Mercurial > hg > CbC > CbC_llvm
comparison lib/CodeGen/TargetLoweringBase.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | e4204d083e25 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This implements the TargetLoweringBase class. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "llvm/Target/TargetLowering.h" | |
15 #include "llvm/ADT/BitVector.h" | |
16 #include "llvm/ADT/STLExtras.h" | |
17 #include "llvm/ADT/Triple.h" | |
18 #include "llvm/CodeGen/Analysis.h" | |
19 #include "llvm/CodeGen/MachineFrameInfo.h" | |
20 #include "llvm/CodeGen/MachineFunction.h" | |
21 #include "llvm/CodeGen/MachineJumpTableInfo.h" | |
22 #include "llvm/IR/DataLayout.h" | |
23 #include "llvm/IR/DerivedTypes.h" | |
24 #include "llvm/IR/GlobalVariable.h" | |
25 #include "llvm/MC/MCAsmInfo.h" | |
26 #include "llvm/MC/MCExpr.h" | |
27 #include "llvm/Support/CommandLine.h" | |
28 #include "llvm/Support/ErrorHandling.h" | |
29 #include "llvm/Support/MathExtras.h" | |
30 #include "llvm/Target/TargetLoweringObjectFile.h" | |
31 #include "llvm/Target/TargetMachine.h" | |
32 #include "llvm/Target/TargetRegisterInfo.h" | |
33 #include <cctype> | |
34 using namespace llvm; | |
35 | |
36 /// InitLibcallNames - Set default libcall names. | |
37 /// | |
38 static void InitLibcallNames(const char **Names, const TargetMachine &TM) { | |
39 Names[RTLIB::SHL_I16] = "__ashlhi3"; | |
40 Names[RTLIB::SHL_I32] = "__ashlsi3"; | |
41 Names[RTLIB::SHL_I64] = "__ashldi3"; | |
42 Names[RTLIB::SHL_I128] = "__ashlti3"; | |
43 Names[RTLIB::SRL_I16] = "__lshrhi3"; | |
44 Names[RTLIB::SRL_I32] = "__lshrsi3"; | |
45 Names[RTLIB::SRL_I64] = "__lshrdi3"; | |
46 Names[RTLIB::SRL_I128] = "__lshrti3"; | |
47 Names[RTLIB::SRA_I16] = "__ashrhi3"; | |
48 Names[RTLIB::SRA_I32] = "__ashrsi3"; | |
49 Names[RTLIB::SRA_I64] = "__ashrdi3"; | |
50 Names[RTLIB::SRA_I128] = "__ashrti3"; | |
51 Names[RTLIB::MUL_I8] = "__mulqi3"; | |
52 Names[RTLIB::MUL_I16] = "__mulhi3"; | |
53 Names[RTLIB::MUL_I32] = "__mulsi3"; | |
54 Names[RTLIB::MUL_I64] = "__muldi3"; | |
55 Names[RTLIB::MUL_I128] = "__multi3"; | |
56 Names[RTLIB::MULO_I32] = "__mulosi4"; | |
57 Names[RTLIB::MULO_I64] = "__mulodi4"; | |
58 Names[RTLIB::MULO_I128] = "__muloti4"; | |
59 Names[RTLIB::SDIV_I8] = "__divqi3"; | |
60 Names[RTLIB::SDIV_I16] = "__divhi3"; | |
61 Names[RTLIB::SDIV_I32] = "__divsi3"; | |
62 Names[RTLIB::SDIV_I64] = "__divdi3"; | |
63 Names[RTLIB::SDIV_I128] = "__divti3"; | |
64 Names[RTLIB::UDIV_I8] = "__udivqi3"; | |
65 Names[RTLIB::UDIV_I16] = "__udivhi3"; | |
66 Names[RTLIB::UDIV_I32] = "__udivsi3"; | |
67 Names[RTLIB::UDIV_I64] = "__udivdi3"; | |
68 Names[RTLIB::UDIV_I128] = "__udivti3"; | |
69 Names[RTLIB::SREM_I8] = "__modqi3"; | |
70 Names[RTLIB::SREM_I16] = "__modhi3"; | |
71 Names[RTLIB::SREM_I32] = "__modsi3"; | |
72 Names[RTLIB::SREM_I64] = "__moddi3"; | |
73 Names[RTLIB::SREM_I128] = "__modti3"; | |
74 Names[RTLIB::UREM_I8] = "__umodqi3"; | |
75 Names[RTLIB::UREM_I16] = "__umodhi3"; | |
76 Names[RTLIB::UREM_I32] = "__umodsi3"; | |
77 Names[RTLIB::UREM_I64] = "__umoddi3"; | |
78 Names[RTLIB::UREM_I128] = "__umodti3"; | |
79 | |
80 // These are generally not available. | |
81 Names[RTLIB::SDIVREM_I8] = 0; | |
82 Names[RTLIB::SDIVREM_I16] = 0; | |
83 Names[RTLIB::SDIVREM_I32] = 0; | |
84 Names[RTLIB::SDIVREM_I64] = 0; | |
85 Names[RTLIB::SDIVREM_I128] = 0; | |
86 Names[RTLIB::UDIVREM_I8] = 0; | |
87 Names[RTLIB::UDIVREM_I16] = 0; | |
88 Names[RTLIB::UDIVREM_I32] = 0; | |
89 Names[RTLIB::UDIVREM_I64] = 0; | |
90 Names[RTLIB::UDIVREM_I128] = 0; | |
91 | |
92 Names[RTLIB::NEG_I32] = "__negsi2"; | |
93 Names[RTLIB::NEG_I64] = "__negdi2"; | |
94 Names[RTLIB::ADD_F32] = "__addsf3"; | |
95 Names[RTLIB::ADD_F64] = "__adddf3"; | |
96 Names[RTLIB::ADD_F80] = "__addxf3"; | |
97 Names[RTLIB::ADD_F128] = "__addtf3"; | |
98 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; | |
99 Names[RTLIB::SUB_F32] = "__subsf3"; | |
100 Names[RTLIB::SUB_F64] = "__subdf3"; | |
101 Names[RTLIB::SUB_F80] = "__subxf3"; | |
102 Names[RTLIB::SUB_F128] = "__subtf3"; | |
103 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; | |
104 Names[RTLIB::MUL_F32] = "__mulsf3"; | |
105 Names[RTLIB::MUL_F64] = "__muldf3"; | |
106 Names[RTLIB::MUL_F80] = "__mulxf3"; | |
107 Names[RTLIB::MUL_F128] = "__multf3"; | |
108 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; | |
109 Names[RTLIB::DIV_F32] = "__divsf3"; | |
110 Names[RTLIB::DIV_F64] = "__divdf3"; | |
111 Names[RTLIB::DIV_F80] = "__divxf3"; | |
112 Names[RTLIB::DIV_F128] = "__divtf3"; | |
113 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; | |
114 Names[RTLIB::REM_F32] = "fmodf"; | |
115 Names[RTLIB::REM_F64] = "fmod"; | |
116 Names[RTLIB::REM_F80] = "fmodl"; | |
117 Names[RTLIB::REM_F128] = "fmodl"; | |
118 Names[RTLIB::REM_PPCF128] = "fmodl"; | |
119 Names[RTLIB::FMA_F32] = "fmaf"; | |
120 Names[RTLIB::FMA_F64] = "fma"; | |
121 Names[RTLIB::FMA_F80] = "fmal"; | |
122 Names[RTLIB::FMA_F128] = "fmal"; | |
123 Names[RTLIB::FMA_PPCF128] = "fmal"; | |
124 Names[RTLIB::POWI_F32] = "__powisf2"; | |
125 Names[RTLIB::POWI_F64] = "__powidf2"; | |
126 Names[RTLIB::POWI_F80] = "__powixf2"; | |
127 Names[RTLIB::POWI_F128] = "__powitf2"; | |
128 Names[RTLIB::POWI_PPCF128] = "__powitf2"; | |
129 Names[RTLIB::SQRT_F32] = "sqrtf"; | |
130 Names[RTLIB::SQRT_F64] = "sqrt"; | |
131 Names[RTLIB::SQRT_F80] = "sqrtl"; | |
132 Names[RTLIB::SQRT_F128] = "sqrtl"; | |
133 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; | |
134 Names[RTLIB::LOG_F32] = "logf"; | |
135 Names[RTLIB::LOG_F64] = "log"; | |
136 Names[RTLIB::LOG_F80] = "logl"; | |
137 Names[RTLIB::LOG_F128] = "logl"; | |
138 Names[RTLIB::LOG_PPCF128] = "logl"; | |
139 Names[RTLIB::LOG2_F32] = "log2f"; | |
140 Names[RTLIB::LOG2_F64] = "log2"; | |
141 Names[RTLIB::LOG2_F80] = "log2l"; | |
142 Names[RTLIB::LOG2_F128] = "log2l"; | |
143 Names[RTLIB::LOG2_PPCF128] = "log2l"; | |
144 Names[RTLIB::LOG10_F32] = "log10f"; | |
145 Names[RTLIB::LOG10_F64] = "log10"; | |
146 Names[RTLIB::LOG10_F80] = "log10l"; | |
147 Names[RTLIB::LOG10_F128] = "log10l"; | |
148 Names[RTLIB::LOG10_PPCF128] = "log10l"; | |
149 Names[RTLIB::EXP_F32] = "expf"; | |
150 Names[RTLIB::EXP_F64] = "exp"; | |
151 Names[RTLIB::EXP_F80] = "expl"; | |
152 Names[RTLIB::EXP_F128] = "expl"; | |
153 Names[RTLIB::EXP_PPCF128] = "expl"; | |
154 Names[RTLIB::EXP2_F32] = "exp2f"; | |
155 Names[RTLIB::EXP2_F64] = "exp2"; | |
156 Names[RTLIB::EXP2_F80] = "exp2l"; | |
157 Names[RTLIB::EXP2_F128] = "exp2l"; | |
158 Names[RTLIB::EXP2_PPCF128] = "exp2l"; | |
159 Names[RTLIB::SIN_F32] = "sinf"; | |
160 Names[RTLIB::SIN_F64] = "sin"; | |
161 Names[RTLIB::SIN_F80] = "sinl"; | |
162 Names[RTLIB::SIN_F128] = "sinl"; | |
163 Names[RTLIB::SIN_PPCF128] = "sinl"; | |
164 Names[RTLIB::COS_F32] = "cosf"; | |
165 Names[RTLIB::COS_F64] = "cos"; | |
166 Names[RTLIB::COS_F80] = "cosl"; | |
167 Names[RTLIB::COS_F128] = "cosl"; | |
168 Names[RTLIB::COS_PPCF128] = "cosl"; | |
169 Names[RTLIB::POW_F32] = "powf"; | |
170 Names[RTLIB::POW_F64] = "pow"; | |
171 Names[RTLIB::POW_F80] = "powl"; | |
172 Names[RTLIB::POW_F128] = "powl"; | |
173 Names[RTLIB::POW_PPCF128] = "powl"; | |
174 Names[RTLIB::CEIL_F32] = "ceilf"; | |
175 Names[RTLIB::CEIL_F64] = "ceil"; | |
176 Names[RTLIB::CEIL_F80] = "ceill"; | |
177 Names[RTLIB::CEIL_F128] = "ceill"; | |
178 Names[RTLIB::CEIL_PPCF128] = "ceill"; | |
