Mercurial > hg > CbC > CbC_llvm
comparison lib/CodeGen/TargetInstrInfo.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | e4204d083e25 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file implements the TargetInstrInfo class. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "llvm/Target/TargetInstrInfo.h" | |
15 #include "llvm/CodeGen/MachineFrameInfo.h" | |
16 #include "llvm/CodeGen/MachineMemOperand.h" | |
17 #include "llvm/CodeGen/MachineRegisterInfo.h" | |
18 #include "llvm/CodeGen/PseudoSourceValue.h" | |
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | |
20 #include "llvm/IR/DataLayout.h" | |
21 #include "llvm/MC/MCAsmInfo.h" | |
22 #include "llvm/MC/MCInstrItineraries.h" | |
23 #include "llvm/Support/CommandLine.h" | |
24 #include "llvm/Support/ErrorHandling.h" | |
25 #include "llvm/Support/raw_ostream.h" | |
26 #include "llvm/Target/TargetLowering.h" | |
27 #include "llvm/Target/TargetMachine.h" | |
28 #include "llvm/Target/TargetRegisterInfo.h" | |
29 #include <cctype> | |
30 using namespace llvm; | |
31 | |
32 static cl::opt<bool> DisableHazardRecognizer( | |
33 "disable-sched-hazard", cl::Hidden, cl::init(false), | |
34 cl::desc("Disable hazard detection during preRA scheduling")); | |
35 | |
36 TargetInstrInfo::~TargetInstrInfo() { | |
37 } | |
38 | |
39 const TargetRegisterClass* | |
40 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, | |
41 const TargetRegisterInfo *TRI, | |
42 const MachineFunction &MF) const { | |
43 if (OpNum >= MCID.getNumOperands()) | |
44 return 0; | |
45 | |
46 short RegClass = MCID.OpInfo[OpNum].RegClass; | |
47 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) | |
48 return TRI->getPointerRegClass(MF, RegClass); | |
49 | |
50 // Instructions like INSERT_SUBREG do not have fixed register classes. | |
51 if (RegClass < 0) | |
52 return 0; | |
53 | |
54 // Otherwise just look it up normally. | |
55 return TRI->getRegClass(RegClass); | |
56 } | |
57 | |
58 /// insertNoop - Insert a noop into the instruction stream at the specified | |
59 /// point. | |
60 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, | |
61 MachineBasicBlock::iterator MI) const { | |
62 llvm_unreachable("Target didn't implement insertNoop!"); | |
63 } | |
64 | |
65 /// Measure the specified inline asm to determine an approximation of its | |
66 /// length. | |
67 /// Comments (which run till the next SeparatorString or newline) do not | |
68 /// count as an instruction. | |
69 /// Any other non-whitespace text is considered an instruction, with | |
70 /// multiple instructions separated by SeparatorString or newlines. | |
71 /// Variable-length instructions are not handled here; this function | |
72 /// may be overloaded in the target code to do that. | |
73 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, | |
74 const MCAsmInfo &MAI) const { | |
75 | |
76 | |
77 // Count the number of instructions in the asm. | |
78 bool atInsnStart = true; | |
79 unsigned Length = 0; | |
80 for (; *Str; ++Str) { | |
81 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | |
82 strlen(MAI.getSeparatorString())) == 0) | |
83 atInsnStart = true; | |
84 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { | |
85 Length += MAI.getMaxInstLength(); | |
86 atInsnStart = false; | |
87 } | |
88 if (atInsnStart && strncmp(Str, MAI.getCommentString(), | |
89 strlen(MAI.getCommentString())) == 0) | |
90 atInsnStart = false; | |
91 } | |
92 | |
93 return Length; | |
94 } | |
95 | |
96 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | |
97 /// after it, replacing it with an unconditional branch to NewDest. | |
98 void | |
99 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | |
100 MachineBasicBlock *NewDest) const { | |
101 MachineBasicBlock *MBB = Tail->getParent(); | |
102 | |
103 // Remove all the old successors of MBB from the CFG. | |
104 while (!MBB->succ_empty()) | |
105 MBB->removeSuccessor(MBB->succ_begin()); | |
106 | |
107 // Remove all the dead instructions from the end of MBB. | |
108 MBB->erase(Tail, MBB->end()); | |
109 | |
110 // If MBB isn't immediately before MBB, insert a branch to it. | |
111 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | |
112 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), | |
