comparison lib/CodeGen/TargetLoweringBase.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children e4204d083e25
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 using namespace llvm;
35
36 /// InitLibcallNames - Set default libcall names.
37 ///
38 static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
39 Names[RTLIB::SHL_I16] = "__ashlhi3";
40 Names[RTLIB::SHL_I32] = "__ashlsi3";
41 Names[RTLIB::SHL_I64] = "__ashldi3";
42 Names[RTLIB::SHL_I128] = "__ashlti3";
43 Names[RTLIB::SRL_I16] = "__lshrhi3";
44 Names[RTLIB::SRL_I32] = "__lshrsi3";
45 Names[RTLIB::SRL_I64] = "__lshrdi3";
46 Names[RTLIB::SRL_I128] = "__lshrti3";
47 Names[RTLIB::SRA_I16] = "__ashrhi3";
48 Names[RTLIB::SRA_I32] = "__ashrsi3";
49 Names[RTLIB::SRA_I64] = "__ashrdi3";
50 Names[RTLIB::SRA_I128] = "__ashrti3";
51 Names[RTLIB::MUL_I8] = "__mulqi3";
52 Names[RTLIB::MUL_I16] = "__mulhi3";
53 Names[RTLIB::MUL_I32] = "__mulsi3";
54 Names[RTLIB::MUL_I64] = "__muldi3";
55 Names[RTLIB::MUL_I128] = "__multi3";
56 Names[RTLIB::MULO_I32] = "__mulosi4";
57 Names[RTLIB::MULO_I64] = "__mulodi4";
58 Names[RTLIB::MULO_I128] = "__muloti4";
59 Names[RTLIB::SDIV_I8] = "__divqi3";
60 Names[RTLIB::SDIV_I16] = "__divhi3";
61 Names[RTLIB::SDIV_I32] = "__divsi3";
62 Names[RTLIB::SDIV_I64] = "__divdi3";
63 Names[RTLIB::SDIV_I128] = "__divti3";
64 Names[RTLIB::UDIV_I8] = "__udivqi3";
65 Names[RTLIB::UDIV_I16] = "__udivhi3";
66 Names[RTLIB::UDIV_I32] = "__udivsi3";
67 Names[RTLIB::UDIV_I64] = "__udivdi3";
68 Names[RTLIB::UDIV_I128] = "__udivti3";
69 Names[RTLIB::SREM_I8] = "__modqi3";
70 Names[RTLIB::SREM_I16] = "__modhi3";
71 Names[RTLIB::SREM_I32] = "__modsi3";
72 Names[RTLIB::SREM_I64] = "__moddi3";
73 Names[RTLIB::SREM_I128] = "__modti3";
74 Names[RTLIB::UREM_I8] = "__umodqi3";
75 Names[RTLIB::UREM_I16] = "__umodhi3";
76 Names[RTLIB::UREM_I32] = "__umodsi3";
77 Names[RTLIB::UREM_I64] = "__umoddi3";
78 Names[RTLIB::UREM_I128] = "__umodti3";
79
80 // These are generally not available.
81 Names[RTLIB::SDIVREM_I8] = 0;
82 Names[RTLIB::SDIVREM_I16] = 0;
83 Names[RTLIB::SDIVREM_I32] = 0;
84 Names[RTLIB::SDIVREM_I64] = 0;
85 Names[RTLIB::SDIVREM_I128] = 0;
86 Names[RTLIB::UDIVREM_I8] = 0;
87 Names[RTLIB::UDIVREM_I16] = 0;
88 Names[RTLIB::UDIVREM_I32] = 0;
89 Names[RTLIB::UDIVREM_I64] = 0;
90 Names[RTLIB::UDIVREM_I128] = 0;
91
92 Names[RTLIB::NEG_I32] = "__negsi2";
93 Names[RTLIB::NEG_I64] = "__negdi2";
94 Names[RTLIB::ADD_F32] = "__addsf3";
95 Names[RTLIB::ADD_F64] = "__adddf3";
96 Names[RTLIB::ADD_F80] = "__addxf3";
97 Names[RTLIB::ADD_F128] = "__addtf3";
98 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
99 Names[RTLIB::SUB_F32] = "__subsf3";
100 Names[RTLIB::SUB_F64] = "__subdf3";
101 Names[RTLIB::SUB_F80] = "__subxf3";
102 Names[RTLIB::SUB_F128] = "__subtf3";
103 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104 Names[RTLIB::MUL_F32] = "__mulsf3";
105 Names[RTLIB::MUL_F64] = "__muldf3";
106 Names[RTLIB::MUL_F80] = "__mulxf3";
107 Names[RTLIB::MUL_F128] = "__multf3";
108 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109 Names[RTLIB::DIV_F32] = "__divsf3";
110 Names[RTLIB::DIV_F64] = "__divdf3";
111 Names[RTLIB::DIV_F80] = "__divxf3";
112 Names[RTLIB::DIV_F128] = "__divtf3";
113 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114 Names[RTLIB::REM_F32] = "fmodf";
115 Names[RTLIB::REM_F64] = "fmod";
116 Names[RTLIB::REM_F80] = "fmodl";
117 Names[RTLIB::REM_F128] = "fmodl";
118 Names[RTLIB::REM_PPCF128] = "fmodl";
119 Names[RTLIB::FMA_F32] = "fmaf";
120 Names[RTLIB::FMA_F64] = "fma";
121 Names[RTLIB::FMA_F80] = "fmal";
122 Names[RTLIB::FMA_F128] = "fmal";
123 Names[RTLIB::FMA_PPCF128] = "fmal";
124 Names[RTLIB::POWI_F32] = "__powisf2";
125 Names[RTLIB::POWI_F64] = "__powidf2";
126 Names[RTLIB::POWI_F80] = "__powixf2";
127 Names[RTLIB::POWI_F128] = "__powitf2";
128 Names[RTLIB::POWI_PPCF128] = "__powitf2";
129 Names[RTLIB::SQRT_F32] = "sqrtf";
130 Names[RTLIB::SQRT_F64] = "sqrt";
131 Names[RTLIB::SQRT_F80] = "sqrtl";
132 Names[RTLIB::SQRT_F128] = "sqrtl";
133 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
134 Names[RTLIB::LOG_F32] = "logf";
135 Names[RTLIB::LOG_F64] = "log";
136 Names[RTLIB::LOG_F80] = "logl";
137 Names[RTLIB::LOG_F128] = "logl";
138 Names[RTLIB::LOG_PPCF128] = "logl";
139 Names[RTLIB::LOG2_F32] = "log2f";
140 Names[RTLIB::LOG2_F64] = "log2";
141 Names[RTLIB::LOG2_F80] = "log2l";
142 Names[RTLIB::LOG2_F128] = "log2l";
143 Names[RTLIB::LOG2_PPCF128] = "log2l";
144 Names[RTLIB::LOG10_F32] = "log10f";
145 Names[RTLIB::LOG10_F64] = "log10";
146 Names[RTLIB::LOG10_F80] = "log10l";
147 Names[RTLIB::LOG10_F128] = "log10l";
148 Names[RTLIB::LOG10_PPCF128] = "log10l";
149 Names[RTLIB::EXP_F32] = "expf";
150 Names[RTLIB::EXP_F64] = "exp";
151 Names[RTLIB::EXP_F80] = "expl";
152 Names[RTLIB::EXP_F128] = "expl";
153 Names[RTLIB::EXP_PPCF128] = "expl";
154 Names[RTLIB::EXP2_F32] = "exp2f";
155 Names[RTLIB::EXP2_F64] = "exp2";
156 Names[RTLIB::EXP2_F80] = "exp2l";
157 Names[RTLIB::EXP2_F128] = "exp2l";
158 Names[RTLIB::EXP2_PPCF128] = "exp2l";
159 Names[RTLIB::SIN_F32] = "sinf";
160 Names[RTLIB::SIN_F64] = "sin";
161 Names[RTLIB::SIN_F80] = "sinl";
162 Names[RTLIB::SIN_F128] = "sinl";
163 Names[RTLIB::SIN_PPCF128] = "sinl";
164 Names[RTLIB::COS_F32] = "cosf";
165 Names[RTLIB::COS_F64] = "cos";
166 Names[RTLIB::COS_F80] = "cosl";
167 Names[RTLIB::COS_F128] = "cosl";
168 Names[RTLIB::COS_PPCF128] = "cosl";
169 Names[RTLIB::POW_F32] = "powf";
170 Names[RTLIB::POW_F64] = "pow";
171 Names[RTLIB::POW_F80] = "powl";
172 Names[RTLIB::POW_F128] = "powl";
173 Names[RTLIB::POW_PPCF128] = "powl";
174 Names[RTLIB::CEIL_F32] = "ceilf";
175 Names[RTLIB::CEIL_F64] = "ceil";
176 Names[RTLIB::CEIL_F80] = "ceill";
177 Names[RTLIB::CEIL_F128] = "ceill";
178 Names[RTLIB::CEIL_PPCF128] = "ceill";
179 Names[RTLIB::TRUNC_F32] = "truncf";
180 Names[RTLIB::TRUNC_F64] = "trunc";
181 Names[RTLIB::TRUNC_F80] = "truncl";
182 Names[RTLIB::TRUNC_F128] = "truncl";
183 Names[RTLIB::TRUNC_PPCF128] = "truncl";
184 Names[RTLIB::RINT_F32] = "rintf";
185 Names[RTLIB::RINT_F64] = "rint";
186 Names[RTLIB::RINT_F80] = "rintl";
187 Names[RTLIB::RINT_F128] = "rintl";
188 Names[RTLIB::RINT_PPCF128] = "rintl";
189 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
190 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
191 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
192 Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
193 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
194 Names[RTLIB::ROUND_F32] = "roundf";
195 Names[RTLIB::ROUND_F64] = "round";
196 Names[RTLIB::ROUND_F80] = "roundl";
197 Names[RTLIB::ROUND_F128] = "roundl";
198 Names[RTLIB::ROUND_PPCF128] = "roundl";