179 Names[RTLIB::TRUNC_F32] = "truncf"; | |
180 Names[RTLIB::TRUNC_F64] = "trunc"; | |
181 Names[RTLIB::TRUNC_F80] = "truncl"; | |
182 Names[RTLIB::TRUNC_F128] = "truncl"; | |
183 Names[RTLIB::TRUNC_PPCF128] = "truncl"; | |
184 Names[RTLIB::RINT_F32] = "rintf"; | |
185 Names[RTLIB::RINT_F64] = "rint"; | |
186 Names[RTLIB::RINT_F80] = "rintl"; | |
187 Names[RTLIB::RINT_F128] = "rintl"; | |
188 Names[RTLIB::RINT_PPCF128] = "rintl"; | |
189 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; | |
190 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; | |
191 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; | |
192 Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; | |
193 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; | |
194 Names[RTLIB::ROUND_F32] = "roundf"; | |
195 Names[RTLIB::ROUND_F64] = "round"; | |
196 Names[RTLIB::ROUND_F80] = "roundl"; | |
197 Names[RTLIB::ROUND_F128] = "roundl"; | |
198 Names[RTLIB::ROUND_PPCF128] = "roundl"; | |
199 Names[RTLIB::FLOOR_F32] = "floorf"; | |
200 Names[RTLIB::FLOOR_F64] = "floor"; | |
201 Names[RTLIB::FLOOR_F80] = "floorl"; | |
202 Names[RTLIB::FLOOR_F128] = "floorl"; | |
203 Names[RTLIB::FLOOR_PPCF128] = "floorl"; | |
204 Names[RTLIB::COPYSIGN_F32] = "copysignf"; | |
205 Names[RTLIB::COPYSIGN_F64] = "copysign"; | |
206 Names[RTLIB::COPYSIGN_F80] = "copysignl"; | |
207 Names[RTLIB::COPYSIGN_F128] = "copysignl"; | |
208 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; | |
209 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; | |
210 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; | |
211 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; | |
212 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; | |
213 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; | |
214 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; | |
215 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; | |
216 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; | |
217 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; | |
218 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; | |
219 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; | |
220 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; | |
221 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; | |
222 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; | |
223 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; | |
224 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; | |
225 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; | |
226 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; | |
227 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; | |
228 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; | |
229 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; | |
230 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; | |
231 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; | |
232 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; | |
233 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; | |
234 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; | |
235 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; | |
236 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; | |
237 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; | |
238 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; | |
239 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; | |
240 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; | |
241 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; | |
242 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; | |
243 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; | |
244 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; | |
245 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; | |
246 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; | |
247 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; | |
248 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; | |
249 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; | |
250 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; | |
251 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; | |
252 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; | |
253 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; | |
254 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; | |
255 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; | |
256 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; | |
257 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; | |
258 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; | |
259 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; | |
260 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; | |
261 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; | |
262 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; | |
263 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; | |
264 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; | |
265 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; | |
266 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; | |
267 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; | |
268 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; | |
269 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; | |
270 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; | |
271 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; | |
272 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; | |
273 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; | |
274 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; | |
275 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; | |
276 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; | |
277 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; | |
278 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; | |
279 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; | |
280 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; | |
281 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; | |
282 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; | |
283 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; | |
284 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; | |
285 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; | |
286 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; | |
287 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; | |
288 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; | |
289 Names[RTLIB::OEQ_F32] = "__eqsf2"; | |
290 Names[RTLIB::OEQ_F64] = "__eqdf2"; | |
291 Names[RTLIB::OEQ_F128] = "__eqtf2"; | |
292 Names[RTLIB::UNE_F32] = "__nesf2"; | |
293 Names[RTLIB::UNE_F64] = "__nedf2"; | |
294 Names[RTLIB::UNE_F128] = "__netf2"; | |
295 Names[RTLIB::OGE_F32] = "__gesf2"; | |
296 Names[RTLIB::OGE_F64] = "__gedf2"; | |
297 Names[RTLIB::OGE_F128] = "__getf2"; | |
298 Names[RTLIB::OLT_F32] = "__ltsf2"; | |
299 Names[RTLIB::OLT_F64] = "__ltdf2"; | |
300 Names[RTLIB::OLT_F128] = "__lttf2"; | |
301 Names[RTLIB::OLE_F32] = "__lesf2"; | |
302 Names[RTLIB::OLE_F64] = "__ledf2"; | |
303 Names[RTLIB::OLE_F128] = "__letf2"; | |
304 Names[RTLIB::OGT_F32] = "__gtsf2"; | |
305 Names[RTLIB::OGT_F64] = "__gtdf2"; | |
306 Names[RTLIB::OGT_F128] = "__gttf2"; | |
307 Names[RTLIB::UO_F32] = "__unordsf2"; | |