113 Tail->getDebugLoc()); | |
114 MBB->addSuccessor(NewDest); | |
115 } | |
116 | |
117 // commuteInstruction - The default implementation of this method just exchanges | |
118 // the two operands returned by findCommutedOpIndices. | |
119 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, | |
120 bool NewMI) const { | |
121 const MCInstrDesc &MCID = MI->getDesc(); | |
122 bool HasDef = MCID.getNumDefs(); | |
123 if (HasDef && !MI->getOperand(0).isReg()) | |
124 // No idea how to commute this instruction. Target should implement its own. | |
125 return 0; | |
126 unsigned Idx1, Idx2; | |
127 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { | |
128 std::string msg; | |
129 raw_string_ostream Msg(msg); | |
130 Msg << "Don't know how to commute: " << *MI; | |
131 report_fatal_error(Msg.str()); | |
132 } | |
133 | |
134 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && | |
135 "This only knows how to commute register operands so far"); | |
136 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; | |
137 unsigned Reg1 = MI->getOperand(Idx1).getReg(); | |
138 unsigned Reg2 = MI->getOperand(Idx2).getReg(); | |
139 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; | |
140 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); | |
141 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); | |
142 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); | |
143 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); | |
144 // If destination is tied to either of the commuted source register, then | |
145 // it must be updated. | |
146 if (HasDef && Reg0 == Reg1 && | |
147 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { | |
148 Reg2IsKill = false; | |
149 Reg0 = Reg2; | |
150 SubReg0 = SubReg2; | |
151 } else if (HasDef && Reg0 == Reg2 && | |
152 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { | |
153 Reg1IsKill = false; | |
154 Reg0 = Reg1; | |
155 SubReg0 = SubReg1; | |
156 } | |
157 | |
158 if (NewMI) { | |
159 // Create a new instruction. | |
160 MachineFunction &MF = *MI->getParent()->getParent(); | |
161 MI = MF.CloneMachineInstr(MI); | |
162 } | |
163 | |
164 if (HasDef) { | |
165 MI->getOperand(0).setReg(Reg0); | |
166 MI->getOperand(0).setSubReg(SubReg0); | |
167 } | |
168 MI->getOperand(Idx2).setReg(Reg1); | |
169 MI->getOperand(Idx1).setReg(Reg2); | |
170 MI->getOperand(Idx2).setSubReg(SubReg1); | |
171 MI->getOperand(Idx1).setSubReg(SubReg2); | |
172 MI->getOperand(Idx2).setIsKill(Reg1IsKill); | |
173 MI->getOperand(Idx1).setIsKill(Reg2IsKill); | |
174 return MI; | |
175 } | |
176 | |
177 /// findCommutedOpIndices - If specified MI is commutable, return the two | |
178 /// operand indices that would swap value. Return true if the instruction | |
179 /// is not in a form which this routine understands. | |
180 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, | |
181 unsigned &SrcOpIdx1, | |
182 unsigned &SrcOpIdx2) const { | |
183 assert(!MI->isBundle() && | |
184 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); | |
185 | |
186 const MCInstrDesc &MCID = MI->getDesc(); | |
187 if (!MCID.isCommutable()) | |
188 return false; | |
189 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | |
190 // is not true, then the target must implement this. | |
191 SrcOpIdx1 = MCID.getNumDefs(); | |
192 SrcOpIdx2 = SrcOpIdx1 + 1; | |
193 if (!MI->getOperand(SrcOpIdx1).isReg() || | |
194 !MI->getOperand(SrcOpIdx2).isReg()) | |
195 // No idea. | |
196 return false; | |
197 return true; | |
198 } | |
199 | |
200 | |
201 bool | |
202 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | |
203 if (!MI->isTerminator()) return false; | |
204 | |
205 // Conditional branch is a special case. | |
206 if (MI->isBranch() && !MI->isBarrier()) | |
207 return true; | |
208 if (!MI->isPredicable()) | |
209 return true; | |
210 return !isPredicated(MI); | |
211 } | |
212 | |
213 | |
214 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, | |
215 const SmallVectorImpl<MachineOperand> &Pred) const { | |
216 bool MadeChange = false; | |
217 | |
218 assert(!MI->isBundle() && | |
219 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); | |
220 | |
221 const MCInstrDesc &MCID = MI->getDesc(); | |