199 Names[RTLIB::FLOOR_F32] = "floorf";
200 Names[RTLIB::FLOOR_F64] = "floor";
201 Names[RTLIB::FLOOR_F80] = "floorl";
202 Names[RTLIB::FLOOR_F128] = "floorl";
203 Names[RTLIB::FLOOR_PPCF128] = "floorl";
204 Names[RTLIB::COPYSIGN_F32] = "copysignf";
205 Names[RTLIB::COPYSIGN_F64] = "copysign";
206 Names[RTLIB::COPYSIGN_F80] = "copysignl";
207 Names[RTLIB::COPYSIGN_F128] = "copysignl";
208 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
209 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
210 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
211 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
212 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
213 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
214 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
215 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
216 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
217 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
218 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
219 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
220 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
221 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
222 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
223 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
224 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
225 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
226 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
227 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
228 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
229 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
230 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
231 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
232 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
233 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
234 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
235 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
236 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
237 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
238 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
239 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
240 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
241 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
242 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
243 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
244 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
245 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
246 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
247 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
248 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
249 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
250 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
251 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
252 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
253 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
254 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
255 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
256 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
257 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
258 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
259 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
260 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
261 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
262 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
263 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
264 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
265 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
266 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
267 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
268 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
269 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
270 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
271 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
272 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
273 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
274 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
275 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
276 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
277 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
278 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
279 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
280 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
281 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
282 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
283 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
284 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
285 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
286 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
287 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
288 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
289 Names[RTLIB::OEQ_F32] = "__eqsf2";
290 Names[RTLIB::OEQ_F64] = "__eqdf2";
291 Names[RTLIB::OEQ_F128] = "__eqtf2";
292 Names[RTLIB::UNE_F32] = "__nesf2";
293 Names[RTLIB::UNE_F64] = "__nedf2";
294 Names[RTLIB::UNE_F128] = "__netf2";
295 Names[RTLIB::OGE_F32] = "__gesf2";
296 Names[RTLIB::OGE_F64] = "__gedf2";
297 Names[RTLIB::OGE_F128] = "__getf2";
298 Names[RTLIB::OLT_F32] = "__ltsf2";
299 Names[RTLIB::OLT_F64] = "__ltdf2";
300 Names[RTLIB::OLT_F128] = "__lttf2";
301 Names[RTLIB::OLE_F32] = "__lesf2";
302 Names[RTLIB::OLE_F64] = "__ledf2";
303 Names[RTLIB::OLE_F128] = "__letf2";
304 Names[RTLIB::OGT_F32] = "__gtsf2";
305 Names[RTLIB::OGT_F64] = "__gtdf2";
306 Names[RTLIB::OGT_F128] = "__gttf2";
307 Names[RTLIB::UO_F32] = "__unordsf2";
308 Names[RTLIB::UO_F64] = "__unorddf2";
309 Names[RTLIB::UO_F128] = "__unordtf2";
310 Names[RTLIB::O_F32] = "__unordsf2";
311 Names[RTLIB::O_F64] = "__unorddf2";
312 Names[RTLIB::O_F128] = "__unordtf2";
313 Names[RTLIB::MEMCPY] = "memcpy";
314 Names[RTLIB::MEMMOVE] = "memmove";
315 Names[RTLIB::MEMSET] = "memset";
316 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
317 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
318 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
319 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
320 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
321 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
322 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
323 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
324 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