308 Names[RTLIB::UO_F64] = "__unorddf2"; | |
309 Names[RTLIB::UO_F128] = "__unordtf2"; | |
310 Names[RTLIB::O_F32] = "__unordsf2"; | |
311 Names[RTLIB::O_F64] = "__unorddf2"; | |
312 Names[RTLIB::O_F128] = "__unordtf2"; | |
313 Names[RTLIB::MEMCPY] = "memcpy"; | |
314 Names[RTLIB::MEMMOVE] = "memmove"; | |
315 Names[RTLIB::MEMSET] = "memset"; | |
316 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; | |
317 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; | |
318 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; | |
319 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; | |
320 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; | |
321 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; | |
322 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; | |
323 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; | |
324 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; | |
325 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; | |
326 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; | |
327 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; | |
328 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; | |
329 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; | |
330 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; | |
331 Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; | |
332 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; | |
333 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; | |
334 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; | |
335 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; | |
336 Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; | |
337 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; | |
338 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; | |
339 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; | |
340 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; | |
341 Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; | |
342 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; | |
343 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; | |
344 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; | |
345 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; | |
346 Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; | |
347 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; | |
348 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; | |
349 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; | |
350 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; | |
351 Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; | |
352 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; | |
353 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; | |
354 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; | |
355 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; | |
356 Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; | |
357 Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; | |
358 Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; | |
359 Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; | |
360 Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; | |
361 Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; | |
362 Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; | |
363 Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; | |
364 Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; | |
365 Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; | |
366 Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; | |
367 Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; | |
368 Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; | |
369 Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; | |
370 Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; | |
371 Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; | |
372 Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; | |
373 Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; | |
374 Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; | |
375 Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; | |
376 Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; | |
377 | |
378 if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) { | |
379 Names[RTLIB::SINCOS_F32] = "sincosf"; | |
380 Names[RTLIB::SINCOS_F64] = "sincos"; | |
381 Names[RTLIB::SINCOS_F80] = "sincosl"; | |
382 Names[RTLIB::SINCOS_F128] = "sincosl"; | |
383 Names[RTLIB::SINCOS_PPCF128] = "sincosl"; | |
384 } else { | |
385 // These are generally not available. | |
386 Names[RTLIB::SINCOS_F32] = 0; | |
387 Names[RTLIB::SINCOS_F64] = 0; | |
388 Names[RTLIB::SINCOS_F80] = 0; | |
389 Names[RTLIB::SINCOS_F128] = 0; | |
390 Names[RTLIB::SINCOS_PPCF128] = 0; | |
391 } | |
392 | |
393 if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) { | |
394 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; | |
395 } else { | |
396 // These are generally not available. | |
397 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0; | |
398 } | |
399 } | |
400 | |
401 /// InitLibcallCallingConvs - Set default libcall CallingConvs. | |
402 /// | |
403 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { | |
404 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { | |
405 CCs[i] = CallingConv::C; | |
406 } | |
407 } | |
408 | |
409 /// getFPEXT - Return the FPEXT_*_* value for the given types, or | |
410 /// UNKNOWN_LIBCALL if there is none. | |
411 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { | |
412 if (OpVT == MVT::f32) { | |
413 if (RetVT == MVT::f64) | |
414 return FPEXT_F32_F64; | |
415 if (RetVT == MVT::f128) | |
416 return FPEXT_F32_F128; | |
417 } else if (OpVT == MVT::f64) { | |
418 if (RetVT == MVT::f128) | |
419 return FPEXT_F64_F128; | |
420 } | |
421 | |
422 return UNKNOWN_LIBCALL; | |
423 } | |
424 | |
425 /// getFPROUND - Return the FPROUND_*_* value for the given types, or | |
426 /// UNKNOWN_LIBCALL if there is none. | |
427 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { | |
428 if (RetVT == MVT::f32) { | |
429 if (OpVT == MVT::f64) | |
430 return FPROUND_F64_F32; | |
431 if (OpVT == MVT::f80) | |
432 return FPROUND_F80_F32; | |
433 if (OpVT == MVT::f128) | |
434 return FPROUND_F128_F32; | |
435 if (OpVT == MVT::ppcf128) | |
436 return FPROUND_PPCF128_F32; | |
437 } else if (RetVT == MVT::f64) { | |
438 if (OpVT == MVT::f80) | |
439 return FPROUND_F80_F64; | |
440 if (OpVT == MVT::f128) | |
441 return FPROUND_F128_F64; | |
442 if (OpVT == MVT::ppcf128) | |
443 return FPROUND_PPCF128_F64; | |
444 } | |
445 | |
446 return UNKNOWN_LIBCALL; | |
447 } | |
448 | |
449 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or | |
450 /// UNKNOWN_LIBCALL if there is none. | |
451 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { | |
452 if (OpVT == MVT::f32) { | |
453 if (RetVT == MVT::i8) | |
454 return FPTOSINT_F32_I8; | |
455 if (RetVT == MVT::i16) | |
456 return FPTOSINT_F32_I16; | |
457 if (RetVT == MVT::i32) | |
458 return FPTOSINT_F32_I32; | |
459 if (RetVT == MVT::i64) | |
460 return FPTOSINT_F32_I64; | |
461 if (RetVT == MVT::i128) | |
462 return FPTOSINT_F32_I128; | |
463 } else if (OpVT == MVT::f64) { | |
464 if (RetVT == MVT::i8) | |
465 return FPTOSINT_F64_I8; | |
466 if (RetVT == MVT::i16) | |
467 return FPTOSINT_F64_I16; | |
