extra;
1857 }
1858
1859 SethiUllmanNumber += Extra;
1860
1861 if (SethiUllmanNumber == 0)
1862 SethiUllmanNumber = 1;
1863
1864 return SethiUllmanNumber;
1865 }
1866
1867 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1868 /// scheduling units.
1869 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1870 SethiUllmanNumbers.assign(SUnits->size(), 0);
1871
1872 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1873 CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1874 }
1875
1876 void RegReductionPQBase::addNode(const SUnit *SU) {
1877 unsigned SUSize = SethiUllmanNumbers.size();
1878 if (SUnits->size() > SUSize)
1879 SethiUllmanNumbers.resize(SUSize*2, 0);
1880 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1881 }
1882
1883 void RegReductionPQBase::updateNode(const SUnit *SU) {
1884 SethiUllmanNumbers[SU->NodeNum] = 0;
1885 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1886 }
1887
1888 // Lower priority means schedule further down. For bottom-up scheduling, lower
1889 // priority SUs are scheduled before higher priority SUs.
1890 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1891 assert(SU->NodeNum < SethiUllmanNumbers.size());
1892 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1893 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1894 // CopyToReg should be close to its uses to facilitate coalescing and
1895 // avoid spilling.
1896 return 0;
1897 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1898 Opc == TargetOpcode::SUBREG_TO_REG ||
1899 Opc == TargetOpcode::INSERT_SUBREG)
1900 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1901 // close to their uses to facilitate coalescing.
1902 return 0;
1903 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1904 // If SU does not have a register use, i.e. it doesn't produce a value
1905 // that would be consumed (e.g. store), then it terminates a chain of
1906 // computation. Give it a large SethiUllman number so it will be
1907 // scheduled right before its predecessors that it doesn't lengthen
1908 // their live ranges.
1909 return 0xffff;
1910 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1911 // If SU does not have a register def, schedule it close to its uses
1912 // because it does not lengthen any live ranges.
1913 return 0;
1914 #if 1
1915 return SethiUllmanNumbers[SU->NodeNum];
1916 #else
1917 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1918 if (SU->isCallOp) {
1919 // FIXME: This assumes all of the defs are used as call operands.
1920 int NP = (int)Priority - SU->getNode()->getNumValues();
1921 return (NP > 0) ? NP : 0;
1922 }
1923 return Priority;
1924 #endif
1925 }
1926
1927 //===----------------------------------------------------------------------===//
1928 // Register Pressure Tracking
1929 //===----------------------------------------------------------------------===//
1930
1931 void RegReductionPQBase::dumpRegPressure() const {
1932 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1933 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1934 E = TRI->regclass_end(); I != E; ++I) {
1935 const TargetRegisterClass *RC = *I;
1936 unsigned Id = RC->getID();
1937 unsigned RP = RegPressure[Id];
1938 if (!RP) continue;
1939 DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1940 << '\n');
1941 }
1942 #endif
1943 }
1944
1945 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1946 if (!TLI)
1947 return false;
1948
1949 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1950 I != E; ++I) {
1951 if (I->isCtrl())
1952 continue;
1953 SUnit *PredSU = I->getSUnit();
1954 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1955 // to cover the number of registers defined (they are all live).
1956 if (PredSU->NumRegDefsLeft == 0) {
1957 continue;
1958 }
1959 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1960 RegDefPos.IsValid(); RegDefPos.Advance()) {
1961 unsigned RCId, Cost;
1962 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1963
1964 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1965 return true;
1966 }
1967 }
1968 return false;
1969 }
1970
1971 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1972 const SDNode *N = SU->getNode();
1973
1974 if (!N->isMachineOpcode() || !SU->NumSuccs)
1975 return false;
1976
1977 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1978 for (unsigned i = 0; i != NumDefs; ++i) {
1979 MVT VT = N->getSimpleValueType(i);
1980 if (!N->hasAnyUseOfValue(i))
1981 continue;
1982 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1983 if (RegPressure[RCId] >= RegLimit[RCId])
1984 return true;
1985 }
1986 return false;
1987 }
1988
1989 // Compute the register pressure contribution by this instruction by count up
1990 // for uses that are not live and down for defs. Only count register classes
1991 // that are already under high pressure. As a side effect, compute the number of
1992 // uses of registers that are already live.
1993 //
1994 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1995 // so could probably be factored.
1996 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1997 LiveUses = 0;
1998 int PDiff = 0;
1999 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2000 I != E; ++I) {
2001 if (I->isCtrl())
2002 continue;
2003 SUnit *PredSU = I->getSUnit();
2004 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2005 // to cover the number of registers defined (they are all live).
