comparison lib/CodeGen/SplitKit.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29
30 using namespace llvm;
31
32 STATISTIC(NumFinished, "Number of splits finished");
33 STATISTIC(NumSimple, "Number of splits that were simple");
34 STATISTIC(NumCopies, "Number of copies inserted for splitting");
35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
37
38 //===----------------------------------------------------------------------===//
39 // Split Analysis
40 //===----------------------------------------------------------------------===//
41
42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43 const LiveIntervals &lis,
44 const MachineLoopInfo &mli)
45 : MF(vrm.getMachineFunction()),
46 VRM(vrm),
47 LIS(lis),
48 Loops(mli),
49 TII(*MF.getTarget().getInstrInfo()),
50 CurLI(0),
51 LastSplitPoint(MF.getNumBlockIDs()) {}
52
53 void SplitAnalysis::clear() {
54 UseSlots.clear();
55 UseBlocks.clear();
56 ThroughBlocks.clear();
57 CurLI = 0;
58 DidRepairRange = false;
59 }
60
61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67 // Compute split points on the first call. The pair is independent of the
68 // current live interval.
69 if (!LSP.first.isValid()) {
70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71 if (FirstTerm == MBB->end())
72 LSP.first = MBBEnd;
73 else
74 LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76 // If there is a landing pad successor, also find the call instruction.
77 if (!LPad)
78 return LSP.first;
79 // There may not be a call instruction (?) in which case we ignore LPad.
80 LSP.second = LSP.first;
81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82 I != E;) {
83 --I;
84 if (I->isCall()) {
85 LSP.second = LIS.getInstructionIndex(I);
86 break;
87 }
88 }
89 }
90
91 // If CurLI is live into a landing pad successor, move the last split point
92 // back to the call that may throw.
93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94 return LSP.first;
95
96 // Find the value leaving MBB.
97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98 if (!VNI)
99 return LSP.first;
100
101 // If the value leaving MBB was defined after the call in MBB, it can't
102 // really be live-in to the landing pad. This can happen if the landing pad
103 // has a PHI, and this register is undef on the exceptional edge.
104 // <rdar://problem/10664933>
105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106 return LSP.first;
107
108 // Value is properly live-in to the landing pad.
109 // Only allow splits before the call.
110 return LSP.second;
111 }
112
113 MachineBasicBlock::iterator
114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116 if (LSP == LIS.getMBBEndIdx(MBB))
117 return MBB->end();
118 return LIS.getInstructionFromIndex(LSP);
119 }
120
121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
122 void SplitAnalysis::analyzeUses() {
123 assert(UseSlots.empty() && "Call clear first");
124
125 // First get all the defs from the interval values. This provides the correct
126 // slots for early clobbers.
127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128 E = CurLI->vni_end(); I != E; ++I)
129 if (!(*I)->isPHIDef() && !(*I)->isUnused())
130 UseSlots.push_back((*I)->def);
131
132 // Get use slots form the use-def chain.
133 const MachineRegisterInfo &MRI = MF.getRegInfo();
134 for (MachineRegisterInfo::use_nodbg_iterator
135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136 ++I)
137 if (!I.getOperand().isUndef())
138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140 array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142 // Remove duplicates, keeping the smaller slot for each instruction.
143 // That is what we want for early clobbers.
144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145 SlotIndex::isSameInstr),
146 UseSlots.end());
147
148 // Compute per-live block info.
149 if (!calcLiveBlockInfo()) {
150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151 // I am looking at you, RegisterCoalescer!
152 DidRepairRange = true;
153 ++NumRepairs;
154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155 const_cast<LiveIntervals&>(LIS)
156 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157 UseBlocks.clear();
158 ThroughBlocks.clear();
159 bool fixed = calcLiveBlockInfo();
160 (void)fixed;
161 assert(fixed && "Couldn't fix broken live interval");
162 }
163
164 DEBUG(dbgs() << "Analyze counted "
165 << UseSlots.size() << " instrs in "
166 << UseBlocks.size() << " blocks, through "
167 << NumThroughBlocks << " blocks.\n");
168 }
169
170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171 /// where CurLI is live.
172 bool SplitAnalysis::calcLiveBlockInfo() {
173 ThroughBlocks.resize(MF.getNumBlockIDs());
174 NumThroughBlocks = NumGapBlocks = 0;
175 if (CurLI->empty())
176 return true;
177
178 LiveInterval::const_iterator LVI = CurLI->begin();
179 LiveInterval::const_iterator LVE = CurLI->end();
180
181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182 UseI = UseSlots.begin();
183 UseE = UseSlots.end();
184
185 // Loop over basic blocks where CurLI is live.
186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187 for (;;) {
188 BlockInfo BI;
189 BI.MBB = MFI;
190 SlotIndex Start, Stop;
191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193 // If the block contains no uses, the range must be live through. At one
194 // point, RegisterCoalescer could create dangling ranges that ended
195 // mid-block.
196 if (UseI == UseE || *UseI >= Stop) {
197 ++NumThroughBlocks;
198 ThroughBlocks.set(BI.MBB->getNumber());
199 // The range shouldn't end mid-block if there are no uses. This shouldn't
200 // happen.
201 if (LVI->end < Stop)
202 return false;
203 } else {
204 // This block has uses. Find the first and last uses in the block.