468 if (RetVT == MVT::i32) | |
469 return FPTOSINT_F64_I32; | |
470 if (RetVT == MVT::i64) | |
471 return FPTOSINT_F64_I64; | |
472 if (RetVT == MVT::i128) | |
473 return FPTOSINT_F64_I128; | |
474 } else if (OpVT == MVT::f80) { | |
475 if (RetVT == MVT::i32) | |
476 return FPTOSINT_F80_I32; | |
477 if (RetVT == MVT::i64) | |
478 return FPTOSINT_F80_I64; | |
479 if (RetVT == MVT::i128) | |
480 return FPTOSINT_F80_I128; | |
481 } else if (OpVT == MVT::f128) { | |
482 if (RetVT == MVT::i32) | |
483 return FPTOSINT_F128_I32; | |
484 if (RetVT == MVT::i64) | |
485 return FPTOSINT_F128_I64; | |
486 if (RetVT == MVT::i128) | |
487 return FPTOSINT_F128_I128; | |
488 } else if (OpVT == MVT::ppcf128) { | |
489 if (RetVT == MVT::i32) | |
490 return FPTOSINT_PPCF128_I32; | |
491 if (RetVT == MVT::i64) | |
492 return FPTOSINT_PPCF128_I64; | |
493 if (RetVT == MVT::i128) | |
494 return FPTOSINT_PPCF128_I128; | |
495 } | |
496 return UNKNOWN_LIBCALL; | |
497 } | |
498 | |
499 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or | |
500 /// UNKNOWN_LIBCALL if there is none. | |
501 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { | |
502 if (OpVT == MVT::f32) { | |
503 if (RetVT == MVT::i8) | |
504 return FPTOUINT_F32_I8; | |
505 if (RetVT == MVT::i16) | |
506 return FPTOUINT_F32_I16; | |
507 if (RetVT == MVT::i32) | |
508 return FPTOUINT_F32_I32; | |
509 if (RetVT == MVT::i64) | |
510 return FPTOUINT_F32_I64; | |
511 if (RetVT == MVT::i128) | |
512 return FPTOUINT_F32_I128; | |
513 } else if (OpVT == MVT::f64) { | |
514 if (RetVT == MVT::i8) | |
515 return FPTOUINT_F64_I8; | |
516 if (RetVT == MVT::i16) | |
517 return FPTOUINT_F64_I16; | |
518 if (RetVT == MVT::i32) | |
519 return FPTOUINT_F64_I32; | |
520 if (RetVT == MVT::i64) | |
521 return FPTOUINT_F64_I64; | |
522 if (RetVT == MVT::i128) | |
523 return FPTOUINT_F64_I128; | |
524 } else if (OpVT == MVT::f80) { | |
525 if (RetVT == MVT::i32) | |
526 return FPTOUINT_F80_I32; | |
527 if (RetVT == MVT::i64) | |
528 return FPTOUINT_F80_I64; | |
529 if (RetVT == MVT::i128) | |
530 return FPTOUINT_F80_I128; | |
531 } else if (OpVT == MVT::f128) { | |
532 if (RetVT == MVT::i32) | |
533 return FPTOUINT_F128_I32; | |
534 if (RetVT == MVT::i64) | |
535 return FPTOUINT_F128_I64; | |
536 if (RetVT == MVT::i128) | |
537 return FPTOUINT_F128_I128; | |
538 } else if (OpVT == MVT::ppcf128) { | |
539 if (RetVT == MVT::i32) | |
540 return FPTOUINT_PPCF128_I32; | |
541 if (RetVT == MVT::i64) | |
542 return FPTOUINT_PPCF128_I64; | |
543 if (RetVT == MVT::i128) | |
544 return FPTOUINT_PPCF128_I128; | |
545 } | |
546 return UNKNOWN_LIBCALL; | |
547 } | |
548 | |
549 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or | |
550 /// UNKNOWN_LIBCALL if there is none. | |
551 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { | |
552 if (OpVT == MVT::i32) { | |
553 if (RetVT == MVT::f32) | |
554 return SINTTOFP_I32_F32; | |
555 if (RetVT == MVT::f64) | |
556 return SINTTOFP_I32_F64; | |
557 if (RetVT == MVT::f80) | |
558 return SINTTOFP_I32_F80; | |
559 if (RetVT == MVT::f128) | |
560 return SINTTOFP_I32_F128; | |
561 if (RetVT == MVT::ppcf128) | |
562 return SINTTOFP_I32_PPCF128; | |
563 } else if (OpVT == MVT::i64) { | |
564 if (RetVT == MVT::f32) | |
565 return SINTTOFP_I64_F32; | |
566 if (RetVT == MVT::f64) | |
567 return SINTTOFP_I64_F64; | |
568 if (RetVT == MVT::f80) | |
569 return SINTTOFP_I64_F80; | |
570 if (RetVT == MVT::f128) | |
571 return SINTTOFP_I64_F128; | |
572 if (RetVT == MVT::ppcf128) | |
573 return SINTTOFP_I64_PPCF128; | |
574 } else if (OpVT == MVT::i128) { | |
575 if (RetVT == MVT::f32) | |
576 return SINTTOFP_I128_F32; | |
577 if (RetVT == MVT::f64) | |
578 return SINTTOFP_I128_F64; | |
579 if (RetVT == MVT::f80) | |
580 return SINTTOFP_I128_F80; | |
581 if (RetVT == MVT::f128) | |
582 return SINTTOFP_I128_F128; | |
583 if (RetVT == MVT::ppcf128) | |
584 return SINTTOFP_I128_PPCF128; | |
585 } | |
586 return UNKNOWN_LIBCALL; | |
587 } | |
588 | |
589 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or | |
590 /// UNKNOWN_LIBCALL if there is none. | |
591 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { | |
592 if (OpVT == MVT::i32) { | |
593 if (RetVT == MVT::f32) | |
594 return UINTTOFP_I32_F32; | |
595 if (RetVT == MVT::f64) | |
596 return UINTTOFP_I32_F64; | |
597 if (RetVT == MVT::f80) | |
598 return UINTTOFP_I32_F80; | |
599 if (RetVT == MVT::f128) | |
600 return UINTTOFP_I32_F128; | |
601 if (RetVT == MVT::ppcf128) | |
602 return UINTTOFP_I32_PPCF128; | |
603 } else if (OpVT == MVT::i64) { | |
604 if (RetVT == MVT::f32) | |
605 return UINTTOFP_I64_F32; | |
606 if (RetVT == MVT::f64) | |
607 return UINTTOFP_I64_F64; | |
608 if (RetVT == MVT::f80) | |
609 return UINTTOFP_I64_F80; | |
610 if (RetVT == MVT::f128) | |
611 return UINTTOFP_I64_F128; | |
612 if (RetVT == MVT::ppcf128) | |
613 return UINTTOFP_I64_PPCF128; | |
614 } else if (OpVT == MVT::i128) { | |
615 if (RetVT == MVT::f32) | |
616 return UINTTOFP_I128_F32; | |
617 if (RetVT == MVT::f64) | |
618 return UINTTOFP_I128_F64; | |
619 if (RetVT == MVT::f80) | |
620 return UINTTOFP_I128_F80; | |
621 if (RetVT == MVT::f128) | |
622 return UINTTOFP_I128_F128; | |
623 if (RetVT == MVT::ppcf128) | |
624 return UINTTOFP_I128_PPCF128; | |
625 } | |
626 return UNKNOWN_LIBCALL; | |
627 } | |
628 | |
629 /// InitCmpLibcallCCs - Set default comparison libcall CC. | |
630 /// | |
631 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | |
632 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | |
633 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | |
634 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | |
635 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; | |
636 CCs[RTLIB::UNE_F32] = ISD::SETNE; | |
637 CCs[RTLIB::UNE_F64] = ISD::SETNE; | |
638 CCs[RTLIB::UNE_F128] = ISD::SETNE; | |
639 CCs[RTLIB::OGE_F32] = ISD::SETGE; | |
640 CCs[RTLIB::OGE_F64] = ISD::SETGE; | |
641 CCs[RTLIB::OGE_F128] = ISD::SETGE; | |
642 CCs[RTLIB::OLT_F32] = ISD::SETLT; | |
643 CCs[RTLIB::OLT_F64] = ISD::SETLT; | |
644 CCs[RTLIB::OLT_F128] = ISD::SETLT; | |
645 CCs[RTLIB::OLE_F32] = ISD::SETLE; | |
646 CCs[RTLIB::OLE_F64] = ISD::SETLE; | |
647 CCs[RTLIB::OLE_F128] = ISD::SETLE; | |
648 CCs[RTLIB::OGT_F32] = ISD::SETGT; | |
649 CCs[RTLIB::OGT_F64] = ISD::SETGT; | |
650 CCs[RTLIB::OGT_F128] = ISD::SETGT; | |
651 CCs[RTLIB::UO_F32] = ISD::SETNE; | |
652 CCs[RTLIB::UO_F64] = ISD::SETNE; | |
653 CCs[RTLIB::UO_F128] = ISD::SETNE; | |
654 CCs[RTLIB::O_F32] = ISD::SETEQ; | |
655 CCs[RTLIB::O_F64] = ISD::SETEQ; | |
656 CCs[RTLIB::O_F128] = ISD::SETEQ; | |
657 } | |
658 | |
659 /// NOTE: The constructor takes ownership of TLOF. | |
660 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm, | |
661 const TargetLoweringObjectFile *tlof) | |
662 : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) { | |
663 initActions(); | |
664 | |
665 // Perform these initializations only once. | |
666 IsLittleEndian = TD->isLittleEndian(); | |
667 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; | |
668 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize | |
669 = MaxStoresPerMemmoveOptSize = 4; | |
670 UseUnderscoreSetJmp = false; | |
671 UseUnderscoreLongJmp = false; | |
672 SelectIsExpensive = false; | |
673 IntDivIsCheap = false; | |
674 Pow2DivIsCheap = false; | |
675 JumpIsExpensive = false; | |