2006 if (PredSU->NumRegDefsLeft == 0) {
2007 if (PredSU->getNode()->isMachineOpcode())
2008 ++LiveUses;
2009 continue;
2010 }
2011 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2012 RegDefPos.IsValid(); RegDefPos.Advance()) {
2013 MVT VT = RegDefPos.GetValue();
2014 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2015 if (RegPressure[RCId] >= RegLimit[RCId])
2016 ++PDiff;
2017 }
2018 }
2019 const SDNode *N = SU->getNode();
2020
2021 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2022 return PDiff;
2023
2024 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2025 for (unsigned i = 0; i != NumDefs; ++i) {
2026 MVT VT = N->getSimpleValueType(i);
2027 if (!N->hasAnyUseOfValue(i))
2028 continue;
2029 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2030 if (RegPressure[RCId] >= RegLimit[RCId])
2031 --PDiff;
2032 }
2033 return PDiff;
2034 }
2035
2036 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2037 if (!TracksRegPressure)
2038 return;
2039
2040 if (!SU->getNode())
2041 return;
2042
2043 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2044 I != E; ++I) {
2045 if (I->isCtrl())
2046 continue;
2047 SUnit *PredSU = I->getSUnit();
2048 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2049 // to cover the number of registers defined (they are all live).
2050 if (PredSU->NumRegDefsLeft == 0) {
2051 continue;
2052 }
2053 // FIXME: The ScheduleDAG currently loses information about which of a
2054 // node's values is consumed by each dependence. Consequently, if the node
2055 // defines multiple register classes, we don't know which to pressurize
2056 // here. Instead the following loop consumes the register defs in an
2057 // arbitrary order. At least it handles the common case of clustered loads
2058 // to the same class. For precise liveness, each SDep needs to indicate the
2059 // result number. But that tightly couples the ScheduleDAG with the
2060 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2061 // value type or register class to SDep.
2062 //
2063 // The most important aspect of register tracking is balancing the increase
2064 // here with the reduction further below. Note that this SU may use multiple
2065 // defs in PredSU. The can't be determined here, but we've already
2066 // compensated by reducing NumRegDefsLeft in PredSU during
2067 // ScheduleDAGSDNodes::AddSchedEdges.
2068 --PredSU->NumRegDefsLeft;
2069 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2070 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2071 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2072 if (SkipRegDefs)
2073 continue;
2074
2075 unsigned RCId, Cost;
2076 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2077 RegPressure[RCId] += Cost;
2078 break;
2079 }
2080 }
2081
2082 // We should have this assert, but there may be dead SDNodes that never
2083 // materialize as SUnits, so they don't appear to generate liveness.
2084 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2085 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2086 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2087 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2088 if (SkipRegDefs > 0)
2089 continue;
2090 unsigned RCId, Cost;
2091 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2092 if (RegPressure[RCId] < Cost) {
2093 // Register pressure tracking is imprecise. This can happen. But we try
2094 // hard not to let it happen because it likely results in poor scheduling.
2095 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n");
2096 RegPressure[RCId] = 0;
2097 }
2098 else {
2099 RegPressure[RCId] -= Cost;
2100 }
2101 }
2102 dumpRegPressure();
2103 }
2104
2105 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2106 if (!TracksRegPressure)
2107 return;
2108
2109 const SDNode *N = SU->getNode();
2110 if (!N) return;
2111
2112 if (!N->isMachineOpcode()) {
2113 if (N->getOpcode() != ISD::CopyToReg)
2114 return;
2115 } else {
2116 unsigned Opc = N->getMachineOpcode();
2117 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2118 Opc == TargetOpcode::INSERT_SUBREG ||
2119 Opc == TargetOpcode::SUBREG_TO_REG ||
2120 Opc == TargetOpcode::REG_SEQUENCE ||
2121 Opc == TargetOpcode::IMPLICIT_DEF)
2122 return;
2123 }
2124
2125 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2126 I != E; ++I) {
2127 if (I->isCtrl())
2128 continue;
2129 SUnit *PredSU = I->getSUnit();
2130 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2131 // counts data deps.
2132 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2133 continue;
2134 const SDNode *PN = PredSU->getNode();
2135 if (!PN->isMachineOpcode()) {
2136 if (PN->getOpcode() == ISD::CopyFromReg) {
2137 MVT VT = PN->getSimpleValueType(0);
2138 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2139 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2140 }
2141 continue;
2142 }
2143 unsigned POpc = PN->getMachineOpcode();
2144 if (POpc == TargetOpcode::IMPLICIT_DEF)
2145 continue;
2146 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2147 POpc == TargetOpcode::INSERT_SUBREG ||
2148 POpc == TargetOpcode::SUBREG_TO_REG) {
2149 MVT VT = PN->getSimpleValueType(0);
2150 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2151 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2152 continue;
2153 }
2154 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2155 for (unsigned i = 0; i != NumDefs; ++i) {
2156 MVT VT = PN->getSimpleValueType(i);
2157 if (!PN->hasAnyUseOfValue(i))
2158 continue;
2159 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2160 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2161 // Register pressure tracking is imprecise. This can happen.