205 BI.FirstInstr = *UseI;
206 assert(BI.FirstInstr >= Start);
207 do ++UseI;
208 while (UseI != UseE && *UseI < Stop);
209 BI.LastInstr = UseI[-1];
210 assert(BI.LastInstr < Stop);
211
212 // LVI is the first live segment overlapping MBB.
213 BI.LiveIn = LVI->start <= Start;
214
215 // When not live in, the first use should be a def.
216 if (!BI.LiveIn) {
217 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
218 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219 BI.FirstDef = BI.FirstInstr;
220 }
221
222 // Look for gaps in the live range.
223 BI.LiveOut = true;
224 while (LVI->end < Stop) {
225 SlotIndex LastStop = LVI->end;
226 if (++LVI == LVE || LVI->start >= Stop) {
227 BI.LiveOut = false;
228 BI.LastInstr = LastStop;
229 break;
230 }
231
232 if (LastStop < LVI->start) {
233 // There is a gap in the live range. Create duplicate entries for the
234 // live-in snippet and the live-out snippet.
235 ++NumGapBlocks;
236
237 // Push the Live-in part.
238 BI.LiveOut = false;
239 UseBlocks.push_back(BI);
240 UseBlocks.back().LastInstr = LastStop;
241
242 // Set up BI for the live-out part.
243 BI.LiveIn = false;
244 BI.LiveOut = true;
245 BI.FirstInstr = BI.FirstDef = LVI->start;
246 }
247
248 // A Segment that starts in the middle of the block must be a def.
249 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
250 if (!BI.FirstDef)
251 BI.FirstDef = LVI->start;
252 }
253
254 UseBlocks.push_back(BI);
255
256 // LVI is now at LVE or LVI->end >= Stop.
257 if (LVI == LVE)
258 break;
259 }
260
261 // Live segment ends exactly at Stop. Move to the next segment.
262 if (LVI->end == Stop && ++LVI == LVE)
263 break;
264
265 // Pick the next basic block.
266 if (LVI->start < Stop)
267 ++MFI;
268 else
269 MFI = LIS.getMBBFromIndex(LVI->start);
270 }
271
272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273 return true;
274 }
275
276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277 if (cli->empty())
278 return 0;
279 LiveInterval *li = const_cast<LiveInterval*>(cli);
280 LiveInterval::iterator LVI = li->begin();
281 LiveInterval::iterator LVE = li->end();
282 unsigned Count = 0;
283
284 // Loop over basic blocks where li is live.
285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286 SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287 for (;;) {
288 ++Count;
289 LVI = li->advanceTo(LVI, Stop);
290 if (LVI == LVE)
291 return Count;
292 do {
293 ++MFI;
294 Stop = LIS.getMBBEndIdx(MFI);
295 } while (Stop <= LVI->start);
296 }
297 }
298
299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301 const LiveInterval &Orig = LIS.getInterval(OrigReg);
302 assert(!Orig.empty() && "Splitting empty interval?");
303 LiveInterval::const_iterator I = Orig.find(Idx);
304
305 // Range containing Idx should begin at Idx.
306 if (I != Orig.end() && I->start <= Idx)
307 return I->start == Idx;
308
309 // Range does not contain Idx, previous must end at Idx.
310 return I != Orig.begin() && (--I)->end == Idx;
311 }
312
313 void SplitAnalysis::analyze(const LiveInterval *li) {
314 clear();
315 CurLI = li;
316 analyzeUses();
317 }
318
319
320 //===----------------------------------------------------------------------===//
321 // Split Editor
322 //===----------------------------------------------------------------------===//
323
324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
325 SplitEditor::SplitEditor(SplitAnalysis &sa,
326 LiveIntervals &lis,
327 VirtRegMap &vrm,
328 MachineDominatorTree &mdt,
329 MachineBlockFrequencyInfo &mbfi)
330 : SA(sa), LIS(lis), VRM(vrm),
331 MRI(vrm.getMachineFunction().getRegInfo()),
332 MDT(mdt),
333 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
334 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
335 MBFI(mbfi),
336 Edit(0),
337 OpenIdx(0),
338 SpillMode(SM_Partition),
339 RegAssign(Allocator)
340 {}
341
342 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
343 Edit = &LRE;
344 SpillMode = SM;
345 OpenIdx = 0;
346 RegAssign.clear();
347 Values.clear();
348
349 // Reset the LiveRangeCalc instances needed for this spill mode.
350 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
351 &LIS.getVNInfoAllocator());
352 if (SpillMode)
353 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
354 &LIS.getVNInfoAllocator());
355
356 // We don't need an AliasAnalysis since we will only be performing
357 // cheap-as-a-copy remats anyway.
358 Edit->anyRematerializable(0);
359 }
360
361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
362 void SplitEditor::dump() const {
363 if (RegAssign.empty()) {
364 dbgs() << " empty\n";
365 return;
366 }
367
368 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
369 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
370 dbgs() << '\n';
371 }
372 #endif
373
374 VNInfo *SplitEditor::defValue(unsigned RegIdx,
375 const VNInfo *ParentVNI,
376 SlotIndex Idx) {
377 assert(ParentVNI && "Mapping NULL value");
378 assert(Idx.isValid() && "Invalid SlotIndex");
379 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
380 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
381
382 // Create a new value.
383 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
384
385 // Use insert for lookup, so we can add missing values with a second lookup.
386 std::pair<ValueMap::iterator, bool> InsP =
387 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
388 ValueForcePair(VNI, false)));
389
390 // This was the first time (RegIdx, ParentVNI) was mapped.
391 // Keep it as a simple def without any liveness.