676 PredictableSelectIsExpensive = false; | |
677 StackPointerRegisterToSaveRestore = 0; | |
678 ExceptionPointerRegister = 0; | |
679 ExceptionSelectorRegister = 0; | |
680 BooleanContents = UndefinedBooleanContent; | |
681 BooleanVectorContents = UndefinedBooleanContent; | |
682 SchedPreferenceInfo = Sched::ILP; | |
683 JumpBufSize = 0; | |
684 JumpBufAlignment = 0; | |
685 MinFunctionAlignment = 0; | |
686 PrefFunctionAlignment = 0; | |
687 PrefLoopAlignment = 0; | |
688 MinStackArgumentAlignment = 1; | |
689 InsertFencesForAtomic = false; | |
690 SupportJumpTables = true; | |
691 MinimumJumpTableEntries = 4; | |
692 | |
693 InitLibcallNames(LibcallRoutineNames, TM); | |
694 InitCmpLibcallCCs(CmpLibcallCCs); | |
695 InitLibcallCallingConvs(LibcallCallingConvs); | |
696 } | |
697 | |
698 TargetLoweringBase::~TargetLoweringBase() { | |
699 delete &TLOF; | |
700 } | |
701 | |
702 void TargetLoweringBase::initActions() { | |
703 // All operations default to being supported. | |
704 memset(OpActions, 0, sizeof(OpActions)); | |
705 memset(LoadExtActions, 0, sizeof(LoadExtActions)); | |
706 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); | |
707 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); | |
708 memset(CondCodeActions, 0, sizeof(CondCodeActions)); | |
709 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); | |
710 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); | |
711 | |
712 // Set default actions for various operations. | |
713 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { | |
714 // Default all indexed load / store to expand. | |
715 for (unsigned IM = (unsigned)ISD::PRE_INC; | |
716 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | |
717 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); | |
718 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); | |
719 } | |
720 | |
721 // These operations default to expand. | |
722 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); | |
723 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); | |
724 | |
725 // These library functions default to expand. | |
726 setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand); | |
727 | |
728 // These operations default to expand for vector types. | |
729 if (VT >= MVT::FIRST_VECTOR_VALUETYPE && | |
730 VT <= MVT::LAST_VECTOR_VALUETYPE) | |
731 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); | |
732 } | |
733 | |
734 // Most targets ignore the @llvm.prefetch intrinsic. | |
735 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); | |
736 | |
737 // ConstantFP nodes default to expand. Targets can either change this to | |
738 // Legal, in which case all fp constants are legal, or use isFPImmLegal() | |
739 // to optimize expansions for certain constants. | |
740 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); | |
741 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | |
742 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | |
743 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); | |
744 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); | |
745 | |
746 // These library functions default to expand. | |
747 setOperationAction(ISD::FLOG , MVT::f16, Expand); | |
748 setOperationAction(ISD::FLOG2, MVT::f16, Expand); | |
749 setOperationAction(ISD::FLOG10, MVT::f16, Expand); | |
750 setOperationAction(ISD::FEXP , MVT::f16, Expand); | |
751 setOperationAction(ISD::FEXP2, MVT::f16, Expand); | |
752 setOperationAction(ISD::FFLOOR, MVT::f16, Expand); | |
753 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); | |
754 setOperationAction(ISD::FCEIL, MVT::f16, Expand); | |
755 setOperationAction(ISD::FRINT, MVT::f16, Expand); | |
756 setOperationAction(ISD::FTRUNC, MVT::f16, Expand); | |
757 setOperationAction(ISD::FLOG , MVT::f32, Expand); | |
758 setOperationAction(ISD::FLOG2, MVT::f32, Expand); | |
759 setOperationAction(ISD::FLOG10, MVT::f32, Expand); | |
760 setOperationAction(ISD::FEXP , MVT::f32, Expand); | |
761 setOperationAction(ISD::FEXP2, MVT::f32, Expand); | |
762 setOperationAction(ISD::FFLOOR, MVT::f32, Expand); | |
763 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); | |
764 setOperationAction(ISD::FCEIL, MVT::f32, Expand); | |
765 setOperationAction(ISD::FRINT, MVT::f32, Expand); | |
766 setOperationAction(ISD::FTRUNC, MVT::f32, Expand); | |
767 setOperationAction(ISD::FLOG , MVT::f64, Expand); | |
768 setOperationAction(ISD::FLOG2, MVT::f64, Expand); | |
769 setOperationAction(ISD::FLOG10, MVT::f64, Expand); | |
770 setOperationAction(ISD::FEXP , MVT::f64, Expand); | |
771 setOperationAction(ISD::FEXP2, MVT::f64, Expand); | |
772 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); | |
773 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); | |
774 setOperationAction(ISD::FCEIL, MVT::f64, Expand); | |
775 setOperationAction(ISD::FRINT, MVT::f64, Expand); | |
776 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); | |
777 setOperationAction(ISD::FLOG , MVT::f128, Expand); | |
778 setOperationAction(ISD::FLOG2, MVT::f128, Expand); | |
779 setOperationAction(ISD::FLOG10, MVT::f128, Expand); | |
780 setOperationAction(ISD::FEXP , MVT::f128, Expand); | |
781 setOperationAction(ISD::FEXP2, MVT::f128, Expand); | |
782 setOperationAction(ISD::FFLOOR, MVT::f128, Expand); | |
783 setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); | |
784 setOperationAction(ISD::FCEIL, MVT::f128, Expand); | |
785 setOperationAction(ISD::FRINT, MVT::f128, Expand); | |
786 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); | |
787 | |
788 // Default ISD::TRAP to expand (which turns it into abort). | |
789 setOperationAction(ISD::TRAP, MVT::Other, Expand); | |
790 | |
791 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" | |
792 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. | |
793 // | |
794 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); | |
795 } | |
796 | |
797 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const { | |
798 return MVT::getIntegerVT(getPointerSizeInBits(AS)); | |
799 } | |
800 | |
801 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const { | |
802 return TD->getPointerSizeInBits(AS); | |
803 } | |
804 | |
805 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const { | |
806 assert(Ty->isPointerTy()); | |
807 return getPointerSizeInBits(Ty->getPointerAddressSpace()); | |
808 } | |
809 | |
810 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { | |
811 return MVT::getIntegerVT(8*TD->getPointerSize(0)); | |
812 } | |
813 | |
814 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { | |
815 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | |
816 if (LHSTy.isVector()) | |
817 return LHSTy; | |
818 return getScalarShiftAmountTy(LHSTy); | |
819 } | |
820 | |
821 /// canOpTrap - Returns true if the operation can trap for the value type. | |
822 /// VT must be a legal type. | |
823 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { | |
824 assert(isTypeLegal(VT)); | |
825 switch (Op) { | |
826 default: | |
827 return false; | |
828 case ISD::FDIV: | |
829 case ISD::FREM: | |
830 case ISD::SDIV: | |
831 case ISD::UDIV: | |
832 case ISD::SREM: | |
833 case ISD::UREM: | |
834 return true; | |
835 } | |
836 } | |
837 | |
838 | |
839 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, | |
840 unsigned &NumIntermediates, | |
841 MVT &RegisterVT, | |
842 TargetLoweringBase *TLI) { | |