325 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
326 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
327 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
328 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
329 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
330 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
331 Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
332 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
333 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
334 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
335 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
336 Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
337 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
338 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
339 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
340 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
341 Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
342 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
343 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
344 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
345 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
346 Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
347 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
348 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
349 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
350 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
351 Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
352 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
353 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
354 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
355 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
356 Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
357 Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
358 Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
359 Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
360 Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
361 Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
362 Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
363 Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
364 Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
365 Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
366 Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
367 Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
368 Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
369 Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
370 Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
371 Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
372 Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
373 Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
374 Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
375 Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
376 Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
377
378 if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
379 Names[RTLIB::SINCOS_F32] = "sincosf";
380 Names[RTLIB::SINCOS_F64] = "sincos";
381 Names[RTLIB::SINCOS_F80] = "sincosl";
382 Names[RTLIB::SINCOS_F128] = "sincosl";
383 Names[RTLIB::SINCOS_PPCF128] = "sincosl";
384 } else {
385 // These are generally not available.
386 Names[RTLIB::SINCOS_F32] = 0;
387 Names[RTLIB::SINCOS_F64] = 0;
388 Names[RTLIB::SINCOS_F80] = 0;
389 Names[RTLIB::SINCOS_F128] = 0;
390 Names[RTLIB::SINCOS_PPCF128] = 0;
391 }
392
393 if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) {
394 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
395 } else {
396 // These are generally not available.
397 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0;
398 }
399 }
400
401 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
402 ///
403 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
404 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
405 CCs[i] = CallingConv::C;
406 }
407 }
408
409 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
410 /// UNKNOWN_LIBCALL if there is none.
411 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
412 if (OpVT == MVT::f32) {
413 if (RetVT == MVT::f64)
414 return FPEXT_F32_F64;
415 if (RetVT == MVT::f128)
416 return FPEXT_F32_F128;
417 } else if (OpVT == MVT::f64) {
418 if (RetVT == MVT::f128)
419 return FPEXT_F64_F128;
420 }
421
422 return UNKNOWN_LIBCALL;
423 }
424
425 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
426 /// UNKNOWN_LIBCALL if there is none.
427 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
428 if (RetVT == MVT::f32) {
429 if (OpVT == MVT::f64)
430 return FPROUND_F64_F32;
431 if (OpVT == MVT::f80)
432 return FPROUND_F80_F32;
433 if (OpVT == MVT::f128)
434 return FPROUND_F128_F32;
435 if (OpVT == MVT::ppcf128)
436 return FPROUND_PPCF128_F32;
437 } else if (RetVT == MVT::f64) {
438 if (OpVT == MVT::f80)
439 return FPROUND_F80_F64;
440 if (OpVT == MVT::f128)
441 return FPROUND_F128_F64;
442 if (OpVT == MVT::ppcf128)
443 return FPROUND_PPCF128_F64;
444 }
445
446 return UNKNOWN_LIBCALL;
447 }
448
449 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
450 /// UNKNOWN_LIBCALL if there is none.
451 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
452 if (OpVT == MVT::f32) {
453 if (RetVT == MVT::i8)
454 return FPTOSINT_F32_I8;
455 if (RetVT == MVT::i16)
456 return FPTOSINT_F32_I16;
457 if (RetVT == MVT::i32)
458 return FPTOSINT_F32_I32;
459 if (RetVT == MVT::i64)
460 return FPTOSINT_F32_I64;
461 if (RetVT == MVT::i128)
462 return FPTOSINT_F32_I128;
463 } else if (OpVT == MVT::f64) {
464 if (RetVT == MVT::i8)
465 return FPTOSINT_F64_I8;
466 if (RetVT == MVT::i16)
467 return FPTOSINT_F64_I16;
468 if (RetVT == MVT::i32)
469 return FPTOSINT_F64_I32;
470 if (RetVT == MVT::i64)
471 return FPTOSINT_F64_I64;
472 if (RetVT == MVT::i128)
473 return FPTOSINT_F64_I128;
474 } else if (OpVT == MVT::f80) {
475 if (RetVT == MVT::i32)
476 return FPTOSINT_F80_I32;
477 if (RetVT == MVT::i64)
478 return FPTOSINT_F80_I64;
479 if (RetVT == MVT::i128)
480 return FPTOSINT_F80_I128;
481 } else if (OpVT == MVT::f128) {
482 if (RetVT == MVT::i32)
483 return FPTOSINT_F128_I32;
484 if (RetVT == MVT::i64)
485 return FPTOSINT_F128_I64;
486 if (RetVT == MVT::i128)
487 return FPTOSINT_F128_I128;
488 } else if (OpVT == MVT::ppcf128) {
489 if (RetVT == MVT::i32)
490 return FPTOSINT_PPCF128_I32;
491 if (RetVT == MVT::i64)
492 return FPTOSINT_PPCF128_I64;
493 if (RetVT == MVT::i128)
494 return FPTOSINT_PPCF128_I128;
495 }
496 return UNKNOWN_LIBCALL;
497 }
498
499 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
500 /// UNKNOWN_LIBCALL if there is none.