392 if (InsP.second)
393 return VNI;
394
395 // If the previous value was a simple mapping, add liveness for it now.
396 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
397 SlotIndex Def = OldVNI->def;
398 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
399 // No longer a simple mapping. Switch to a complex, non-forced mapping.
400 InsP.first->second = ValueForcePair();
401 }
402
403 // This is a complex mapping, add liveness for VNI
404 SlotIndex Def = VNI->def;
405 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
406
407 return VNI;
408 }
409
410 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
411 assert(ParentVNI && "Mapping NULL value");
412 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
413 VNInfo *VNI = VFP.getPointer();
414
415 // ParentVNI was either unmapped or already complex mapped. Either way, just
416 // set the force bit.
417 if (!VNI) {
418 VFP.setInt(true);
419 return;
420 }
421
422 // This was previously a single mapping. Make sure the old def is represented
423 // by a trivial live range.
424 SlotIndex Def = VNI->def;
425 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
426 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
427 // Mark as complex mapped, forced.
428 VFP = ValueForcePair(0, true);
429 }
430
431 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
432 VNInfo *ParentVNI,
433 SlotIndex UseIdx,
434 MachineBasicBlock &MBB,
435 MachineBasicBlock::iterator I) {
436 MachineInstr *CopyMI = 0;
437 SlotIndex Def;
438 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
439
440 // We may be trying to avoid interference that ends at a deleted instruction,
441 // so always begin RegIdx 0 early and all others late.
442 bool Late = RegIdx != 0;
443
444 // Attempt cheap-as-a-copy rematerialization.
445 LiveRangeEdit::Remat RM(ParentVNI);
446 if (Edit->canRematerializeAt(RM, UseIdx, true)) {
447 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
448 ++NumRemats;
449 } else {
450 // Can't remat, just insert a copy from parent.
451 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
452 .addReg(Edit->getReg());
453 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
454 .getRegSlot();
455 ++NumCopies;
456 }
457
458 // Define the value in Reg.
459 return defValue(RegIdx, ParentVNI, Def);
460 }
461
462 /// Create a new virtual register and live interval.
463 unsigned SplitEditor::openIntv() {
464 // Create the complement as index 0.
465 if (Edit->empty())
466 Edit->createEmptyInterval();
467
468 // Create the open interval.
469 OpenIdx = Edit->size();
470 Edit->createEmptyInterval();
471 return OpenIdx;
472 }
473
474 void SplitEditor::selectIntv(unsigned Idx) {
475 assert(Idx != 0 && "Cannot select the complement interval");
476 assert(Idx < Edit->size() && "Can only select previously opened interval");
477 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
478 OpenIdx = Idx;
479 }
480
481 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
482 assert(OpenIdx && "openIntv not called before enterIntvBefore");
483 DEBUG(dbgs() << " enterIntvBefore " << Idx);
484 Idx = Idx.getBaseIndex();
485 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
486 if (!ParentVNI) {
487 DEBUG(dbgs() << ": not live\n");
488 return Idx;
489 }
490 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
491 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
492 assert(MI && "enterIntvBefore called with invalid index");
493
494 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
495 return VNI->def;
496 }
497
498 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
499 assert(OpenIdx && "openIntv not called before enterIntvAfter");
500 DEBUG(dbgs() << " enterIntvAfter " << Idx);
501 Idx = Idx.getBoundaryIndex();
502 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
503 if (!ParentVNI) {
504 DEBUG(dbgs() << ": not live\n");
505 return Idx;
506 }
507 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
508 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
509 assert(MI && "enterIntvAfter called with invalid index");
510
511 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
512 llvm::next(MachineBasicBlock::iterator(MI)));
513 return VNI->def;
514 }
515
516 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
517 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
518 SlotIndex End = LIS.getMBBEndIdx(&MBB);
519 SlotIndex Last = End.getPrevSlot();
520 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
521 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
522 if (!ParentVNI) {
523 DEBUG(dbgs() << ": not live\n");
524 return End;
525 }
526 DEBUG(dbgs() << ": valno " << ParentVNI->id);
527 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
528 SA.getLastSplitPointIter(&MBB));
529 RegAssign.insert(VNI->def, End, OpenIdx);
530 DEBUG(dump());
531 return VNI->def;
532 }
533
534 /// useIntv - indicate that all instructions in MBB should use OpenLI.
535 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
536 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
537 }
538
539 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
540 assert(OpenIdx && "openIntv not called before useIntv");
541 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
542 RegAssign.insert(Start, End, OpenIdx);
543 DEBUG(dump());
544 }
545
546 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
547 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
548 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
549
550 // The interval must be live beyond the instruction at Idx.
551 SlotIndex Boundary = Idx.getBoundaryIndex();
552 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
553 if (!ParentVNI) {
554 DEBUG(dbgs() << ": not live\n");
555 return Boundary.getNextSlot();
556 }
557 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
558 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
559 assert(MI && "No instruction at index");
560
561 // In spill mode, make live ranges as short as possible by inserting the copy
562 // before MI. This is only possible if that instruction doesn't redefine the
563 // value. The inserted COPY is not a kill, and we don't need to recompute
564 // the source live range. The spiller also won't try to hoist this copy.
565 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
566 MI->readsVirtualRegister(Edit->getReg())) {
567 forceRecompute(0, ParentVNI);
568 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
569 return Idx;
570 }
571
572 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
573 llvm::next(MachineBasicBlock::iterator(MI)));
574 return VNI->def;
575 }
576
577 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
578 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
579 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
580
581 // The interval must be live into the instruction at Idx.