843 // Figure out the right, legal destination reg to copy into. | |
844 unsigned NumElts = VT.getVectorNumElements(); | |
845 MVT EltTy = VT.getVectorElementType(); | |
846 | |
847 unsigned NumVectorRegs = 1; | |
848 | |
849 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we | |
850 // could break down into LHS/RHS like LegalizeDAG does. | |
851 if (!isPowerOf2_32(NumElts)) { | |
852 NumVectorRegs = NumElts; | |
853 NumElts = 1; | |
854 } | |
855 | |
856 // Divide the input until we get to a supported size. This will always | |
857 // end with a scalar if the target doesn't support vectors. | |
858 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { | |
859 NumElts >>= 1; | |
860 NumVectorRegs <<= 1; | |
861 } | |
862 | |
863 NumIntermediates = NumVectorRegs; | |
864 | |
865 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); | |
866 if (!TLI->isTypeLegal(NewVT)) | |
867 NewVT = EltTy; | |
868 IntermediateVT = NewVT; | |
869 | |
870 unsigned NewVTSize = NewVT.getSizeInBits(); | |
871 | |
872 // Convert sizes such as i33 to i64. | |
873 if (!isPowerOf2_32(NewVTSize)) | |
874 NewVTSize = NextPowerOf2(NewVTSize); | |
875 | |
876 MVT DestVT = TLI->getRegisterType(NewVT); | |
877 RegisterVT = DestVT; | |
878 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. | |
879 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | |
880 | |
881 // Otherwise, promotion or legal types use the same number of registers as | |
882 // the vector decimated to the appropriate level. | |
883 return NumVectorRegs; | |
884 } | |
885 | |
886 /// isLegalRC - Return true if the value types that can be represented by the | |
887 /// specified register class are all legal. | |
888 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { | |
889 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | |
890 I != E; ++I) { | |
891 if (isTypeLegal(*I)) | |
892 return true; | |
893 } | |
894 return false; | |
895 } | |
896 | |
897 /// findRepresentativeClass - Return the largest legal super-reg register class | |
898 /// of the register class for the specified type and its associated "cost". | |
899 std::pair<const TargetRegisterClass*, uint8_t> | |
900 TargetLoweringBase::findRepresentativeClass(MVT VT) const { | |
901 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); | |
902 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; | |
903 if (!RC) | |
904 return std::make_pair(RC, 0); | |
905 | |
906 // Compute the set of all super-register classes. | |
907 BitVector SuperRegRC(TRI->getNumRegClasses()); | |
908 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) | |
909 SuperRegRC.setBitsInMask(RCI.getMask()); | |
910 | |
911 // Find the first legal register class with the largest spill size. | |
912 const TargetRegisterClass *BestRC = RC; | |
913 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { | |
914 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); | |
915 // We want the largest possible spill size. | |
916 if (SuperRC->getSize() <= BestRC->getSize()) | |
917 continue; | |
918 if (!isLegalRC(SuperRC)) | |
919 continue; | |
920 BestRC = SuperRC; | |
921 } | |
922 return std::make_pair(BestRC, 1); | |
923 } | |
924 | |
925 /// computeRegisterProperties - Once all of the register classes are added, | |
926 /// this allows us to compute derived properties we expose. | |
927 void TargetLoweringBase::computeRegisterProperties() { | |
928 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && | |
929 "Too many value types for ValueTypeActions to hold!"); | |
930 | |
931 // Everything defaults to needing one register. | |
932 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | |
933 NumRegistersForVT[i] = 1; | |
934 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; | |
935 } | |
936 // ...except isVoid, which doesn't need any registers. | |
937 NumRegistersForVT[MVT::isVoid] = 0; | |
938 | |
939 // Find the largest integer register class. | |
940 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; | |
941 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) | |
942 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | |
943 | |
944 // Every integer value type larger than this largest register takes twice as | |
945 // many registers to represent as the previous ValueType. | |
946 for (unsigned ExpandedReg = LargestIntReg + 1; | |
947 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { | |
948 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | |
949 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; | |
950 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); | |
951 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, | |
952 TypeExpandInteger); | |
953 } | |
954 | |
955 // Inspect all of the ValueType's smaller than the largest integer | |
956 // register to see which ones need promotion. | |
957 unsigned LegalIntReg = LargestIntReg; | |
958 for (unsigned IntReg = LargestIntReg - 1; | |
959 IntReg >= (unsigned)MVT::i1; --IntReg) { | |
960 MVT IVT = (MVT::SimpleValueType)IntReg; | |
961 if (isTypeLegal(IVT)) { | |
962 LegalIntReg = IntReg; | |
963 } else { | |
964 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = | |
965 (const MVT::SimpleValueType)LegalIntReg; | |
966 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); | |
967 } | |
968 } | |
969 | |
970 // ppcf128 type is really two f64's. | |
971 if (!isTypeLegal(MVT::ppcf128)) { | |
972 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | |
973 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | |
974 TransformToType[MVT::ppcf128] = MVT::f64; | |
975 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); | |
976 } | |
977 | |
978 // Decide how to handle f128. If the target does not have native f128 support, | |
979 // expand it to i128 and we will be generating soft float library calls. | |
980 if (!isTypeLegal(MVT::f128)) { | |
981 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; | |
982 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; | |
983 TransformToType[MVT::f128] = MVT::i128; | |
984 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); | |
985 } | |
986 | |
987 // Decide how to handle f64. If the target does not have native f64 support, | |
988 // expand it to i64 and we will be generating soft float library calls. | |
989 if (!isTypeLegal(MVT::f64)) { | |
990 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | |
991 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | |
992 TransformToType[MVT::f64] = MVT::i64; | |
993 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); | |
994 } | |
995 | |
996 // Decide how to handle f32. If the target does not have native support for | |
997 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. | |
998 if (!isTypeLegal(MVT::f32)) { | |
999 if (isTypeLegal(MVT::f64)) { | |
1000 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; | |
1001 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; | |
1002 TransformToType[MVT::f32] = MVT::f64; | |
1003 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); | |
1004 } else { | |
1005 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | |
1006 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | |
1007 TransformToType[MVT::f32] = MVT::i32; | |
1008 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); | |
1009 } | |
1010 } | |
1011 | |