2162 RegPressure[RCId] = 0;
2163 else
2164 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2165 }
2166 }
2167
2168 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2169 // may transfer data dependencies to CopyToReg.
2170 if (SU->NumSuccs && N->isMachineOpcode()) {
2171 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2172 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2173 MVT VT = N->getSimpleValueType(i);
2174 if (VT == MVT::Glue || VT == MVT::Other)
2175 continue;
2176 if (!N->hasAnyUseOfValue(i))
2177 continue;
2178 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2179 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2180 }
2181 }
2182
2183 dumpRegPressure();
2184 }
2185
2186 //===----------------------------------------------------------------------===//
2187 // Dynamic Node Priority for Register Pressure Reduction
2188 //===----------------------------------------------------------------------===//
2189
2190 /// closestSucc - Returns the scheduled cycle of the successor which is
2191 /// closest to the current cycle.
2192 static unsigned closestSucc(const SUnit *SU) {
2193 unsigned MaxHeight = 0;
2194 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2195 I != E; ++I) {
2196 if (I->isCtrl()) continue; // ignore chain succs
2197 unsigned Height = I->getSUnit()->getHeight();
2198 // If there are bunch of CopyToRegs stacked up, they should be considered
2199 // to be at the same position.
2200 if (I->getSUnit()->getNode() &&
2201 I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2202 Height = closestSucc(I->getSUnit())+1;
2203 if (Height > MaxHeight)
2204 MaxHeight = Height;
2205 }
2206 return MaxHeight;
2207 }
2208
2209 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2210 /// for scratch registers, i.e. number of data dependencies.
2211 static unsigned calcMaxScratches(const SUnit *SU) {
2212 unsigned Scratches = 0;
2213 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2214 I != E; ++I) {
2215 if (I->isCtrl()) continue; // ignore chain preds
2216 Scratches++;
2217 }
2218 return Scratches;
2219 }
2220
2221 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2222 /// CopyFromReg from a virtual register.
2223 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2224 bool RetVal = false;
2225 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2226 I != E; ++I) {
2227 if (I->isCtrl()) continue;
2228 const SUnit *PredSU = I->getSUnit();
2229 if (PredSU->getNode() &&
2230 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2231 unsigned Reg =
2232 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2233 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2234 RetVal = true;
2235 continue;
2236 }
2237 }
2238 return false;
2239 }
2240 return RetVal;
2241 }
2242
2243 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2244 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2245 /// it has no other use. It should be scheduled closer to the terminator.
2246 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2247 bool RetVal = false;
2248 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2249 I != E; ++I) {
2250 if (I->isCtrl()) continue;
2251 const SUnit *SuccSU = I->getSUnit();
2252 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2253 unsigned Reg =
2254 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2255 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2256 RetVal = true;
2257 continue;
2258 }
2259 }
2260 return false;
2261 }
2262 return RetVal;
2263 }
2264
2265 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2266 // set isVRegCycle for its CopyFromReg operands.
2267 //
2268 // This is only relevant for single-block loops, in which case the VRegCycle
2269 // node is likely an induction variable in which the operand and target virtual
2270 // registers should be coalesced (e.g. pre/post increment values). Setting the
2271 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2272 // CopyFromReg so that this node becomes the virtual register "kill". This
2273 // avoids interference between the values live in and out of the block and
2274 // eliminates a copy inside the loop.
2275 static void initVRegCycle(SUnit *SU) {
2276 if (DisableSchedVRegCycle)
2277 return;
2278
2279 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2280 return;
2281
2282 DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2283
2284 SU->isVRegCycle = true;
2285
2286 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2287 I != E; ++I) {
2288 if (I->isCtrl()) continue;
2289 I->getSUnit()->isVRegCycle = true;
2290 }
2291 }
2292
2293 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2294 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2295 static void resetVRegCycle(SUnit *SU) {
2296 if (!SU->isVRegCycle)
2297 return;
2298
2299 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2300 I != E; ++I) {
2301 if (I->isCtrl()) continue; // ignore chain preds
2302 SUnit *PredSU = I->getSUnit();
2303 if (PredSU->isVRegCycle) {
2304 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2305 "VRegCycle def must be CopyFromReg");
2306 I->getSUnit()->isVRegCycle = 0;
2307 }
2308 }
2309 }
2310
2311 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2312 // means a node that defines the VRegCycle has not been scheduled yet.
2313 static bool hasVRegCycleUse(const SUnit *SU) {
2314 // If this SU also defines the VReg, don't hoist it as a "use".
2315 if (SU->isVRegCycle)
2316 return false;
2317
2318 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2319 I != E; ++I) {
2320 if (I->isCtrl()) continue; // ignore chain preds
2321 if (I->getSUnit()->isVRegCycle &&
2322 I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2323 DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2324 return true;
2325 }
2326 }
2327 return false;
2328 }
2329
2330 // Check for either a dependence (latency) or resource (hazard) stall.