222 if (!MI->isPredicable()) | |
223 return false; | |
224 | |
225 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
226 if (MCID.OpInfo[i].isPredicate()) { | |
227 MachineOperand &MO = MI->getOperand(i); | |
228 if (MO.isReg()) { | |
229 MO.setReg(Pred[j].getReg()); | |
230 MadeChange = true; | |
231 } else if (MO.isImm()) { | |
232 MO.setImm(Pred[j].getImm()); | |
233 MadeChange = true; | |
234 } else if (MO.isMBB()) { | |
235 MO.setMBB(Pred[j].getMBB()); | |
236 MadeChange = true; | |
237 } | |
238 ++j; | |
239 } | |
240 } | |
241 return MadeChange; | |
242 } | |
243 | |
244 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, | |
245 const MachineMemOperand *&MMO, | |
246 int &FrameIndex) const { | |
247 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | |
248 oe = MI->memoperands_end(); | |
249 o != oe; | |
250 ++o) { | |
251 if ((*o)->isLoad() && (*o)->getValue()) | |
252 if (const FixedStackPseudoSourceValue *Value = | |
253 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { | |
254 FrameIndex = Value->getFrameIndex(); | |
255 MMO = *o; | |
256 return true; | |
257 } | |
258 } | |
259 return false; | |
260 } | |
261 | |
262 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, | |
263 const MachineMemOperand *&MMO, | |
264 int &FrameIndex) const { | |
265 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | |
266 oe = MI->memoperands_end(); | |
267 o != oe; | |
268 ++o) { | |
269 if ((*o)->isStore() && (*o)->getValue()) | |
270 if (const FixedStackPseudoSourceValue *Value = | |
271 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { | |
272 FrameIndex = Value->getFrameIndex(); | |
273 MMO = *o; | |
274 return true; | |
275 } | |
276 } | |
277 return false; | |
278 } | |
279 | |
280 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, | |
281 unsigned SubIdx, unsigned &Size, | |
282 unsigned &Offset, | |
283 const TargetMachine *TM) const { | |
284 if (!SubIdx) { | |
285 Size = RC->getSize(); | |
286 Offset = 0; | |
287 return true; | |
288 } | |
289 unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx); | |
290 // Convert bit size to byte size to be consistent with | |
291 // MCRegisterClass::getSize(). | |
292 if (BitSize % 8) | |
293 return false; | |
294 | |
295 int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx); | |
296 if (BitOffset < 0 || BitOffset % 8) | |
297 return false; | |
298 | |
299 Size = BitSize /= 8; | |
300 Offset = (unsigned)BitOffset / 8; | |
301 | |
302 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); | |
303 | |
304 if (!TM->getDataLayout()->isLittleEndian()) { | |
305 Offset = RC->getSize() - (Offset + Size); | |
306 } | |
307 return true; | |
308 } | |
309 | |
310 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, | |
311 MachineBasicBlock::iterator I, | |
312 unsigned DestReg, | |
313 unsigned SubIdx, | |
314 const MachineInstr *Orig, | |
315 const TargetRegisterInfo &TRI) const { | |
316 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | |
317 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | |
318 MBB.insert(I, MI); | |
319 } | |
320 | |
321 bool | |
322 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, | |
323 const MachineInstr *MI1, | |
324 const MachineRegisterInfo *MRI) const { | |
325 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | |
326 } | |
327 | |
328 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, | |
329 MachineFunction &MF) const { | |
330 assert(!Orig->isNotDuplicable() && | |
331 "Instruction cannot be duplicated"); | |
332 return MF.CloneMachineInstr(Orig); | |
333 } | |
334 | |
335 // If the COPY instruction in MI can be folded to a stack operation, return | |
336 // the register class to use. | |
337 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, | |
338 unsigned FoldIdx) { | |
339 assert(MI->isCopy() && "MI must be a COPY instruction"); | |
340 if (MI->getNumOperands() != 2) | |
341 return 0; | |
342 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); | |
343 | |
344 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); | |
345 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); | |
346 | |
347 if (FoldOp.getSubReg() || LiveOp.getSubReg()) | |
348 return 0; | |
349 | |
350 unsigned FoldReg = FoldOp.getReg(); | |