582 Idx = Idx.getBaseIndex();
583 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
584 if (!ParentVNI) {
585 DEBUG(dbgs() << ": not live\n");
586 return Idx.getNextSlot();
587 }
588 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
589
590 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
591 assert(MI && "No instruction at index");
592 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
593 return VNI->def;
594 }
595
596 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
597 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
598 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
599 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
600
601 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
602 if (!ParentVNI) {
603 DEBUG(dbgs() << ": not live\n");
604 return Start;
605 }
606
607 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
608 MBB.SkipPHIsAndLabels(MBB.begin()));
609 RegAssign.insert(Start, VNI->def, OpenIdx);
610 DEBUG(dump());
611 return VNI->def;
612 }
613
614 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
615 assert(OpenIdx && "openIntv not called before overlapIntv");
616 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
617 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
618 "Parent changes value in extended range");
619 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
620 "Range cannot span basic blocks");
621
622 // The complement interval will be extended as needed by LRCalc.extend().
623 if (ParentVNI)
624 forceRecompute(0, ParentVNI);
625 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
626 RegAssign.insert(Start, End, OpenIdx);
627 DEBUG(dump());
628 }
629
630 //===----------------------------------------------------------------------===//
631 // Spill modes
632 //===----------------------------------------------------------------------===//
633
634 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
635 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
636 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
637 RegAssignMap::iterator AssignI;
638 AssignI.setMap(RegAssign);
639
640 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
641 VNInfo *VNI = Copies[i];
642 SlotIndex Def = VNI->def;
643 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
644 assert(MI && "No instruction for back-copy");
645
646 MachineBasicBlock *MBB = MI->getParent();
647 MachineBasicBlock::iterator MBBI(MI);
648 bool AtBegin;
649 do AtBegin = MBBI == MBB->begin();
650 while (!AtBegin && (--MBBI)->isDebugValue());
651
652 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
653 LI->removeValNo(VNI);
654 LIS.RemoveMachineInstrFromMaps(MI);
655 MI->eraseFromParent();
656
657 // Adjust RegAssign if a register assignment is killed at VNI->def. We
658 // want to avoid calculating the live range of the source register if
659 // possible.
660 AssignI.find(Def.getPrevSlot());
661 if (!AssignI.valid() || AssignI.start() >= Def)
662 continue;
663 // If MI doesn't kill the assigned register, just leave it.
664 if (AssignI.stop() != Def)
665 continue;
666 unsigned RegIdx = AssignI.value();
667 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
668 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
669 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
670 } else {
671 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
672 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
673 AssignI.setStop(Kill);
674 }
675 }
676 }
677
678 MachineBasicBlock*
679 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
680 MachineBasicBlock *DefMBB) {
681 if (MBB == DefMBB)
682 return MBB;
683 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
684
685 const MachineLoopInfo &Loops = SA.Loops;
686 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
687 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
688
689 // Best candidate so far.
690 MachineBasicBlock *BestMBB = MBB;
691 unsigned BestDepth = UINT_MAX;
692
693 for (;;) {
694 const MachineLoop *Loop = Loops.getLoopFor(MBB);
695
696 // MBB isn't in a loop, it doesn't get any better. All dominators have a
697 // higher frequency by definition.
698 if (!Loop) {
699 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700 << MBB->getNumber() << " at depth 0\n");
701 return MBB;
702 }
703
704 // We'll never be able to exit the DefLoop.
705 if (Loop == DefLoop) {
706 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
707 << MBB->getNumber() << " in the same loop\n");
708 return MBB;
709 }
710
711 // Least busy dominator seen so far.
712 unsigned Depth = Loop->getLoopDepth();
713 if (Depth < BestDepth) {
714 BestMBB = MBB;
715 BestDepth = Depth;
716 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
717 << MBB->getNumber() << " at depth " << Depth << '\n');
718 }
719
720 // Leave loop by going to the immediate dominator of the loop header.
721 // This is a bigger stride than simply walking up the dominator tree.
722 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
723
724 // Too far up the dominator tree?
725 if (!IDom || !MDT.dominates(DefDomNode, IDom))
726 return BestMBB;
727
728 MBB = IDom->getBlock();
729 }
730 }
731
732 void SplitEditor::hoistCopiesForSize() {
733 // Get the complement interval, always RegIdx 0.
734 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
735 LiveInterval *Parent = &Edit->getParent();
736
737 // Track the nearest common dominator for all back-copies for each ParentVNI,
738 // indexed by ParentVNI->id.
739 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
740 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
741
742 // Find the nearest common dominator for parent values with multiple
743 // back-copies. If a single back-copy dominates, put it in DomPair.second.
744 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
745 VI != VE; ++VI) {
746 VNInfo *VNI = *VI;
747 if (VNI->isUnused())
748 continue;
749 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
750 assert(ParentVNI && "Parent not live at complement def");
751
752 // Don't hoist remats. The complement is probably going to disappear
753 // completely anyway.
754 if (Edit->didRematerialize(ParentVNI))
755 continue;
756
757 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
758 DomPair &Dom = NearestDom[ParentVNI->id];
759
760 // Keep directly defined parent values. This is either a PHI or an
761 // instruction in the complement range. All other copies of ParentVNI
762 // should be eliminated.