2331 //
2332 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2333 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2334 if ((int)SPQ->getCurCycle() < Height) return true;
2335 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2336 != ScheduleHazardRecognizer::NoHazard)
2337 return true;
2338 return false;
2339 }
2340
2341 // Return -1 if left has higher priority, 1 if right has higher priority.
2342 // Return 0 if latency-based priority is equivalent.
2343 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2344 RegReductionPQBase *SPQ) {
2345 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2346 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2347 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2348 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2349 int LHeight = (int)left->getHeight() + LPenalty;
2350 int RHeight = (int)right->getHeight() + RPenalty;
2351
2352 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2353 BUHasStall(left, LHeight, SPQ);
2354 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2355 BUHasStall(right, RHeight, SPQ);
2356
2357 // If scheduling one of the node will cause a pipeline stall, delay it.
2358 // If scheduling either one of the node will cause a pipeline stall, sort
2359 // them according to their height.
2360 if (LStall) {
2361 if (!RStall)
2362 return 1;
2363 if (LHeight != RHeight)
2364 return LHeight > RHeight ? 1 : -1;
2365 } else if (RStall)
2366 return -1;
2367
2368 // If either node is scheduling for latency, sort them by height/depth
2369 // and latency.
2370 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2371 right->SchedulingPref == Sched::ILP)) {
2372 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2373 // is enabled, grouping instructions by cycle, then its height is already
2374 // covered so only its depth matters. We also reach this point if both stall
2375 // but have the same height.
2376 if (!SPQ->getHazardRec()->isEnabled()) {
2377 if (LHeight != RHeight)
2378 return LHeight > RHeight ? 1 : -1;
2379 }
2380 int LDepth = left->getDepth() - LPenalty;
2381 int RDepth = right->getDepth() - RPenalty;
2382 if (LDepth != RDepth) {
2383 DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2384 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2385 << ") depth " << RDepth << "\n");
2386 return LDepth < RDepth ? 1 : -1;
2387 }
2388 if (left->Latency != right->Latency)
2389 return left->Latency > right->Latency ? 1 : -1;
2390 }
2391 return 0;
2392 }
2393
2394 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2395 // Schedule physical register definitions close to their use. This is
2396 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2397 // long as shortening physreg live ranges is generally good, we can defer
2398 // creating a subtarget hook.
2399 if (!DisableSchedPhysRegJoin) {
2400 bool LHasPhysReg = left->hasPhysRegDefs;
2401 bool RHasPhysReg = right->hasPhysRegDefs;
2402 if (LHasPhysReg != RHasPhysReg) {
2403 #ifndef NDEBUG
2404 static const char *const PhysRegMsg[] = { " has no physreg",
2405 " defines a physreg" };
2406 #endif
2407 DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2408 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2409 << PhysRegMsg[RHasPhysReg] << "\n");
2410 return LHasPhysReg < RHasPhysReg;
2411 }
2412 }
2413
2414 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2415 unsigned LPriority = SPQ->getNodePriority(left);
2416 unsigned RPriority = SPQ->getNodePriority(right);
2417
2418 // Be really careful about hoisting call operands above previous calls.
2419 // Only allows it if it would reduce register pressure.
2420 if (left->isCall && right->isCallOp) {
2421 unsigned RNumVals = right->getNode()->getNumValues();
2422 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2423 }
2424 if (right->isCall && left->isCallOp) {
2425 unsigned LNumVals = left->getNode()->getNumValues();
2426 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2427 }
2428
2429 if (LPriority != RPriority)
2430 return LPriority > RPriority;
2431
2432 // One or both of the nodes are calls and their sethi-ullman numbers are the
2433 // same, then keep source order.
2434 if (left->isCall || right->isCall) {
2435 unsigned LOrder = SPQ->getNodeOrdering(left);
2436 unsigned ROrder = SPQ->getNodeOrdering(right);
2437
2438 // Prefer an ordering where the lower the non-zero order number, the higher
2439 // the preference.
2440 if ((LOrder || ROrder) && LOrder != ROrder)
2441 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2442 }
2443
2444 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2445 // e.g.
2446 // t1 = op t2, c1
2447 // t3 = op t4, c2
2448 //
2449 // and the following instructions are both ready.
2450 // t2 = op c3
2451 // t4 = op c4
2452 //
2453 // Then schedule t2 = op first.
2454 // i.e.
2455 // t4 = op c4
2456 // t2 = op c3
2457 // t1 = op t2, c1
2458 // t3 = op t4, c2
2459 //
2460 // This creates more short live intervals.
2461 unsigned LDist = closestSucc(left);
2462 unsigned RDist = closestSucc(right);
2463 if (LDist != RDist)
2464 return LDist < RDist;
2465
2466 // How many registers becomes live when the node is scheduled.