501 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
502 if (OpVT == MVT::f32) {
503 if (RetVT == MVT::i8)
504 return FPTOUINT_F32_I8;
505 if (RetVT == MVT::i16)
506 return FPTOUINT_F32_I16;
507 if (RetVT == MVT::i32)
508 return FPTOUINT_F32_I32;
509 if (RetVT == MVT::i64)
510 return FPTOUINT_F32_I64;
511 if (RetVT == MVT::i128)
512 return FPTOUINT_F32_I128;
513 } else if (OpVT == MVT::f64) {
514 if (RetVT == MVT::i8)
515 return FPTOUINT_F64_I8;
516 if (RetVT == MVT::i16)
517 return FPTOUINT_F64_I16;
518 if (RetVT == MVT::i32)
519 return FPTOUINT_F64_I32;
520 if (RetVT == MVT::i64)
521 return FPTOUINT_F64_I64;
522 if (RetVT == MVT::i128)
523 return FPTOUINT_F64_I128;
524 } else if (OpVT == MVT::f80) {
525 if (RetVT == MVT::i32)
526 return FPTOUINT_F80_I32;
527 if (RetVT == MVT::i64)
528 return FPTOUINT_F80_I64;
529 if (RetVT == MVT::i128)
530 return FPTOUINT_F80_I128;
531 } else if (OpVT == MVT::f128) {
532 if (RetVT == MVT::i32)
533 return FPTOUINT_F128_I32;
534 if (RetVT == MVT::i64)
535 return FPTOUINT_F128_I64;
536 if (RetVT == MVT::i128)
537 return FPTOUINT_F128_I128;
538 } else if (OpVT == MVT::ppcf128) {
539 if (RetVT == MVT::i32)
540 return FPTOUINT_PPCF128_I32;
541 if (RetVT == MVT::i64)
542 return FPTOUINT_PPCF128_I64;
543 if (RetVT == MVT::i128)
544 return FPTOUINT_PPCF128_I128;
545 }
546 return UNKNOWN_LIBCALL;
547 }
548
549 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
550 /// UNKNOWN_LIBCALL if there is none.
551 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
552 if (OpVT == MVT::i32) {
553 if (RetVT == MVT::f32)
554 return SINTTOFP_I32_F32;
555 if (RetVT == MVT::f64)
556 return SINTTOFP_I32_F64;
557 if (RetVT == MVT::f80)
558 return SINTTOFP_I32_F80;
559 if (RetVT == MVT::f128)
560 return SINTTOFP_I32_F128;
561 if (RetVT == MVT::ppcf128)
562 return SINTTOFP_I32_PPCF128;
563 } else if (OpVT == MVT::i64) {
564 if (RetVT == MVT::f32)
565 return SINTTOFP_I64_F32;
566 if (RetVT == MVT::f64)
567 return SINTTOFP_I64_F64;
568 if (RetVT == MVT::f80)
569 return SINTTOFP_I64_F80;
570 if (RetVT == MVT::f128)
571 return SINTTOFP_I64_F128;
572 if (RetVT == MVT::ppcf128)
573 return SINTTOFP_I64_PPCF128;
574 } else if (OpVT == MVT::i128) {
575 if (RetVT == MVT::f32)
576 return SINTTOFP_I128_F32;
577 if (RetVT == MVT::f64)
578 return SINTTOFP_I128_F64;
579 if (RetVT == MVT::f80)
580 return SINTTOFP_I128_F80;
581 if (RetVT == MVT::f128)
582 return SINTTOFP_I128_F128;
583 if (RetVT == MVT::ppcf128)
584 return SINTTOFP_I128_PPCF128;
585 }
586 return UNKNOWN_LIBCALL;
587 }
588
589 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
590 /// UNKNOWN_LIBCALL if there is none.
591 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
592 if (OpVT == MVT::i32) {
593 if (RetVT == MVT::f32)
594 return UINTTOFP_I32_F32;
595 if (RetVT == MVT::f64)
596 return UINTTOFP_I32_F64;
597 if (RetVT == MVT::f80)
598 return UINTTOFP_I32_F80;
599 if (RetVT == MVT::f128)
600 return UINTTOFP_I32_F128;
601 if (RetVT == MVT::ppcf128)
602 return UINTTOFP_I32_PPCF128;
603 } else if (OpVT == MVT::i64) {
604 if (RetVT == MVT::f32)
605 return UINTTOFP_I64_F32;
606 if (RetVT == MVT::f64)
607 return UINTTOFP_I64_F64;
608 if (RetVT == MVT::f80)
609 return UINTTOFP_I64_F80;
610 if (RetVT == MVT::f128)
611 return UINTTOFP_I64_F128;
612 if (RetVT == MVT::ppcf128)
613 return UINTTOFP_I64_PPCF128;
614 } else if (OpVT == MVT::i128) {
615 if (RetVT == MVT::f32)
616 return UINTTOFP_I128_F32;
617 if (RetVT == MVT::f64)
618 return UINTTOFP_I128_F64;
619 if (RetVT == MVT::f80)
620 return UINTTOFP_I128_F80;
621 if (RetVT == MVT::f128)
622 return UINTTOFP_I128_F128;
623 if (RetVT == MVT::ppcf128)
624 return UINTTOFP_I128_PPCF128;
625 }
626 return UNKNOWN_LIBCALL;
627 }
628
629 /// InitCmpLibcallCCs - Set default comparison libcall CC.