763 if (VNI->def == ParentVNI->def) {
764 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
765 Dom = DomPair(ValMBB, VNI->def);
766 continue;
767 }
768 // Skip the singly mapped values. There is nothing to gain from hoisting a
769 // single back-copy.
770 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
771 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
772 continue;
773 }
774
775 if (!Dom.first) {
776 // First time we see ParentVNI. VNI dominates itself.
777 Dom = DomPair(ValMBB, VNI->def);
778 } else if (Dom.first == ValMBB) {
779 // Two defs in the same block. Pick the earlier def.
780 if (!Dom.second.isValid() || VNI->def < Dom.second)
781 Dom.second = VNI->def;
782 } else {
783 // Different basic blocks. Check if one dominates.
784 MachineBasicBlock *Near =
785 MDT.findNearestCommonDominator(Dom.first, ValMBB);
786 if (Near == ValMBB)
787 // Def ValMBB dominates.
788 Dom = DomPair(ValMBB, VNI->def);
789 else if (Near != Dom.first)
790 // None dominate. Hoist to common dominator, need new def.
791 Dom = DomPair(Near, SlotIndex());
792 }
793
794 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
795 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
796 << " hoist to BB#" << Dom.first->getNumber() << ' '
797 << Dom.second << '\n');
798 }
799
800 // Insert the hoisted copies.
801 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
802 DomPair &Dom = NearestDom[i];
803 if (!Dom.first || Dom.second.isValid())
804 continue;
805 // This value needs a hoisted copy inserted at the end of Dom.first.
806 VNInfo *ParentVNI = Parent->getValNumInfo(i);
807 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
808 // Get a less loopy dominator than Dom.first.
809 Dom.first = findShallowDominator(Dom.first, DefMBB);
810 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
811 Dom.second =
812 defFromParent(0, ParentVNI, Last, *Dom.first,
813 SA.getLastSplitPointIter(Dom.first))->def;
814 }
815
816 // Remove redundant back-copies that are now known to be dominated by another
817 // def with the same value.
818 SmallVector<VNInfo*, 8> BackCopies;
819 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
820 VI != VE; ++VI) {
821 VNInfo *VNI = *VI;
822 if (VNI->isUnused())
823 continue;
824 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
825 const DomPair &Dom = NearestDom[ParentVNI->id];
826 if (!Dom.first || Dom.second == VNI->def)
827 continue;
828 BackCopies.push_back(VNI);
829 forceRecompute(0, ParentVNI);
830 }
831 removeBackCopies(BackCopies);
832 }
833
834
835 /// transferValues - Transfer all possible values to the new live ranges.
836 /// Values that were rematerialized are left alone, they need LRCalc.extend().
837 bool SplitEditor::transferValues() {
838 bool Skipped = false;
839 RegAssignMap::const_iterator AssignI = RegAssign.begin();
840 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
841 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
842 DEBUG(dbgs() << " blit " << *ParentI << ':');
843 VNInfo *ParentVNI = ParentI->valno;
844 // RegAssign has holes where RegIdx 0 should be used.
845 SlotIndex Start = ParentI->start;
846 AssignI.advanceTo(Start);
847 do {
848 unsigned RegIdx;
849 SlotIndex End = ParentI->end;
850 if (!AssignI.valid()) {
851 RegIdx = 0;
852 } else if (AssignI.start() <= Start) {
853 RegIdx = AssignI.value();
854 if (AssignI.stop() < End) {
855 End = AssignI.stop();
856 ++AssignI;
857 }
858 } else {
859 RegIdx = 0;
860 End = std::min(End, AssignI.start());
861 }
862
863 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
864 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
865 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
866
867 // Check for a simply defined value that can be blitted directly.
868 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
869 if (VNInfo *VNI = VFP.getPointer()) {
870 DEBUG(dbgs() << ':' << VNI->id);
871 LR.addSegment(LiveInterval::Segment(Start, End, VNI));
872 Start = End;
873 continue;
874 }
875
876 // Skip values with forced recomputation.
877 if (VFP.getInt()) {
878 DEBUG(dbgs() << "(recalc)");
879 Skipped = true;
880 Start = End;
881 continue;
882 }
883
884 LiveRangeCalc &LRC = getLRCalc(RegIdx);
885
886 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
887 // so the live range is accurate. Add live-in blocks in [Start;End) to the
888 // LiveInBlocks.
889 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
890 SlotIndex BlockStart, BlockEnd;
891 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
892
893 // The first block may be live-in, or it may have its own def.
894 if (Start != BlockStart) {
895 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
896 assert(VNI && "Missing def for complex mapped value");
897 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
898 // MBB has its own def. Is it also live-out?
899 if (BlockEnd <= End)
900 LRC.setLiveOutValue(MBB, VNI);
901
902 // Skip to the next block for live-in.
903 ++MBB;
904 BlockStart = BlockEnd;
905 }
906
907 // Handle the live-in blocks covered by [Start;End).
908 assert(Start <= BlockStart && "Expected live-in block");
909 while (BlockStart < End) {
910 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
911 BlockEnd = LIS.getMBBEndIdx(MBB);
912 if (BlockStart == ParentVNI->def) {
913 // This block has the def of a parent PHI, so it isn't live-in.
914 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
915 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
916 assert(VNI && "Missing def for complex mapped parent PHI");
917 if (End >= BlockEnd)
918 LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
919 } else {
920 // This block needs a live-in value. The last block covered may not
921 // be live-out.
922 if (End < BlockEnd)
923 LRC.addLiveInBlock(LR, MDT[MBB], End);
924 else {
925 // Live-through, and we don't know the value.