351 unsigned LiveReg = LiveOp.getReg(); | |
352 | |
353 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && | |
354 "Cannot fold physregs"); | |
355 | |
356 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | |
357 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); | |
358 | |
359 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) | |
360 return RC->contains(LiveOp.getReg()) ? RC : 0; | |
361 | |
362 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) | |
363 return RC; | |
364 | |
365 // FIXME: Allow folding when register classes are memory compatible. | |
366 return 0; | |
367 } | |
368 | |
369 bool TargetInstrInfo:: | |
370 canFoldMemoryOperand(const MachineInstr *MI, | |
371 const SmallVectorImpl<unsigned> &Ops) const { | |
372 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); | |
373 } | |
374 | |
375 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack | |
376 /// slot into the specified machine instruction for the specified operand(s). | |
377 /// If this is possible, a new instruction is returned with the specified | |
378 /// operand folded, otherwise NULL is returned. The client is responsible for | |
379 /// removing the old instruction and adding the new one in the instruction | |
380 /// stream. | |
381 MachineInstr* | |
382 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | |
383 const SmallVectorImpl<unsigned> &Ops, | |
384 int FI) const { | |
385 unsigned Flags = 0; | |
386 for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |
387 if (MI->getOperand(Ops[i]).isDef()) | |
388 Flags |= MachineMemOperand::MOStore; | |
389 else | |
390 Flags |= MachineMemOperand::MOLoad; | |
391 | |
392 MachineBasicBlock *MBB = MI->getParent(); | |
393 assert(MBB && "foldMemoryOperand needs an inserted instruction"); | |
394 MachineFunction &MF = *MBB->getParent(); | |
395 | |
396 // Ask the target to do the actual folding. | |
397 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { | |
398 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | |
399 // Add a memory operand, foldMemoryOperandImpl doesn't do that. | |
400 assert((!(Flags & MachineMemOperand::MOStore) || | |
401 NewMI->mayStore()) && | |
402 "Folded a def to a non-store!"); | |
403 assert((!(Flags & MachineMemOperand::MOLoad) || | |
404 NewMI->mayLoad()) && | |
405 "Folded a use to a non-load!"); | |
406 const MachineFrameInfo &MFI = *MF.getFrameInfo(); | |
407 assert(MFI.getObjectOffset(FI) != -1); | |
408 MachineMemOperand *MMO = | |
409 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), | |
410 Flags, MFI.getObjectSize(FI), | |
411 MFI.getObjectAlignment(FI)); | |
412 NewMI->addMemOperand(MF, MMO); | |
413 | |
414 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. | |
415 return MBB->insert(MI, NewMI); | |
416 } | |
417 | |
418 // Straight COPY may fold as load/store. | |
419 if (!MI->isCopy() || Ops.size() != 1) | |
420 return 0; | |
421 | |
422 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); | |
423 if (!RC) | |
424 return 0; | |
425 | |
426 const MachineOperand &MO = MI->getOperand(1-Ops[0]); | |
427 MachineBasicBlock::iterator Pos = MI; | |
428 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); | |
429 | |
430 if (Flags == MachineMemOperand::MOStore) | |
431 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); | |
432 else | |
433 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); | |
434 return --Pos; | |
435 } | |
436 | |
437 /// foldMemoryOperand - Same as the previous version except it allows folding | |
438 /// of any load and store from / to any address, not just from a specific | |
439 /// stack slot. | |
440 MachineInstr* | |
441 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | |
442 const SmallVectorImpl<unsigned> &Ops, | |
443 MachineInstr* LoadMI) const { | |
444 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); | |
445 #ifndef NDEBUG | |
446 for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |
447 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); | |
448 #endif | |
449 MachineBasicBlock &MBB = *MI->getParent(); | |
450 MachineFunction &MF = *MBB.getParent(); | |
451 | |
452 // Ask the target to do the actual folding. | |
453 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); | |