1012 // Loop over all of the vector value types to see which need transformations. | |
1013 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | |
1014 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | |
1015 MVT VT = (MVT::SimpleValueType)i; | |
1016 if (isTypeLegal(VT)) continue; | |
1017 | |
1018 // Determine if there is a legal wider type. If so, we should promote to | |
1019 // that wider vector type. | |
1020 MVT EltVT = VT.getVectorElementType(); | |
1021 unsigned NElts = VT.getVectorNumElements(); | |
1022 if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) { | |
1023 bool IsLegalWiderType = false; | |
1024 // First try to promote the elements of integer vectors. If no legal | |
1025 // promotion was found, fallback to the widen-vector method. | |
1026 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | |
1027 MVT SVT = (MVT::SimpleValueType)nVT; | |
1028 // Promote vectors of integers to vectors with the same number | |
1029 // of elements, with a wider element type. | |
1030 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() | |
1031 && SVT.getVectorNumElements() == NElts && | |
1032 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { | |
1033 TransformToType[i] = SVT; | |
1034 RegisterTypeForVT[i] = SVT; | |
1035 NumRegistersForVT[i] = 1; | |
1036 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); | |
1037 IsLegalWiderType = true; | |
1038 break; | |
1039 } | |
1040 } | |
1041 | |
1042 if (IsLegalWiderType) continue; | |
1043 | |
1044 // Try to widen the vector. | |
1045 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | |
1046 MVT SVT = (MVT::SimpleValueType)nVT; | |
1047 if (SVT.getVectorElementType() == EltVT && | |
1048 SVT.getVectorNumElements() > NElts && | |
1049 isTypeLegal(SVT)) { | |
1050 TransformToType[i] = SVT; | |
1051 RegisterTypeForVT[i] = SVT; | |
1052 NumRegistersForVT[i] = 1; | |
1053 ValueTypeActions.setTypeAction(VT, TypeWidenVector); | |
1054 IsLegalWiderType = true; | |
1055 break; | |
1056 } | |
1057 } | |
1058 if (IsLegalWiderType) continue; | |
1059 } | |
1060 | |
1061 MVT IntermediateVT; | |
1062 MVT RegisterVT; | |
1063 unsigned NumIntermediates; | |
1064 NumRegistersForVT[i] = | |
1065 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, | |
1066 RegisterVT, this); | |
1067 RegisterTypeForVT[i] = RegisterVT; | |
1068 | |
1069 MVT NVT = VT.getPow2VectorType(); | |
1070 if (NVT == VT) { | |
1071 // Type is already a power of 2. The default action is to split. | |
1072 TransformToType[i] = MVT::Other; | |
1073 unsigned NumElts = VT.getVectorNumElements(); | |
1074 ValueTypeActions.setTypeAction(VT, | |
1075 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); | |
1076 } else { | |
1077 TransformToType[i] = NVT; | |
1078 ValueTypeActions.setTypeAction(VT, TypeWidenVector); | |
1079 } | |
1080 } | |
1081 | |
1082 // Determine the 'representative' register class for each value type. | |
1083 // An representative register class is the largest (meaning one which is | |
1084 // not a sub-register class / subreg register class) legal register class for | |
1085 // a group of value types. For example, on i386, i8, i16, and i32 | |
1086 // representative would be GR32; while on x86_64 it's GR64. | |
1087 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | |
1088 const TargetRegisterClass* RRC; | |
1089 uint8_t Cost; | |
1090 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); | |
1091 RepRegClassForVT[i] = RRC; | |
1092 RepRegClassCostForVT[i] = Cost; | |
1093 } | |
1094 } | |
1095 | |
1096 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const { | |
1097 assert(!VT.isVector() && "No default SetCC type for vectors!"); | |
1098 return getPointerTy(0).SimpleTy; | |
1099 } | |
1100 | |
1101 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { | |
1102 return MVT::i32; // return the default value | |
1103 } | |
1104 | |
1105 /// getVectorTypeBreakdown - Vector types are broken down into some number of | |
1106 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 | |
1107 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | |
1108 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | |
1109 /// | |
1110 /// This method returns the number of registers needed, and the VT for each | |
1111 /// register. It also returns the VT and quantity of the intermediate values | |
1112 /// before they are promoted/expanded. | |
1113 /// | |
1114 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, | |
1115 EVT &IntermediateVT, | |
1116 unsigned &NumIntermediates, | |
1117 MVT &RegisterVT) const { | |
1118 unsigned NumElts = VT.getVectorNumElements(); | |
1119 | |
1120 // If there is a wider vector type with the same element type as this one, | |
1121 // or a promoted vector type that has the same number of elements which | |
1122 // are wider, then we should convert to that legal vector type. | |
1123 // This handles things like <2 x float> -> <4 x float> and | |
1124 // <4 x i1> -> <4 x i32>. | |
1125 LegalizeTypeAction TA = getTypeAction(Context, VT); | |
1126 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { | |
1127 EVT RegisterEVT = getTypeToTransformTo(Context, VT); | |
1128 if (isTypeLegal(RegisterEVT)) { | |
1129 IntermediateVT = RegisterEVT; | |
1130 RegisterVT = RegisterEVT.getSimpleVT(); | |
1131 NumIntermediates = 1; | |
1132 return 1; | |
1133 } | |
1134 } | |
1135 | |
1136 // Figure out the right, legal destination reg to copy into. | |
1137 EVT EltTy = VT.getVectorElementType(); | |
1138 | |
1139 unsigned NumVectorRegs = 1; | |
1140 | |
1141 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we | |
1142 // could break down into LHS/RHS like LegalizeDAG does. | |
1143 if (!isPowerOf2_32(NumElts)) { | |
1144 NumVectorRegs = NumElts; | |
1145 NumElts = 1; | |
1146 } | |
1147 | |
1148 // Divide the input until we get to a supported size. This will always | |
1149 // end with a scalar if the target doesn't support vectors. | |
1150 while (NumElts > 1 && !isTypeLegal( | |
1151 EVT::getVectorVT(Context, EltTy, NumElts))) { | |
1152 NumElts >>= 1; | |
1153 NumVectorRegs <<= 1; | |
1154 } | |
1155 | |
1156 NumIntermediates = NumVectorRegs; | |
1157 | |
1158 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); | |
1159 if (!isTypeLegal(NewVT)) | |
1160 NewVT = EltTy; | |
1161 IntermediateVT = NewVT; | |
1162 | |
1163 MVT DestVT = getRegisterType(Context, NewVT); | |
1164 RegisterVT = DestVT; | |
1165 unsigned NewVTSize = NewVT.getSizeInBits(); | |
1166 | |
1167 // Convert sizes such as i33 to i64. | |
1168 if (!isPowerOf2_32(NewVTSize)) | |
1169 NewVTSize = NextPowerOf2(NewVTSize); | |
1170 | |
1171 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. | |
1172 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | |
1173 | |
1174 // Otherwise, promotion or legal types use the same number of registers as | |
1175 // the vector decimated to the appropriate level. | |
1176 return NumVectorRegs; | |
1177 } | |
1178 | |
1179 /// Get the EVTs and ArgFlags collections that represent the legalized return | |
1180 /// type of the given function. This does not require a DAG or a return value, | |
1181 /// and is suitable for use before any DAGs for the function are constructed. | |
1182 /// TODO: Move this out of TargetLowering.cpp. | |
1183 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, | |
1184 SmallVectorImpl<ISD::OutputArg> &Outs, | |