926 LRC.addLiveInBlock(LR, MDT[MBB]);
927 LRC.setLiveOutValue(MBB, 0);
928 }
929 }
930 BlockStart = BlockEnd;
931 ++MBB;
932 }
933 Start = End;
934 } while (Start != ParentI->end);
935 DEBUG(dbgs() << '\n');
936 }
937
938 LRCalc[0].calculateValues();
939 if (SpillMode)
940 LRCalc[1].calculateValues();
941
942 return Skipped;
943 }
944
945 void SplitEditor::extendPHIKillRanges() {
946 // Extend live ranges to be live-out for successor PHI values.
947 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
948 E = Edit->getParent().vni_end(); I != E; ++I) {
949 const VNInfo *PHIVNI = *I;
950 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
951 continue;
952 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
953 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
954 LiveRangeCalc &LRC = getLRCalc(RegIdx);
955 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
956 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
957 PE = MBB->pred_end(); PI != PE; ++PI) {
958 SlotIndex End = LIS.getMBBEndIdx(*PI);
959 SlotIndex LastUse = End.getPrevSlot();
960 // The predecessor may not have a live-out value. That is OK, like an
961 // undef PHI operand.
962 if (Edit->getParent().liveAt(LastUse)) {
963 assert(RegAssign.lookup(LastUse) == RegIdx &&
964 "Different register assignment in phi predecessor");
965 LRC.extend(LR, End);
966 }
967 }
968 }
969 }
970
971 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
972 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
973 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
974 RE = MRI.reg_end(); RI != RE;) {
975 MachineOperand &MO = RI.getOperand();
976 MachineInstr *MI = MO.getParent();
977 ++RI;
978 // LiveDebugVariables should have handled all DBG_VALUE instructions.
979 if (MI->isDebugValue()) {
980 DEBUG(dbgs() << "Zapping " << *MI);
981 MO.setReg(0);
982 continue;
983 }
984
985 // <undef> operands don't really read the register, so it doesn't matter
986 // which register we choose. When the use operand is tied to a def, we must
987 // use the same register as the def, so just do that always.
988 SlotIndex Idx = LIS.getInstructionIndex(MI);
989 if (MO.isDef() || MO.isUndef())
990 Idx = Idx.getRegSlot(MO.isEarlyClobber());
991
992 // Rewrite to the mapped register at Idx.
993 unsigned RegIdx = RegAssign.lookup(Idx);
994 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
995 MO.setReg(LI->reg);
996 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
997 << Idx << ':' << RegIdx << '\t' << *MI);
998
999 // Extend liveness to Idx if the instruction reads reg.
1000 if (!ExtendRanges || MO.isUndef())
1001 continue;
1002
1003 // Skip instructions that don't read Reg.
1004 if (MO.isDef()) {
1005 if (!MO.getSubReg() && !MO.isEarlyClobber())
1006 continue;
1007 // We may wan't to extend a live range for a partial redef, or for a use
1008 // tied to an early clobber.
1009 Idx = Idx.getPrevSlot();
1010 if (!Edit->getParent().liveAt(Idx))
1011 continue;
1012 } else
1013 Idx = Idx.getRegSlot(true);
1014
1015 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1016 }
1017 }
1018
1019 void SplitEditor::deleteRematVictims() {
1020 SmallVector<MachineInstr*, 8> Dead;
1021 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1022 LiveInterval *LI = &LIS.getInterval(*I);
1023 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1024 LII != LIE; ++LII) {
1025 // Dead defs end at the dead slot.
1026 if (LII->end != LII->valno->def.getDeadSlot())
1027 continue;
1028 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1029 assert(MI && "Missing instruction for dead def");
1030 MI->addRegisterDead(LI->reg, &TRI);
1031
1032 if (!MI->allDefsAreDead())
1033 continue;
1034
1035 DEBUG(dbgs() << "All defs dead: " << *MI);
1036 Dead.push_back(MI);
1037 }
1038 }
1039
1040 if (Dead.empty())
1041 return;
1042
1043 Edit->eliminateDeadDefs(Dead);
1044 }
1045
1046 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1047 ++NumFinished;
1048
1049 // At this point, the live intervals in Edit contain VNInfos corresponding to
1050 // the inserted copies.
1051
1052 // Add the original defs from the parent interval.
1053 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1054 E = Edit->getParent().vni_end(); I != E; ++I) {
1055 const VNInfo *ParentVNI = *I;
1056 if (ParentVNI->isUnused())
1057 continue;
1058 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1059 defValue(RegIdx, ParentVNI, ParentVNI->def);
1060
1061 // Force rematted values to be recomputed everywhere.
1062 // The new live ranges may be truncated.
1063 if (Edit->didRematerialize(ParentVNI))
1064 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1065 forceRecompute(i, ParentVNI);
1066 }
1067
1068 // Hoist back-copies to the complement interval when in spill mode.
1069 switch (SpillMode) {
1070 case SM_Partition:
1071 // Leave all back-copies as is.
1072 break;
1073 case SM_Size:
1074 hoistCopiesForSize();
1075 break;
1076 case SM_Speed:
1077 llvm_unreachable("Spill mode 'speed' not implemented yet");
1078 }
1079
1080 // Transfer the simply mapped values, check if any are skipped.
1081 bool Skipped = transferValues();
1082 if (Skipped)
1083 extendPHIKillRanges();
1084 else
1085 ++NumSimple;
1086
1087 // Rewrite virtual registers, possibly extending ranges.