454 if (!NewMI) return 0; | |
455 | |
456 NewMI = MBB.insert(MI, NewMI); | |
457 | |
458 // Copy the memoperands from the load to the folded instruction. | |
459 if (MI->memoperands_empty()) { | |
460 NewMI->setMemRefs(LoadMI->memoperands_begin(), | |
461 LoadMI->memoperands_end()); | |
462 } | |
463 else { | |
464 // Handle the rare case of folding multiple loads. | |
465 NewMI->setMemRefs(MI->memoperands_begin(), | |
466 MI->memoperands_end()); | |
467 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), | |
468 E = LoadMI->memoperands_end(); I != E; ++I) { | |
469 NewMI->addMemOperand(MF, *I); | |
470 } | |
471 } | |
472 return NewMI; | |
473 } | |
474 | |
475 bool TargetInstrInfo:: | |
476 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, | |
477 AliasAnalysis *AA) const { | |
478 const MachineFunction &MF = *MI->getParent()->getParent(); | |
479 const MachineRegisterInfo &MRI = MF.getRegInfo(); | |
480 const TargetMachine &TM = MF.getTarget(); | |
481 const TargetInstrInfo &TII = *TM.getInstrInfo(); | |
482 | |
483 // Remat clients assume operand 0 is the defined register. | |
484 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) | |
485 return false; | |
486 unsigned DefReg = MI->getOperand(0).getReg(); | |
487 | |
488 // A sub-register definition can only be rematerialized if the instruction | |
489 // doesn't read the other parts of the register. Otherwise it is really a | |
490 // read-modify-write operation on the full virtual register which cannot be | |
491 // moved safely. | |
492 if (TargetRegisterInfo::isVirtualRegister(DefReg) && | |
493 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) | |
494 return false; | |
495 | |
496 // A load from a fixed stack slot can be rematerialized. This may be | |
497 // redundant with subsequent checks, but it's target-independent, | |
498 // simple, and a common case. | |
499 int FrameIdx = 0; | |
500 if (TII.isLoadFromStackSlot(MI, FrameIdx) && | |
501 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) | |
502 return true; | |
503 | |
504 // Avoid instructions obviously unsafe for remat. | |
505 if (MI->isNotDuplicable() || MI->mayStore() || | |
506 MI->hasUnmodeledSideEffects()) | |
507 return false; | |
508 | |
509 // Don't remat inline asm. We have no idea how expensive it is | |
510 // even if it's side effect free. | |
511 if (MI->isInlineAsm()) | |
512 return false; | |
513 | |
514 // Avoid instructions which load from potentially varying memory. | |
515 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) | |
516 return false; | |
517 | |
518 // If any of the registers accessed are non-constant, conservatively assume | |
519 // the instruction is not rematerializable. | |
520 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | |
521 const MachineOperand &MO = MI->getOperand(i); | |
522 if (!MO.isReg()) continue; | |
523 unsigned Reg = MO.getReg(); | |
524 if (Reg == 0) | |
525 continue; | |
526 | |
527 // Check for a well-behaved physical register. | |
528 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | |
529 if (MO.isUse()) { | |
530 // If the physreg has no defs anywhere, it's just an ambient register | |
531 // and we can freely move its uses. Alternatively, if it's allocatable, | |
532 // it could get allocated to something with a def during allocation. | |
533 if (!MRI.isConstantPhysReg(Reg, MF)) | |
534 return false; | |
535 } else { | |
536 // A physreg def. We can't remat it. | |
537 return false; | |
538 } | |
539 continue; | |
540 } | |
541 | |
542 // Only allow one virtual-register def. There may be multiple defs of the | |
543 // same virtual register, though. | |
544 if (MO.isDef() && Reg != DefReg) | |
545 return false; | |
546 | |
547 // Don't allow any virtual-register uses. Rematting an instruction with | |
548 // virtual register uses would length the live ranges of the uses, which | |
549 // is not necessarily a good idea, certainly not "trivial". | |
550 if (MO.isUse()) | |
551 return false; | |
552 } | |
553 | |
554 // Everything checked out. | |
555 return true; | |
556 } | |
557 | |
558 /// isSchedulingBoundary - Test if the given instruction should be | |
559 /// considered a scheduling boundary. This primarily includes labels | |