2467 unsigned LScratch = calcMaxScratches(left);
2468 unsigned RScratch = calcMaxScratches(right);
2469 if (LScratch != RScratch)
2470 return LScratch > RScratch;
2471
2472 // Comparing latency against a call makes little sense unless the node
2473 // is register pressure-neutral.
2474 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2475 return (left->NodeQueueId > right->NodeQueueId);
2476
2477 // Do not compare latencies when one or both of the nodes are calls.
2478 if (!DisableSchedCycles &&
2479 !(left->isCall || right->isCall)) {
2480 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2481 if (result != 0)
2482 return result > 0;
2483 }
2484 else {
2485 if (left->getHeight() != right->getHeight())
2486 return left->getHeight() > right->getHeight();
2487
2488 if (left->getDepth() != right->getDepth())
2489 return left->getDepth() < right->getDepth();
2490 }
2491
2492 assert(left->NodeQueueId && right->NodeQueueId &&
2493 "NodeQueueId cannot be zero");
2494 return (left->NodeQueueId > right->NodeQueueId);
2495 }
2496
2497 // Bottom up
2498 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2499 if (int res = checkSpecialNodes(left, right))
2500 return res > 0;
2501
2502 return BURRSort(left, right, SPQ);
2503 }
2504
2505 // Source order, otherwise bottom up.
2506 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2507 if (int res = checkSpecialNodes(left, right))
2508 return res > 0;
2509
2510 unsigned LOrder = SPQ->getNodeOrdering(left);
2511 unsigned ROrder = SPQ->getNodeOrdering(right);
2512
2513 // Prefer an ordering where the lower the non-zero order number, the higher
2514 // the preference.
2515 if ((LOrder || ROrder) && LOrder != ROrder)
2516 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2517
2518 return BURRSort(left, right, SPQ);
2519 }
2520
2521 // If the time between now and when the instruction will be ready can cover
2522 // the spill code, then avoid adding it to the ready queue. This gives long
2523 // stalls highest priority and allows hoisting across calls. It should also
2524 // speed up processing the available queue.
2525 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2526 static const unsigned ReadyDelay = 3;
2527
2528 if (SPQ->MayReduceRegPressure(SU)) return true;
2529
2530 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2531
2532 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2533 != ScheduleHazardRecognizer::NoHazard)
2534 return false;
2535
2536 return true;
2537 }
2538
2539 // Return true if right should be scheduled with higher priority than left.
2540 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2541 if (int res = checkSpecialNodes(left, right))
2542 return res > 0;
2543
2544 if (left->isCall || right->isCall)
2545 // No way to compute latency of calls.
2546 return BURRSort(left, right, SPQ);
2547
2548 bool LHigh = SPQ->HighRegPressure(left);
2549 bool RHigh = SPQ->HighRegPressure(right);
2550 // Avoid causing spills. If register pressure is high, schedule for
2551 // register pressure reduction.
2552 if (LHigh && !RHigh) {
2553 DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2554 << right->NodeNum << ")\n");
2555 return true;
2556 }
2557 else if (!LHigh && RHigh) {
2558 DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2559 << left->NodeNum << ")\n");
2560 return false;
2561 }
2562 if (!LHigh && !RHigh) {
2563 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2564 if (result != 0)
2565 return result > 0;
2566 }
2567 return BURRSort(left, right, SPQ);
2568 }
2569
2570 // Schedule as many instructions in each cycle as possible. So don't make an
2571 // instruction available unless it is ready in the current cycle.
2572 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2573 if (SU->getHeight() > CurCycle) return false;
2574
2575 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2576 != ScheduleHazardRecognizer::NoHazard)
2577 return false;
2578
2579 return true;
2580 }
2581
2582 static bool canEnableCoalescing(SUnit *SU) {
2583 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2584 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2585 // CopyToReg should be close to its uses to facilitate coalescing and
2586 // avoid spilling.
2587 return true;
2588
2589 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2590 Opc == TargetOpcode::SUBREG_TO_REG ||
2591 Opc == TargetOpcode::INSERT_SUBREG)
2592 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2593 // close to their uses to facilitate coalescing.
2594 return true;
2595
2596 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2597 // If SU does not have a register def, schedule it close to its uses
2598 // because it does not lengthen any live ranges.
2599 return true;
2600
2601 return false;
2602 }
2603
2604 // list-ilp is currently an experimental scheduler that allows various
2605 // heuristics to be enabled prior to the normal register reduction logic.
2606 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2607 if (int res = checkSpecialNodes(left, right))
2608 return res > 0;
2609
2610 if (left->isCall || right->isCall)
2611 // No way to compute latency of calls.