1185 const TargetLowering &TLI) { | |
1186 SmallVector<EVT, 4> ValueVTs; | |
1187 ComputeValueVTs(TLI, ReturnType, ValueVTs); | |
1188 unsigned NumValues = ValueVTs.size(); | |
1189 if (NumValues == 0) return; | |
1190 | |
1191 for (unsigned j = 0, f = NumValues; j != f; ++j) { | |
1192 EVT VT = ValueVTs[j]; | |
1193 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | |
1194 | |
1195 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | |
1196 ExtendKind = ISD::SIGN_EXTEND; | |
1197 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) | |
1198 ExtendKind = ISD::ZERO_EXTEND; | |
1199 | |
1200 // FIXME: C calling convention requires the return type to be promoted to | |
1201 // at least 32-bit. But this is not necessary for non-C calling | |
1202 // conventions. The frontend should mark functions whose return values | |
1203 // require promoting with signext or zeroext attributes. | |
1204 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | |
1205 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); | |
1206 if (VT.bitsLT(MinVT)) | |
1207 VT = MinVT; | |
1208 } | |
1209 | |
1210 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); | |
1211 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); | |
1212 | |
1213 // 'inreg' on function refers to return value | |
1214 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | |
1215 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) | |
1216 Flags.setInReg(); | |
1217 | |
1218 // Propagate extension type if any | |
1219 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | |
1220 Flags.setSExt(); | |
1221 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) | |
1222 Flags.setZExt(); | |
1223 | |
1224 for (unsigned i = 0; i < NumParts; ++i) | |
1225 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); | |
1226 } | |
1227 } | |
1228 | |
1229 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | |
1230 /// function arguments in the caller parameter area. This is the actual | |
1231 /// alignment, not its logarithm. | |
1232 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { | |
1233 return TD->getCallFrameTypeAlignment(Ty); | |
1234 } | |
1235 | |
1236 //===----------------------------------------------------------------------===// | |
1237 // TargetTransformInfo Helpers | |
1238 //===----------------------------------------------------------------------===// | |
1239 | |
1240 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { | |
1241 enum InstructionOpcodes { | |
1242 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, | |
1243 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM | |
1244 #include "llvm/IR/Instruction.def" | |
1245 }; | |
1246 switch (static_cast<InstructionOpcodes>(Opcode)) { | |
1247 case Ret: return 0; | |
1248 case Br: return 0; | |
1249 case Switch: return 0; | |
1250 case IndirectBr: return 0; | |
1251 case Invoke: return 0; | |
1252 case Resume: return 0; | |
1253 case Unreachable: return 0; | |
1254 case Add: return ISD::ADD; | |
1255 case FAdd: return ISD::FADD; | |
1256 case Sub: return ISD::SUB; | |
1257 case FSub: return ISD::FSUB; | |
1258 case Mul: return ISD::MUL; | |
1259 case FMul: return ISD::FMUL; | |
1260 case UDiv: return ISD::UDIV; | |
1261 case SDiv: return ISD::UDIV; | |
1262 case FDiv: return ISD::FDIV; | |
1263 case URem: return ISD::UREM; | |
1264 case SRem: return ISD::SREM; | |
1265 case FRem: return ISD::FREM; | |
1266 case Shl: return ISD::SHL; | |
1267 case LShr: return ISD::SRL; | |
1268 case AShr: return ISD::SRA; | |
1269 case And: return ISD::AND; | |
1270 case Or: return ISD::OR; | |
1271 case Xor: return ISD::XOR; | |
1272 case Alloca: return 0; | |
1273 case Load: return ISD::LOAD; | |
1274 case Store: return ISD::STORE; | |
1275 case GetElementPtr: return 0; | |
1276 case Fence: return 0; | |
1277 case AtomicCmpXchg: return 0; | |
1278 case AtomicRMW: return 0; | |
1279 case Trunc: return ISD::TRUNCATE; | |
1280 case ZExt: return ISD::ZERO_EXTEND; | |
1281 case SExt: return ISD::SIGN_EXTEND; | |
1282 case FPToUI: return ISD::FP_TO_UINT; | |
1283 case FPToSI: return ISD::FP_TO_SINT; | |
1284 case UIToFP: return ISD::UINT_TO_FP; | |
1285 case SIToFP: return ISD::SINT_TO_FP; | |
1286 case FPTrunc: return ISD::FP_ROUND; | |
1287 case FPExt: return ISD::FP_EXTEND; | |
1288 case PtrToInt: return ISD::BITCAST; | |
1289 case IntToPtr: return ISD::BITCAST; | |
1290 case BitCast: return ISD::BITCAST; | |
1291 case AddrSpaceCast: return ISD::ADDRSPACECAST; | |
1292 case ICmp: return ISD::SETCC; | |
1293 case FCmp: return ISD::SETCC; | |
1294 case PHI: return 0; | |
1295 case Call: return 0; | |
1296 case Select: return ISD::SELECT; | |
1297 case UserOp1: return 0; | |
1298 case UserOp2: return 0; | |
1299 case VAArg: return 0; | |
1300 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; | |
1301 case InsertElement: return ISD::INSERT_VECTOR_ELT; | |
1302 case ShuffleVector: return ISD::VECTOR_SHUFFLE; | |
1303 case ExtractValue: return ISD::MERGE_VALUES; | |
1304 case InsertValue: return ISD::MERGE_VALUES; | |
1305 case LandingPad: return 0; | |
1306 } | |
1307 | |
1308 llvm_unreachable("Unknown instruction type encountered!"); | |
1309 } | |
1310 | |
1311 std::pair<unsigned, MVT> | |
1312 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { | |
1313 LLVMContext &C = Ty->getContext(); | |
1314 EVT MTy = getValueType(Ty); | |
1315 | |
1316 unsigned Cost = 1; | |
1317 // We keep legalizing the type until we find a legal kind. We assume that | |
1318 // the only operation that costs anything is the split. After splitting | |
1319 // we need to handle two types. | |
1320 while (true) { | |
1321 LegalizeKind LK = getTypeConversion(C, MTy); | |
1322 | |
1323 if (LK.first == TypeLegal) | |
1324 return std::make_pair(Cost, MTy.getSimpleVT()); | |
1325 | |
1326 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) | |
1327 Cost *= 2; | |
1328 | |
1329 // Keep legalizing the type. | |
1330 MTy = LK.second; | |
1331 } | |
1332 } | |
1333 | |
1334 //===----------------------------------------------------------------------===// | |
1335 // Loop Strength Reduction hooks | |
1336 //===----------------------------------------------------------------------===// | |
1337 | |
1338 /// isLegalAddressingMode - Return true if the addressing mode represented | |
1339 /// by AM is legal for this target, for a load/store of the specified type. | |
1340 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, | |
1341 Type *Ty) const { | |
1342 // The default implementation of this implements a conservative RISCy, r+r and | |
1343 // r+i addr mode. | |
1344 | |
1345 // Allows a sign-extended 16-bit immediate field. | |
1346 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | |
1347 return false; | |
1348 | |
1349 // No global is ever allowed as a base. | |
1350 if (AM.BaseGV) | |
1351 return false; | |
1352 | |
1353 // Only support r+r, | |
1354 switch (AM.Scale) { | |
1355 case 0: // "r+i" or just "i", depending on HasBaseReg. | |
1356 break; | |
1357 case 1: | |
1358 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. | |
1359 return false; | |
1360 // Otherwise we have r+r or r+i. | |
1361 break; | |
1362 case 2: | |
1363 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. | |
1364 return false; | |
1365 // Allow 2*r as r+r. | |
1366 break; | |
1367 } | |
1368 | |
1369 return true; | |
1370 } |