560 /// and terminators. | |
561 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, | |
562 const MachineBasicBlock *MBB, | |
563 const MachineFunction &MF) const { | |
564 // Terminators and labels can't be scheduled around. | |
565 if (MI->isTerminator() || MI->isLabel()) | |
566 return true; | |
567 | |
568 // Don't attempt to schedule around any instruction that defines | |
569 // a stack-oriented pointer, as it's unlikely to be profitable. This | |
570 // saves compile time, because it doesn't require every single | |
571 // stack slot reference to depend on the instruction that does the | |
572 // modification. | |
573 const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); | |
574 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); | |
575 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) | |
576 return true; | |
577 | |
578 return false; | |
579 } | |
580 | |
581 // Provide a global flag for disabling the PreRA hazard recognizer that targets | |
582 // may choose to honor. | |
583 bool TargetInstrInfo::usePreRAHazardRecognizer() const { | |
584 return !DisableHazardRecognizer; | |
585 } | |
586 | |
587 // Default implementation of CreateTargetRAHazardRecognizer. | |
588 ScheduleHazardRecognizer *TargetInstrInfo:: | |
589 CreateTargetHazardRecognizer(const TargetMachine *TM, | |
590 const ScheduleDAG *DAG) const { | |
591 // Dummy hazard recognizer allows all instructions to issue. | |
592 return new ScheduleHazardRecognizer(); | |
593 } | |
594 | |
595 // Default implementation of CreateTargetMIHazardRecognizer. | |
596 ScheduleHazardRecognizer *TargetInstrInfo:: | |
597 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, | |
598 const ScheduleDAG *DAG) const { | |
599 return (ScheduleHazardRecognizer *) | |
600 new ScoreboardHazardRecognizer(II, DAG, "misched"); | |
601 } | |
602 | |
603 // Default implementation of CreateTargetPostRAHazardRecognizer. | |
604 ScheduleHazardRecognizer *TargetInstrInfo:: | |
605 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | |
606 const ScheduleDAG *DAG) const { | |
607 return (ScheduleHazardRecognizer *) | |
608 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); | |
609 } | |
610 | |
611 //===----------------------------------------------------------------------===// | |
612 // SelectionDAG latency interface. | |
613 //===----------------------------------------------------------------------===// | |
614 | |
615 int | |
616 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | |
617 SDNode *DefNode, unsigned DefIdx, | |
618 SDNode *UseNode, unsigned UseIdx) const { | |
619 if (!ItinData || ItinData->isEmpty()) | |
620 return -1; | |
621 | |
622 if (!DefNode->isMachineOpcode()) | |
623 return -1; | |
624 | |
625 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); | |
626 if (!UseNode->isMachineOpcode()) | |
627 return ItinData->getOperandCycle(DefClass, DefIdx); | |
628 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); | |
629 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | |
630 } | |
631 | |
632 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | |
633 SDNode *N) const { | |
634 if (!ItinData || ItinData->isEmpty()) | |
635 return 1; | |
636 | |
637 if (!N->isMachineOpcode()) | |
638 return 1; | |
639 | |
640 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); | |
641 } | |
642 | |
643 //===----------------------------------------------------------------------===// | |
644 // MachineInstr latency interface. | |
645 //===----------------------------------------------------------------------===// | |
646 | |
647 unsigned | |
648 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | |
649 const MachineInstr *MI) const { | |
650 if (!ItinData || ItinData->isEmpty()) | |
651 return 1; | |
652 | |
653 unsigned Class = MI->getDesc().getSchedClass(); | |
654 int UOps = ItinData->Itineraries[Class].NumMicroOps; | |
655 if (UOps >= 0) | |
656 return UOps; | |
657 | |
658 // The # of u-ops is dynamically determined. The specific target should | |
659 // override this function to return the right number. | |
660 return 1; | |
661 } | |
662 | |
663 /// Return the default expected latency for a def based on it's opcode. | |