2612 return BURRSort(left, right, SPQ);
2613
2614 unsigned LLiveUses = 0, RLiveUses = 0;
2615 int LPDiff = 0, RPDiff = 0;
2616 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2617 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2618 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2619 }
2620 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2621 DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2622 << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2623 return LPDiff > RPDiff;
2624 }
2625
2626 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2627 bool LReduce = canEnableCoalescing(left);
2628 bool RReduce = canEnableCoalescing(right);
2629 if (LReduce && !RReduce) return false;
2630 if (RReduce && !LReduce) return true;
2631 }
2632
2633 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2634 DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2635 << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2636 return LLiveUses < RLiveUses;
2637 }
2638
2639 if (!DisableSchedStalls) {
2640 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2641 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2642 if (LStall != RStall)
2643 return left->getHeight() > right->getHeight();
2644 }
2645
2646 if (!DisableSchedCriticalPath) {
2647 int spread = (int)left->getDepth() - (int)right->getDepth();
2648 if (std::abs(spread) > MaxReorderWindow) {
2649 DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2650 << left->getDepth() << " != SU(" << right->NodeNum << "): "
2651 << right->getDepth() << "\n");
2652 return left->getDepth() < right->getDepth();
2653 }
2654 }
2655
2656 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2657 int spread = (int)left->getHeight() - (int)right->getHeight();
2658 if (std::abs(spread) > MaxReorderWindow)
2659 return left->getHeight() > right->getHeight();
2660 }
2661
2662 return BURRSort(left, right, SPQ);
2663 }
2664
2665 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2666 SUnits = &sunits;
2667 // Add pseudo dependency edges for two-address nodes.
2668 if (!Disable2AddrHack)
2669 AddPseudoTwoAddrDeps();
2670 // Reroute edges to nodes with multiple uses.
2671 if (!TracksRegPressure && !SrcOrder)
2672 PrescheduleNodesWithMultipleUses();
2673 // Calculate node priorities.
2674 CalculateSethiUllmanNumbers();
2675
2676 // For single block loops, mark nodes that look like canonical IV increments.
2677 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2678 for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2679 initVRegCycle(&sunits[i]);
2680 }
2681 }
2682 }
2683
2684 //===----------------------------------------------------------------------===//
2685 // Preschedule for Register Pressure
2686 //===----------------------------------------------------------------------===//
2687
2688 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2689 if (SU->isTwoAddress) {
2690 unsigned Opc = SU->getNode()->getMachineOpcode();
2691 const MCInstrDesc &MCID = TII->get(Opc);
2692 unsigned NumRes = MCID.getNumDefs();
2693 unsigned NumOps = MCID.getNumOperands() - NumRes;
2694 for (unsigned i = 0; i != NumOps; ++i) {
2695 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2696 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2697 if (DU->getNodeId() != -1 &&
2698 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2699 return true;
2700 }
2701 }
2702 }
2703 return false;
2704 }
2705
2706 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2707 /// successor's explicit physregs whose definition can reach DepSU.
2708 /// i.e. DepSU should not be scheduled above SU.
2709 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2710 ScheduleDAGRRList *scheduleDAG,
2711 const TargetInstrInfo *TII,
2712 const TargetRegisterInfo *TRI) {
2713 const uint16_t *ImpDefs
2714 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2715 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2716 if(!ImpDefs && !RegMask)
2717 return false;
2718
2719 for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2720 SI != SE; ++SI) {
2721 SUnit *SuccSU = SI->getSUnit();
2722 for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2723 PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2724 if (!PI->isAssignedRegDep())
2725 continue;
2726
2727 if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2728 scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2729 return true;
2730
2731 if (ImpDefs)
2732 for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2733 // Return true if SU clobbers this physical register use and the
2734 // definition of the register reaches from DepSU. IsReachable queries
2735 // a topological forward sort of the DAG (following the successors).
2736 if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2737 scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2738 return true;
2739 }
2740 }
2741 return false;
2742 }
2743
2744 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2745 /// physical register defs.
2746 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2747 const TargetInstrInfo *TII,
2748 const TargetRegisterInfo *TRI) {
2749 SDNode *N = SuccSU->getNode();
2750 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2751 const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2752 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2753 for (const SDNode *SUNode = SU->getNode(); SUNode;
2754 SUNode = SUNode->getGluedNode()) {
2755 if (!SUNode->isMachineOpcode())
2756 continue;
2757 const uint16_t *SUImpDefs =
2758 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2759 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2760 if (!SUImpDefs && !SURegMask)
2761 continue;
2762 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2763 EVT VT = N->getValueType(i);
2764 if (VT == MVT::Glue || VT == MVT::Other)
2765 continue;
2766 if (!N->hasAnyUseOfValue(i))
2767 continue;
2768 unsigned Reg = ImpDefs[i - NumDefs];
2769 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2770 return true;
2771 if (!SUImpDefs)
2772 continue;
2773 for (;*SUImpDefs; ++SUImpDefs) {
2774 unsigned SUReg = *SUImpDefs;
2775 if (TRI->regsOverlap(Reg, SUReg))
2776 return true;
2777 }
2778 }
2779 }
2780 return false;
2781 }
2782
2783 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2784 /// are not handled well by the general register pressure reduction
2785 /// heuristics. When presented with code like this:
2786 ///
2787 /// N
2788 /// / |
2789 /// / |
2790 /// U store
2791 /// |
2792 /// ...