630 ///
631 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
632 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
633 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
634 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
635 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
636 CCs[RTLIB::UNE_F32] = ISD::SETNE;
637 CCs[RTLIB::UNE_F64] = ISD::SETNE;
638 CCs[RTLIB::UNE_F128] = ISD::SETNE;
639 CCs[RTLIB::OGE_F32] = ISD::SETGE;
640 CCs[RTLIB::OGE_F64] = ISD::SETGE;
641 CCs[RTLIB::OGE_F128] = ISD::SETGE;
642 CCs[RTLIB::OLT_F32] = ISD::SETLT;
643 CCs[RTLIB::OLT_F64] = ISD::SETLT;
644 CCs[RTLIB::OLT_F128] = ISD::SETLT;
645 CCs[RTLIB::OLE_F32] = ISD::SETLE;
646 CCs[RTLIB::OLE_F64] = ISD::SETLE;
647 CCs[RTLIB::OLE_F128] = ISD::SETLE;
648 CCs[RTLIB::OGT_F32] = ISD::SETGT;
649 CCs[RTLIB::OGT_F64] = ISD::SETGT;
650 CCs[RTLIB::OGT_F128] = ISD::SETGT;
651 CCs[RTLIB::UO_F32] = ISD::SETNE;
652 CCs[RTLIB::UO_F64] = ISD::SETNE;
653 CCs[RTLIB::UO_F128] = ISD::SETNE;
654 CCs[RTLIB::O_F32] = ISD::SETEQ;
655 CCs[RTLIB::O_F64] = ISD::SETEQ;
656 CCs[RTLIB::O_F128] = ISD::SETEQ;
657 }
658
659 /// NOTE: The constructor takes ownership of TLOF.
660 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
661 const TargetLoweringObjectFile *tlof)
662 : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
663 initActions();
664
665 // Perform these initializations only once.
666 IsLittleEndian = TD->isLittleEndian();
667 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
668 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
669 = MaxStoresPerMemmoveOptSize = 4;
670 UseUnderscoreSetJmp = false;
671 UseUnderscoreLongJmp = false;
672 SelectIsExpensive = false;
673 IntDivIsCheap = false;
674 Pow2DivIsCheap = false;
675 JumpIsExpensive = false;
676 PredictableSelectIsExpensive = false;
677 StackPointerRegisterToSaveRestore = 0;
678 ExceptionPointerRegister = 0;
679 ExceptionSelectorRegister = 0;
680 BooleanContents = UndefinedBooleanContent;
681 BooleanVectorContents = UndefinedBooleanContent;
682 SchedPreferenceInfo = Sched::ILP;
683 JumpBufSize = 0;
684 JumpBufAlignment = 0;
685 MinFunctionAlignment = 0;
686 PrefFunctionAlignment = 0;
687 PrefLoopAlignment = 0;
688 MinStackArgumentAlignment = 1;
689 InsertFencesForAtomic = false;
690 SupportJumpTables = true;
691 MinimumJumpTableEntries = 4;
692
693 InitLibcallNames(LibcallRoutineNames, TM);
694 InitCmpLibcallCCs(CmpLibcallCCs);
695 InitLibcallCallingConvs(LibcallCallingConvs);
696 }
697
698 TargetLoweringBase::~TargetLoweringBase() {
699 delete &TLOF;
700 }
701
702 void TargetLoweringBase::initActions() {
703 // All operations default to being supported.
704 memset(OpActions, 0, sizeof(OpActions));
705 memset(LoadExtActions, 0, sizeof(LoadExtActions));
706 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
707 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
708 memset(CondCodeActions, 0, sizeof(CondCodeActions));
709 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
710 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
711
712 // Set default actions for various operations.
713 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
714 // Default all indexed load / store to expand.
715 for (unsigned IM = (unsigned)ISD::PRE_INC;
716 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
717 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
718 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
719 }
720
721 // These operations default to expand.
722 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
724
725 // These library functions default to expand.
726 setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
727
728 // These operations default to expand for vector types.
729 if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
730 VT <= MVT::LAST_VECTOR_VALUETYPE)
731 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
732 }
733
734 // Most targets ignore the @llvm.prefetch intrinsic.
735 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
736
737 // ConstantFP nodes default to expand. Targets can either change this to
738 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
739 // to optimize expansions for certain constants.
740 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
741 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
742 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
743 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
744 setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
745
746 // These library functions default to expand.
747 setOperationAction(ISD::FLOG , MVT::f16, Expand);
748 setOperationAction(ISD::FLOG2, MVT::f16, Expand);
749 setOperationAction(ISD::FLOG10, MVT::f16, Expand);
750 setOperationAction(ISD::FEXP , MVT::f16, Expand);
751 setOperationAction(ISD::FEXP2, MVT::f16, Expand);
752 setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
753 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
754 setOperationAction(ISD::FCEIL, MVT::f16, Expand);
755 setOperationAction(ISD::FRINT, MVT::f16, Expand);
756 setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
757 setOperationAction(ISD::FLOG , MVT::f32, Expand);
758 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
759 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
760 setOperationAction(ISD::FEXP , MVT::f32, Expand);
761 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
762 setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
763 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
764 setOperationAction(ISD::FCEIL, MVT::f32, Expand);
765 setOperationAction(ISD::FRINT, MVT::f32, Expand);
766 setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
767 setOperationAction(ISD::FLOG , MVT::f64, Expand);
768 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
769 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
770 setOperationAction(ISD::FEXP , MVT::f64, Expand);
771 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
772 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
773 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
774 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
775 setOperationAction(ISD::FRINT, MVT::f64, Expand);
776 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
777 setOperationAction(ISD::FLOG , MVT::f128, Expand);
778 setOperationAction(ISD::FLOG2, MVT::f128, Expand);
779 setOperationAction(ISD::FLOG10, MVT::f128, Expand);
780 setOperationAction(ISD::FEXP , MVT::f128, Expand);
781 setOperationAction(ISD::FEXP2, MVT::f128, Expand);
782 setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
783 setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
784 setOperationAction(ISD::FCEIL, MVT::f128, Expand);
785 setOperationAction(ISD::FRINT, MVT::f128, Expand);
786 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
787
788 // Default ISD::TRAP to expand (which turns it into abort).
789 setOperationAction(ISD::TRAP, MVT::Other, Expand);
790
791 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
792 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
793 //
794 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
795 }
796
797 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
798 return MVT::getIntegerVT(getPointerSizeInBits(AS));
799 }
800
801 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
802 return TD->getPointerSizeInBits(AS);
803 }
804
805 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
806 assert(Ty->isPointerTy());
807 return getPointerSizeInBits(Ty->getPointerAddressSpace());
808 }
809
810 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
811 return MVT::getIntegerVT(8*TD->getPointerSize(0));
812 }
813
814 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
815 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
816 if (LHSTy.isVector())
817 return LHSTy;
818 return getScalarShiftAmountTy(LHSTy);
819 }
820
821 /// canOpTrap - Returns true if the operation can trap for the value type.