1088 rewriteAssigned(Skipped);
1089
1090 // Delete defs that were rematted everywhere.
1091 if (Skipped)
1092 deleteRematVictims();
1093
1094 // Get rid of unused values and set phi-kill flags.
1095 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1096 LiveInterval &LI = LIS.getInterval(*I);
1097 LI.RenumberValues();
1098 }
1099
1100 // Provide a reverse mapping from original indices to Edit ranges.
1101 if (LRMap) {
1102 LRMap->clear();
1103 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1104 LRMap->push_back(i);
1105 }
1106
1107 // Now check if any registers were separated into multiple components.
1108 ConnectedVNInfoEqClasses ConEQ(LIS);
1109 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1110 // Don't use iterators, they are invalidated by create() below.
1111 LiveInterval *li = &LIS.getInterval(Edit->get(i));
1112 unsigned NumComp = ConEQ.Classify(li);
1113 if (NumComp <= 1)
1114 continue;
1115 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
1116 SmallVector<LiveInterval*, 8> dups;
1117 dups.push_back(li);
1118 for (unsigned j = 1; j != NumComp; ++j)
1119 dups.push_back(&Edit->createEmptyInterval());
1120 ConEQ.Distribute(&dups[0], MRI);
1121 // The new intervals all map back to i.
1122 if (LRMap)
1123 LRMap->resize(Edit->size(), i);
1124 }
1125
1126 // Calculate spill weight and allocation hints for new intervals.
1127 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1128
1129 assert(!LRMap || LRMap->size() == Edit->size());
1130 }
1131
1132
1133 //===----------------------------------------------------------------------===//
1134 // Single Block Splitting
1135 //===----------------------------------------------------------------------===//
1136
1137 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1138 bool SingleInstrs) const {
1139 // Always split for multiple instructions.
1140 if (!BI.isOneInstr())
1141 return true;
1142 // Don't split for single instructions unless explicitly requested.
1143 if (!SingleInstrs)
1144 return false;
1145 // Splitting a live-through range always makes progress.
1146 if (BI.LiveIn && BI.LiveOut)
1147 return true;
1148 // No point in isolating a copy. It has no register class constraints.
1149 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1150 return false;
1151 // Finally, don't isolate an end point that was created by earlier splits.
1152 return isOriginalEndpoint(BI.FirstInstr);
1153 }
1154
1155 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1156 openIntv();
1157 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1158 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1159 LastSplitPoint));
1160 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1161 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1162 } else {
1163 // The last use is after the last valid split point.
1164 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1165 useIntv(SegStart, SegStop);
1166 overlapIntv(SegStop, BI.LastInstr);
1167 }
1168 }
1169
1170
1171 //===----------------------------------------------------------------------===//
1172 // Global Live Range Splitting Support
1173 //===----------------------------------------------------------------------===//
1174
1175 // These methods support a method of global live range splitting that uses a
1176 // global algorithm to decide intervals for CFG edges. They will insert split
1177 // points and color intervals in basic blocks while avoiding interference.
1178 //
1179 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1180 // are on the stack.
1181
1182 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1183 unsigned IntvIn, SlotIndex LeaveBefore,
1184 unsigned IntvOut, SlotIndex EnterAfter){
1185 SlotIndex Start, Stop;
1186 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1187
1188 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1189 << ") intf " << LeaveBefore << '-' << EnterAfter
1190 << ", live-through " << IntvIn << " -> " << IntvOut);
1191
1192 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1193
1194 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1195 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1196 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1197
1198 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1199
1200 if (!IntvOut) {
1201 DEBUG(dbgs() << ", spill on entry.\n");
1202 //
1203 // <<<<<<<<< Possible LeaveBefore interference.
1204 // |-----------| Live through.
1205 // -____________ Spill on entry.
1206 //
1207 selectIntv(IntvIn);
1208 SlotIndex Idx = leaveIntvAtTop(*MBB);
1209 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1210 (void)Idx;
1211 return;
1212 }
1213
1214 if (!IntvIn) {
1215 DEBUG(dbgs() << ", reload on exit.\n");
1216 //
1217 // >>>>>>> Possible EnterAfter interference.
1218 // |-----------| Live through.
1219 // ___________-- Reload on exit.
1220 //
1221 selectIntv(IntvOut);
1222 SlotIndex Idx = enterIntvAtEnd(*MBB);
1223 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1224 (void)Idx;
1225 return;
1226 }
1227
1228 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1229 DEBUG(dbgs() << ", straight through.\n");
1230 //
1231 // |-----------| Live through.
1232 // ------------- Straight through, same intv, no interference.
1233 //
1234 selectIntv(IntvOut);
1235 useIntv(Start, Stop);
1236 return;
1237 }
1238
1239 // We cannot legally insert splits after LSP.
1240 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1241 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1242
1243 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1244 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1245 DEBUG(dbgs() << ", switch avoiding interference.\n");
1246 //
1247 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1248 // |-----------| Live through.
1249 // ------======= Switch intervals between interference.
1250 //
1251 selectIntv(IntvOut);
1252 SlotIndex Idx;
1253 if (LeaveBefore && LeaveBefore < LSP) {
1254 Idx = enterIntvBefore(LeaveBefore);
1255 useIntv(Idx, Stop);
1256 } else {
1257 Idx = enterIntvAtEnd(*MBB);
1258 }
1259 selectIntv(IntvIn);
1260 useIntv(Start, Idx);
1261 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1262 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1263 return;
1264 }
1265
1266 DEBUG(dbgs() << ", create local intv for interference.\n");
1267 //
1268 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1269 // |-----------| Live through.