2793 ///
2794 /// the heuristics tend to push the store up, but since the
2795 /// operand of the store has another use (U), this would increase
2796 /// the length of that other use (the U->N edge).
2797 ///
2798 /// This function transforms code like the above to route U's
2799 /// dependence through the store when possible, like this:
2800 ///
2801 /// N
2802 /// ||
2803 /// ||
2804 /// store
2805 /// |
2806 /// U
2807 /// |
2808 /// ...
2809 ///
2810 /// This results in the store being scheduled immediately
2811 /// after N, which shortens the U->N live range, reducing
2812 /// register pressure.
2813 ///
2814 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2815 // Visit all the nodes in topological order, working top-down.
2816 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2817 SUnit *SU = &(*SUnits)[i];
2818 // For now, only look at nodes with no data successors, such as stores.
2819 // These are especially important, due to the heuristics in
2820 // getNodePriority for nodes with no data successors.
2821 if (SU->NumSuccs != 0)
2822 continue;
2823 // For now, only look at nodes with exactly one data predecessor.
2824 if (SU->NumPreds != 1)
2825 continue;
2826 // Avoid prescheduling copies to virtual registers, which don't behave
2827 // like other nodes from the perspective of scheduling heuristics.
2828 if (SDNode *N = SU->getNode())
2829 if (N->getOpcode() == ISD::CopyToReg &&
2830 TargetRegisterInfo::isVirtualRegister
2831 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2832 continue;
2833
2834 // Locate the single data predecessor.
2835 SUnit *PredSU = 0;
2836 for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2837 EE = SU->Preds.end(); II != EE; ++II)
2838 if (!II->isCtrl()) {
2839 PredSU = II->getSUnit();
2840 break;
2841 }
2842 assert(PredSU);
2843
2844 // Don't rewrite edges that carry physregs, because that requires additional
2845 // support infrastructure.
2846 if (PredSU->hasPhysRegDefs)
2847 continue;
2848 // Short-circuit the case where SU is PredSU's only data successor.
2849 if (PredSU->NumSuccs == 1)
2850 continue;
2851 // Avoid prescheduling to copies from virtual registers, which don't behave
2852 // like other nodes from the perspective of scheduling heuristics.
2853 if (SDNode *N = SU->getNode())
2854 if (N->getOpcode() == ISD::CopyFromReg &&
2855 TargetRegisterInfo::isVirtualRegister
2856 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2857 continue;
2858
2859 // Perform checks on the successors of PredSU.
2860 for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2861 EE = PredSU->Succs.end(); II != EE; ++II) {
2862 SUnit *PredSuccSU = II->getSUnit();
2863 if (PredSuccSU == SU) continue;
2864 // If PredSU has another successor with no data successors, for
2865 // now don't attempt to choose either over the other.
2866 if (PredSuccSU->NumSuccs == 0)
2867 goto outer_loop_continue;
2868 // Don't break physical register dependencies.
2869 if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2870 if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2871 goto outer_loop_continue;
2872 // Don't introduce graph cycles.
2873 if (scheduleDAG->IsReachable(SU, PredSuccSU))
2874 goto outer_loop_continue;
2875 }
2876
2877 // Ok, the transformation is safe and the heuristics suggest it is
2878 // profitable. Update the graph.
2879 DEBUG(dbgs() << " Prescheduling SU #" << SU->NodeNum
2880 << " next to PredSU #" << PredSU->NodeNum
2881 << " to guide scheduling in the presence of multiple uses\n");
2882 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2883 SDep Edge = PredSU->Succs[i];
2884 assert(!Edge.isAssignedRegDep());
2885 SUnit *SuccSU = Edge.getSUnit();
2886 if (SuccSU != SU) {
2887 Edge.setSUnit(PredSU);
2888 scheduleDAG->RemovePred(SuccSU, Edge);
2889 scheduleDAG->AddPred(SU, Edge);
2890 Edge.setSUnit(SU);
2891 scheduleDAG->AddPred(SuccSU, Edge);
2892 --i;
2893 }
2894 }
2895 outer_loop_continue:;
2896 }
2897 }
2898
2899 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2900 /// it as a def&use operand. Add a pseudo control edge from it to the other
2901 /// node (if it won't create a cycle) so the two-address one will be scheduled
2902 /// first (lower in the schedule). If both nodes are two-address, favor the
2903 /// one that has a CopyToReg use (more likely to be a loop induction update).