822 /// VT must be a legal type.
823 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
824 assert(isTypeLegal(VT));
825 switch (Op) {
826 default:
827 return false;
828 case ISD::FDIV:
829 case ISD::FREM:
830 case ISD::SDIV:
831 case ISD::UDIV:
832 case ISD::SREM:
833 case ISD::UREM:
834 return true;
835 }
836 }
837
838
839 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
840 unsigned &NumIntermediates,
841 MVT &RegisterVT,
842 TargetLoweringBase *TLI) {
843 // Figure out the right, legal destination reg to copy into.
844 unsigned NumElts = VT.getVectorNumElements();
845 MVT EltTy = VT.getVectorElementType();
846
847 unsigned NumVectorRegs = 1;
848
849 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
850 // could break down into LHS/RHS like LegalizeDAG does.
851 if (!isPowerOf2_32(NumElts)) {
852 NumVectorRegs = NumElts;
853 NumElts = 1;
854 }
855
856 // Divide the input until we get to a supported size. This will always
857 // end with a scalar if the target doesn't support vectors.
858 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
859 NumElts >>= 1;
860 NumVectorRegs <<= 1;
861 }
862
863 NumIntermediates = NumVectorRegs;
864
865 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
866 if (!TLI->isTypeLegal(NewVT))
867 NewVT = EltTy;
868 IntermediateVT = NewVT;
869
870 unsigned NewVTSize = NewVT.getSizeInBits();
871
872 // Convert sizes such as i33 to i64.
873 if (!isPowerOf2_32(NewVTSize))
874 NewVTSize = NextPowerOf2(NewVTSize);
875
876 MVT DestVT = TLI->getRegisterType(NewVT);
877 RegisterVT = DestVT;
878 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
879 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
880
881 // Otherwise, promotion or legal types use the same number of registers as
882 // the vector decimated to the appropriate level.
883 return NumVectorRegs;
884 }
885
886 /// isLegalRC - Return true if the value types that can be represented by the
887 /// specified register class are all legal.
888 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
889 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
890 I != E; ++I) {
891 if (isTypeLegal(*I))
892 return true;
893 }
894 return false;
895 }
896
897 /// findRepresentativeClass - Return the largest legal super-reg register class
898 /// of the register class for the specified type and its associated "cost".
899 std::pair<const TargetRegisterClass*, uint8_t>
900 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
901 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
902 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
903 if (!RC)
904 return std::make_pair(RC, 0);
905
906 // Compute the set of all super-register classes.
907 BitVector SuperRegRC(TRI->getNumRegClasses());
908 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
909 SuperRegRC.setBitsInMask(RCI.getMask());
910
911 // Find the first legal register class with the largest spill size.
912 const TargetRegisterClass *BestRC = RC;
913 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
914 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
915 // We want the largest possible spill size.
916 if (SuperRC->getSize() <= BestRC->getSize())
917 continue;
918 if (!isLegalRC(SuperRC))
919 continue;
920 BestRC = SuperRC;
921 }
922 return std::make_pair(BestRC, 1);
923 }
924
925 /// computeRegisterProperties - Once all of the register classes are added,
926 /// this allows us to compute derived properties we expose.
927 void TargetLoweringBase::computeRegisterProperties() {
928 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
929 "Too many value types for ValueTypeActions to hold!");
930
931 // Everything defaults to needing one register.
932 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
933 NumRegistersForVT[i] = 1;
934 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
935 }
936 // ...except isVoid, which doesn't need any registers.
937 NumRegistersForVT[MVT::isVoid] = 0;
938
939 // Find the largest integer register class.
940 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
941 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
942 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
943
944 // Every integer value type larger than this largest register takes twice as
945 // many registers to represent as the previous ValueType.
946 for (unsigned ExpandedReg = LargestIntReg + 1;
947 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
948 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
949 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
950 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
951 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
952 TypeExpandInteger);
953 }
954
955 // Inspect all of the ValueType's smaller than the largest integer
956 // register to see which ones need promotion.
957 unsigned LegalIntReg = LargestIntReg;
958 for (unsigned IntReg = LargestIntReg - 1;
959 IntReg >= (unsigned)MVT::i1; --IntReg) {
960 MVT IVT = (MVT::SimpleValueType)IntReg;
961 if (isTypeLegal(IVT)) {
962 LegalIntReg = IntReg;
963 } else {
964 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
965 (const MVT::SimpleValueType)LegalIntReg;
966 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
967 }
968 }
969
970 // ppcf128 type is really two f64's.
971 if (!isTypeLegal(MVT::ppcf128)) {
972 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
973 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
974 TransformToType[MVT::ppcf128] = MVT::f64;
975 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
976 }
977
978 // Decide how to handle f128. If the target does not have native f128 support,
979 // expand it to i128 and we will be generating soft float library calls.
980 if (!isTypeLegal(MVT::f128)) {
981 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
982 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
983 TransformToType[MVT::f128] = MVT::i128;
984 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
985 }
986
987 // Decide how to handle f64. If the target does not have native f64 support,
988 // expand it to i64 and we will be generating soft float library calls.
989 if (!isTypeLegal(MVT::f64)) {
990 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
991 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
992 TransformToType[MVT::f64] = MVT::i64;
993 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
994 }
995
996 // Decide how to handle f32. If the target does not have native support for
997 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
998 if (!isTypeLegal(MVT::f32)) {
999 if (isTypeLegal(MVT::f64)) {
1000 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
1001 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
1002 TransformToType[MVT::f32] = MVT::f64;
1003 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
1004 } else {
1005 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1006 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1007 TransformToType[MVT::f32] = MVT::i32;
1008 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1009 }
1010 }
1011
1012 // Loop over all of the vector value types to see which need transformations.
1013 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1014 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1015 MVT VT = (MVT::SimpleValueType)i;
1016 if (isTypeLegal(VT)) continue;
1017
1018 // Determine if there is a legal wider type. If so, we should promote to
1019 // that wider vector type.