664 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel, | |
665 const MachineInstr *DefMI) const { | |
666 if (DefMI->isTransient()) | |
667 return 0; | |
668 if (DefMI->mayLoad()) | |
669 return SchedModel->LoadLatency; | |
670 if (isHighLatencyDef(DefMI->getOpcode())) | |
671 return SchedModel->HighLatency; | |
672 return 1; | |
673 } | |
674 | |
675 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { | |
676 return 0; | |
677 } | |
678 | |
679 unsigned TargetInstrInfo:: | |
680 getInstrLatency(const InstrItineraryData *ItinData, | |
681 const MachineInstr *MI, | |
682 unsigned *PredCost) const { | |
683 // Default to one cycle for no itinerary. However, an "empty" itinerary may | |
684 // still have a MinLatency property, which getStageLatency checks. | |
685 if (!ItinData) | |
686 return MI->mayLoad() ? 2 : 1; | |
687 | |
688 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); | |
689 } | |
690 | |
691 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, | |
692 const MachineInstr *DefMI, | |
693 unsigned DefIdx) const { | |
694 if (!ItinData || ItinData->isEmpty()) | |
695 return false; | |
696 | |
697 unsigned DefClass = DefMI->getDesc().getSchedClass(); | |
698 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | |
699 return (DefCycle != -1 && DefCycle <= 1); | |
700 } | |
701 | |
702 /// Both DefMI and UseMI must be valid. By default, call directly to the | |
703 /// itinerary. This may be overriden by the target. | |
704 int TargetInstrInfo:: | |
705 getOperandLatency(const InstrItineraryData *ItinData, | |
706 const MachineInstr *DefMI, unsigned DefIdx, | |
707 const MachineInstr *UseMI, unsigned UseIdx) const { | |
708 unsigned DefClass = DefMI->getDesc().getSchedClass(); | |
709 unsigned UseClass = UseMI->getDesc().getSchedClass(); | |
710 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | |
711 } | |
712 | |
713 /// If we can determine the operand latency from the def only, without itinerary | |
714 /// lookup, do so. Otherwise return -1. | |
715 int TargetInstrInfo::computeDefOperandLatency( | |
716 const InstrItineraryData *ItinData, | |
717 const MachineInstr *DefMI) const { | |
718 | |
719 // Let the target hook getInstrLatency handle missing itineraries. | |
720 if (!ItinData) | |
721 return getInstrLatency(ItinData, DefMI); | |
722 | |
723 if(ItinData->isEmpty()) | |
724 return defaultDefLatency(ItinData->SchedModel, DefMI); | |
725 | |
726 // ...operand lookup required | |
727 return -1; | |
728 } | |
729 | |
730 /// computeOperandLatency - Compute and return the latency of the given data | |
731 /// dependent def and use when the operand indices are already known. UseMI may | |
732 /// be NULL for an unknown use. | |
733 /// | |
734 /// FindMin may be set to get the minimum vs. expected latency. Minimum | |
735 /// latency is used for scheduling groups, while expected latency is for | |
736 /// instruction cost and critical path. | |
737 /// | |
738 /// Depending on the subtarget's itinerary properties, this may or may not need | |
739 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or | |
740 /// UseIdx to compute min latency. | |
741 unsigned TargetInstrInfo:: | |
742 computeOperandLatency(const InstrItineraryData *ItinData, | |
743 const MachineInstr *DefMI, unsigned DefIdx, | |
744 const MachineInstr *UseMI, unsigned UseIdx) const { | |
745 | |
746 int DefLatency = computeDefOperandLatency(ItinData, DefMI); | |
747 if (DefLatency >= 0) | |
748 return DefLatency; | |
749 | |
750 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); | |
751 | |
752 int OperLatency = 0; | |
753 if (UseMI) | |
754 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); | |
755 else { | |
756 unsigned DefClass = DefMI->getDesc().getSchedClass(); | |
757 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); | |
758 } | |
759 if (OperLatency >= 0) | |
760 return OperLatency; | |
761 | |
762 // No operand latency was found. | |
763 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); | |
764 | |
765 // Expected latency is the max of the stage latency and itinerary props. | |
766 InstrLatency = std::max(InstrLatency, | |
767 defaultDefLatency(ItinData->SchedModel, DefMI)); | |
768 return InstrLatency; | |
769 } |