2904 /// If both are two-address, but one is commutable while the other is not
2905 /// commutable, favor the one that's not commutable.
2906 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2907 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2908 SUnit *SU = &(*SUnits)[i];
2909 if (!SU->isTwoAddress)
2910 continue;
2911
2912 SDNode *Node = SU->getNode();
2913 if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2914 continue;
2915
2916 bool isLiveOut = hasOnlyLiveOutUses(SU);
2917 unsigned Opc = Node->getMachineOpcode();
2918 const MCInstrDesc &MCID = TII->get(Opc);
2919 unsigned NumRes = MCID.getNumDefs();
2920 unsigned NumOps = MCID.getNumOperands() - NumRes;
2921 for (unsigned j = 0; j != NumOps; ++j) {
2922 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2923 continue;
2924 SDNode *DU = SU->getNode()->getOperand(j).getNode();
2925 if (DU->getNodeId() == -1)
2926 continue;
2927 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2928 if (!DUSU) continue;
2929 for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2930 E = DUSU->Succs.end(); I != E; ++I) {
2931 if (I->isCtrl()) continue;
2932 SUnit *SuccSU = I->getSUnit();
2933 if (SuccSU == SU)
2934 continue;
2935 // Be conservative. Ignore if nodes aren't at roughly the same
2936 // depth and height.
2937 if (SuccSU->getHeight() < SU->getHeight() &&
2938 (SU->getHeight() - SuccSU->getHeight()) > 1)
2939 continue;
2940 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2941 // constrains whatever is using the copy, instead of the copy
2942 // itself. In the case that the copy is coalesced, this
2943 // preserves the intent of the pseudo two-address heurietics.
2944 while (SuccSU->Succs.size() == 1 &&
2945 SuccSU->getNode()->isMachineOpcode() &&
2946 SuccSU->getNode()->getMachineOpcode() ==
2947 TargetOpcode::COPY_TO_REGCLASS)
2948 SuccSU = SuccSU->Succs.front().getSUnit();
2949 // Don't constrain non-instruction nodes.
2950 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2951 continue;
2952 // Don't constrain nodes with physical register defs if the
2953 // predecessor can clobber them.
2954 if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2955 if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2956 continue;
2957 }
2958 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2959 // these may be coalesced away. We want them close to their uses.
2960 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2961 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2962 SuccOpc == TargetOpcode::INSERT_SUBREG ||
2963 SuccOpc == TargetOpcode::SUBREG_TO_REG)
2964 continue;
2965 if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2966 (!canClobber(SuccSU, DUSU) ||
2967 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2968 (!SU->isCommutable && SuccSU->isCommutable)) &&
2969 !scheduleDAG->IsReachable(SuccSU, SU)) {
2970 DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"
2971 << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2972 scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
2973 }
2974 }
2975 }
2976 }
2977 }
2978
2979 //===----------------------------------------------------------------------===//
2980 // Public Constructor Functions
2981 //===----------------------------------------------------------------------===//
2982
2983 llvm::ScheduleDAGSDNodes *
2984 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2985 CodeGenOpt::Level OptLevel) {
2986 const TargetMachine &TM = IS->TM;
2987 const TargetInstrInfo *TII = TM.getInstrInfo();
2988 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2989
2990 BURegReductionPriorityQueue *PQ =
2991 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
2992 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2993 PQ->setScheduleDAG(SD);
2994 return SD;
2995 }
2996
2997 llvm::ScheduleDAGSDNodes *
2998 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2999 CodeGenOpt::Level OptLevel) {
3000 const TargetMachine &TM = IS->TM;
3001 const TargetInstrInfo *TII = TM.getInstrInfo();
3002 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3003
3004 SrcRegReductionPriorityQueue *PQ =
3005 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
3006 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3007 PQ->setScheduleDAG(SD);
3008 return SD;
3009 }
3010
3011 llvm::ScheduleDAGSDNodes *
3012 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3013 CodeGenOpt::Level OptLevel) {
3014 const TargetMachine &TM = IS->TM;
3015 const TargetInstrInfo *TII = TM.getInstrInfo();
3016 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3017 const TargetLowering *TLI = IS->getTargetLowering();
3018
3019 HybridBURRPriorityQueue *PQ =
3020 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3021
3022 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3023 PQ->setScheduleDAG(SD);
3024 return SD;
3025 }
3026
3027 llvm::ScheduleDAGSDNodes *
3028 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3029 CodeGenOpt::Level OptLevel) {
3030 const TargetMachine &TM = IS->TM;
3031 const TargetInstrInfo *TII = TM.getInstrInfo();
3032 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3033 const TargetLowering *TLI = IS->getTargetLowering();
3034
3035 ILPBURRPriorityQueue *PQ =
3036 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3037 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3038 PQ->setScheduleDAG(SD);
3039 return SD;
3040 }