1020 MVT EltVT = VT.getVectorElementType();
1021 unsigned NElts = VT.getVectorNumElements();
1022 if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
1023 bool IsLegalWiderType = false;
1024 // First try to promote the elements of integer vectors. If no legal
1025 // promotion was found, fallback to the widen-vector method.
1026 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1027 MVT SVT = (MVT::SimpleValueType)nVT;
1028 // Promote vectors of integers to vectors with the same number
1029 // of elements, with a wider element type.
1030 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1031 && SVT.getVectorNumElements() == NElts &&
1032 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
1033 TransformToType[i] = SVT;
1034 RegisterTypeForVT[i] = SVT;
1035 NumRegistersForVT[i] = 1;
1036 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1037 IsLegalWiderType = true;
1038 break;
1039 }
1040 }
1041
1042 if (IsLegalWiderType) continue;
1043
1044 // Try to widen the vector.
1045 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1046 MVT SVT = (MVT::SimpleValueType)nVT;
1047 if (SVT.getVectorElementType() == EltVT &&
1048 SVT.getVectorNumElements() > NElts &&
1049 isTypeLegal(SVT)) {
1050 TransformToType[i] = SVT;
1051 RegisterTypeForVT[i] = SVT;
1052 NumRegistersForVT[i] = 1;
1053 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1054 IsLegalWiderType = true;
1055 break;
1056 }
1057 }
1058 if (IsLegalWiderType) continue;
1059 }
1060
1061 MVT IntermediateVT;
1062 MVT RegisterVT;
1063 unsigned NumIntermediates;
1064 NumRegistersForVT[i] =
1065 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
1066 RegisterVT, this);
1067 RegisterTypeForVT[i] = RegisterVT;
1068
1069 MVT NVT = VT.getPow2VectorType();
1070 if (NVT == VT) {
1071 // Type is already a power of 2. The default action is to split.
1072 TransformToType[i] = MVT::Other;
1073 unsigned NumElts = VT.getVectorNumElements();
1074 ValueTypeActions.setTypeAction(VT,
1075 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
1076 } else {
1077 TransformToType[i] = NVT;
1078 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1079 }
1080 }
1081
1082 // Determine the 'representative' register class for each value type.
1083 // An representative register class is the largest (meaning one which is
1084 // not a sub-register class / subreg register class) legal register class for
1085 // a group of value types. For example, on i386, i8, i16, and i32
1086 // representative would be GR32; while on x86_64 it's GR64.
1087 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1088 const TargetRegisterClass* RRC;
1089 uint8_t Cost;
1090 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
1091 RepRegClassForVT[i] = RRC;
1092 RepRegClassCostForVT[i] = Cost;
1093 }
1094 }
1095
1096 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1097 assert(!VT.isVector() && "No default SetCC type for vectors!");
1098 return getPointerTy(0).SimpleTy;
1099 }
1100
1101 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1102 return MVT::i32; // return the default value
1103 }
1104
1105 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1106 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1107 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1108 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1109 ///
1110 /// This method returns the number of registers needed, and the VT for each
1111 /// register. It also returns the VT and quantity of the intermediate values
1112 /// before they are promoted/expanded.
1113 ///
1114 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1115 EVT &IntermediateVT,
1116 unsigned &NumIntermediates,
1117 MVT &RegisterVT) const {
1118 unsigned NumElts = VT.getVectorNumElements();
1119
1120 // If there is a wider vector type with the same element type as this one,
1121 // or a promoted vector type that has the same number of elements which
1122 // are wider, then we should convert to that legal vector type.
1123 // This handles things like <2 x float> -> <4 x float> and
1124 // <4 x i1> -> <4 x i32>.
1125 LegalizeTypeAction TA = getTypeAction(Context, VT);
1126 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1127 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1128 if (isTypeLegal(RegisterEVT)) {
1129 IntermediateVT = RegisterEVT;
1130 RegisterVT = RegisterEVT.getSimpleVT();
1131 NumIntermediates = 1;
1132 return 1;
1133 }
1134 }
1135
1136 // Figure out the right, legal destination reg to copy into.
1137 EVT EltTy = VT.getVectorElementType();
1138
1139 unsigned NumVectorRegs = 1;
1140
1141 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1142 // could break down into LHS/RHS like LegalizeDAG does.
1143 if (!isPowerOf2_32(NumElts)) {
1144 NumVectorRegs = NumElts;
1145 NumElts = 1;
1146 }
1147
1148 // Divide the input until we get to a supported size. This will always
1149 // end with a scalar if the target doesn't support vectors.
1150 while (NumElts > 1 && !isTypeLegal(
1151 EVT::getVectorVT(Context, EltTy, NumElts))) {
1152 NumElts >>= 1;
1153 NumVectorRegs <<= 1;
1154 }
1155
1156 NumIntermediates = NumVectorRegs;
1157
1158 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1159 if (!isTypeLegal(NewVT))
1160 NewVT = EltTy;
1161 IntermediateVT = NewVT;
1162
1163 MVT DestVT = getRegisterType(Context, NewVT);
1164 RegisterVT = DestVT;
1165 unsigned NewVTSize = NewVT.getSizeInBits();
1166
1167 // Convert sizes such as i33 to i64.
1168 if (!isPowerOf2_32(NewVTSize))
1169 NewVTSize = NextPowerOf2(NewVTSize);
1170
1171 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1172 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1173
1174 // Otherwise, promotion or legal types use the same number of registers as
1175 // the vector decimated to the appropriate level.
1176 return NumVectorRegs;
1177 }
1178
1179 /// Get the EVTs and ArgFlags collections that represent the legalized return
1180 /// type of the given function. This does not require a DAG or a return value,
1181 /// and is suitable for use before any DAGs for the function are constructed.
1182 /// TODO: Move this out of TargetLowering.cpp.