1270 // ==---------== Switch intervals before/after interference.
1271 //
1272 assert(LeaveBefore <= EnterAfter && "Missed case");
1273
1274 selectIntv(IntvOut);
1275 SlotIndex Idx = enterIntvAfter(EnterAfter);
1276 useIntv(Idx, Stop);
1277 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1278
1279 selectIntv(IntvIn);
1280 Idx = leaveIntvBefore(LeaveBefore);
1281 useIntv(Start, Idx);
1282 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1283 }
1284
1285
1286 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1287 unsigned IntvIn, SlotIndex LeaveBefore) {
1288 SlotIndex Start, Stop;
1289 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1290
1291 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1292 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1293 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1294 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1295
1296 assert(IntvIn && "Must have register in");
1297 assert(BI.LiveIn && "Must be live-in");
1298 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1299
1300 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1301 DEBUG(dbgs() << " before interference.\n");
1302 //
1303 // <<< Interference after kill.
1304 // |---o---x | Killed in block.
1305 // ========= Use IntvIn everywhere.
1306 //
1307 selectIntv(IntvIn);
1308 useIntv(Start, BI.LastInstr);
1309 return;
1310 }
1311
1312 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1313
1314 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1315 //
1316 // <<< Possible interference after last use.
1317 // |---o---o---| Live-out on stack.
1318 // =========____ Leave IntvIn after last use.
1319 //
1320 // < Interference after last use.
1321 // |---o---o--o| Live-out on stack, late last use.
1322 // ============ Copy to stack after LSP, overlap IntvIn.
1323 // \_____ Stack interval is live-out.
1324 //
1325 if (BI.LastInstr < LSP) {
1326 DEBUG(dbgs() << ", spill after last use before interference.\n");
1327 selectIntv(IntvIn);
1328 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1329 useIntv(Start, Idx);
1330 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1331 } else {
1332 DEBUG(dbgs() << ", spill before last split point.\n");
1333 selectIntv(IntvIn);
1334 SlotIndex Idx = leaveIntvBefore(LSP);
1335 overlapIntv(Idx, BI.LastInstr);
1336 useIntv(Start, Idx);
1337 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1338 }
1339 return;
1340 }
1341
1342 // The interference is overlapping somewhere we wanted to use IntvIn. That
1343 // means we need to create a local interval that can be allocated a
1344 // different register.
1345 unsigned LocalIntv = openIntv();
1346 (void)LocalIntv;
1347 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1348
1349 if (!BI.LiveOut || BI.LastInstr < LSP) {
1350 //
1351 // <<<<<<< Interference overlapping uses.
1352 // |---o---o---| Live-out on stack.
1353 // =====----____ Leave IntvIn before interference, then spill.
1354 //
1355 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1356 SlotIndex From = enterIntvBefore(LeaveBefore);
1357 useIntv(From, To);
1358 selectIntv(IntvIn);
1359 useIntv(Start, From);
1360 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1361 return;
1362 }
1363
1364 // <<<<<<< Interference overlapping uses.
1365 // |---o---o--o| Live-out on stack, late last use.
1366 // =====------- Copy to stack before LSP, overlap LocalIntv.
1367 // \_____ Stack interval is live-out.
1368 //
1369 SlotIndex To = leaveIntvBefore(LSP);
1370 overlapIntv(To, BI.LastInstr);
1371 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1372 useIntv(From, To);
1373 selectIntv(IntvIn);
1374 useIntv(Start, From);
1375 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1376 }
1377
1378 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1379 unsigned IntvOut, SlotIndex EnterAfter) {
1380 SlotIndex Start, Stop;
1381 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1382
1383 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1384 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1385 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1386 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1387
1388 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1389
1390 assert(IntvOut && "Must have register out");
1391 assert(BI.LiveOut && "Must be live-out");
1392 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1393
1394 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1395 DEBUG(dbgs() << " after interference.\n");
1396 //
1397 // >>>> Interference before def.
1398 // | o---o---| Defined in block.
1399 // ========= Use IntvOut everywhere.
1400 //
1401 selectIntv(IntvOut);
1402 useIntv(BI.FirstInstr, Stop);
1403 return;
1404 }
1405
1406 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1407 DEBUG(dbgs() << ", reload after interference.\n");
1408 //
1409 // >>>> Interference before def.
1410 // |---o---o---| Live-through, stack-in.
1411 // ____========= Enter IntvOut before first use.
1412 //
1413 selectIntv(IntvOut);
1414 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1415 useIntv(Idx, Stop);
1416 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1417 return;
1418 }
1419
1420 // The interference is overlapping somewhere we wanted to use IntvOut. That
1421 // means we need to create a local interval that can be allocated a
1422 // different register.
1423 DEBUG(dbgs() << ", interference overlaps uses.\n");
1424 //
1425 // >>>>>>> Interference overlapping uses.
1426 // |---o---o---| Live-through, stack-in.
1427 // ____---====== Create local interval for interference range.
1428 //
1429 selectIntv(IntvOut);
1430 SlotIndex Idx = enterIntvAfter(EnterAfter);
1431 useIntv(Idx, Stop);
1432 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1433
1434 openIntv();
1435 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1436 useIntv(From, Idx);
1437 }