1183 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1184 SmallVectorImpl<ISD::OutputArg> &Outs,
1185 const TargetLowering &TLI) {
1186 SmallVector<EVT, 4> ValueVTs;
1187 ComputeValueVTs(TLI, ReturnType, ValueVTs);
1188 unsigned NumValues = ValueVTs.size();
1189 if (NumValues == 0) return;
1190
1191 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1192 EVT VT = ValueVTs[j];
1193 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1194
1195 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1196 ExtendKind = ISD::SIGN_EXTEND;
1197 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1198 ExtendKind = ISD::ZERO_EXTEND;
1199
1200 // FIXME: C calling convention requires the return type to be promoted to
1201 // at least 32-bit. But this is not necessary for non-C calling
1202 // conventions. The frontend should mark functions whose return values
1203 // require promoting with signext or zeroext attributes.
1204 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1205 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1206 if (VT.bitsLT(MinVT))
1207 VT = MinVT;
1208 }
1209
1210 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1211 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1212
1213 // 'inreg' on function refers to return value
1214 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1215 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1216 Flags.setInReg();
1217
1218 // Propagate extension type if any
1219 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1220 Flags.setSExt();
1221 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1222 Flags.setZExt();
1223
1224 for (unsigned i = 0; i < NumParts; ++i)
1225 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1226 }
1227 }
1228
1229 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1230 /// function arguments in the caller parameter area. This is the actual
1231 /// alignment, not its logarithm.
1232 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1233 return TD->getCallFrameTypeAlignment(Ty);
1234 }
1235
1236 //===----------------------------------------------------------------------===//
1237 // TargetTransformInfo Helpers
1238 //===----------------------------------------------------------------------===//
1239
1240 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1241 enum InstructionOpcodes {
1242 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1243 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1244 #include "llvm/IR/Instruction.def"
1245 };
1246 switch (static_cast<InstructionOpcodes>(Opcode)) {
1247 case Ret: return 0;
1248 case Br: return 0;
1249 case Switch: return 0;
1250 case IndirectBr: return 0;
1251 case Invoke: return 0;
1252 case Resume: return 0;
1253 case Unreachable: return 0;
1254 case Add: return ISD::ADD;
1255 case FAdd: return ISD::FADD;
1256 case Sub: return ISD::SUB;
1257 case FSub: return ISD::FSUB;
1258 case Mul: return ISD::MUL;
1259 case FMul: return ISD::FMUL;
1260 case UDiv: return ISD::UDIV;
1261 case SDiv: return ISD::UDIV;
1262 case FDiv: return ISD::FDIV;
1263 case URem: return ISD::UREM;
1264 case SRem: return ISD::SREM;
1265 case FRem: return ISD::FREM;
1266 case Shl: return ISD::SHL;
1267 case LShr: return ISD::SRL;
1268 case AShr: return ISD::SRA;
1269 case And: return ISD::AND;
1270 case Or: return ISD::OR;
1271 case Xor: return ISD::XOR;
1272 case Alloca: return 0;
1273 case Load: return ISD::LOAD;
1274 case Store: return ISD::STORE;
1275 case GetElementPtr: return 0;
1276 case Fence: return 0;
1277 case AtomicCmpXchg: return 0;
1278 case AtomicRMW: return 0;
1279 case Trunc: return ISD::TRUNCATE;
1280 case ZExt: return ISD::ZERO_EXTEND;
1281 case SExt: return ISD::SIGN_EXTEND;
1282 case FPToUI: return ISD::FP_TO_UINT;
1283 case FPToSI: return ISD::FP_TO_SINT;
1284 case UIToFP: return ISD::UINT_TO_FP;
1285 case SIToFP: return ISD::SINT_TO_FP;
1286 case FPTrunc: return ISD::FP_ROUND;
1287 case FPExt: return ISD::FP_EXTEND;
1288 case PtrToInt: return ISD::BITCAST;
1289 case IntToPtr: return ISD::BITCAST;
1290 case BitCast: return ISD::BITCAST;
1291 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1292 case ICmp: return ISD::SETCC;
1293 case FCmp: return ISD::SETCC;
1294 case PHI: return 0;
1295 case Call: return 0;
1296 case Select: return ISD::SELECT;
1297 case UserOp1: return 0;
1298 case UserOp2: return 0;
1299 case VAArg: return 0;
1300 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1301 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1302 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1303 case ExtractValue: return ISD::MERGE_VALUES;
1304 case InsertValue: return ISD::MERGE_VALUES;
1305 case LandingPad: return 0;
1306 }
1307
1308 llvm_unreachable("Unknown instruction type encountered!");
1309 }
1310
1311 std::pair<unsigned, MVT>
1312 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1313 LLVMContext &C = Ty->getContext();
1314 EVT MTy = getValueType(Ty);
1315
1316 unsigned Cost = 1;
1317 // We keep legalizing the type until we find a legal kind. We assume that
1318 // the only operation that costs anything is the split. After splitting
1319 // we need to handle two types.
1320 while (true) {
1321 LegalizeKind LK = getTypeConversion(C, MTy);
1322
1323 if (LK.first == TypeLegal)
1324 return std::make_pair(Cost, MTy.getSimpleVT());
1325
1326 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1327 Cost *= 2;
1328
1329 // Keep legalizing the type.
1330 MTy = LK.second;
1331 }
1332 }
1333
1334 //===----------------------------------------------------------------------===//
1335 // Loop Strength Reduction hooks
1336 //===----------------------------------------------------------------------===//
1337
1338 /// isLegalAddressingMode - Return true if the addressing mode represented
1339 /// by AM is legal for this target, for a load/store of the specified type.
1340 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1341 Type *Ty) const {
1342 // The default implementation of this implements a conservative RISCy, r+r and
1343 // r+i addr mode.
1344
1345 // Allows a sign-extended 16-bit immediate field.
1346 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1347 return false;
1348
1349 // No global is ever allowed as a base.
1350 if (AM.BaseGV)
1351 return false;
1352
1353 // Only support r+r,
1354 switch (AM.Scale) {
1355 case 0: // "r+i" or just "i", depending on HasBaseReg.
1356 break;
1357 case 1:
1358 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1359 return false;
1360 // Otherwise we have r+r or r+i.
1361 break;
1362 case 2:
1363 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1364 return false;
1365 // Allow 2*r as r+r.
1366 break;
1367 }
1368
1369 return true;
1370 }