Mercurial > hg > CbC > CbC_llvm
comparison lib/IR/BasicBlock.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file implements the BasicBlock class for the IR library. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "llvm/IR/BasicBlock.h" | |
15 #include "SymbolTableListTraitsImpl.h" | |
16 #include "llvm/ADT/STLExtras.h" | |
17 #include "llvm/IR/Constants.h" | |
18 #include "llvm/IR/Instructions.h" | |
19 #include "llvm/IR/IntrinsicInst.h" | |
20 #include "llvm/IR/LLVMContext.h" | |
21 #include "llvm/IR/Type.h" | |
22 #include "llvm/Support/CFG.h" | |
23 #include "llvm/Support/LeakDetector.h" | |
24 #include <algorithm> | |
25 using namespace llvm; | |
26 | |
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() { | |
28 if (Function *F = getParent()) | |
29 return &F->getValueSymbolTable(); | |
30 return 0; | |
31 } | |
32 | |
33 LLVMContext &BasicBlock::getContext() const { | |
34 return getType()->getContext(); | |
35 } | |
36 | |
37 // Explicit instantiation of SymbolTableListTraits since some of the methods | |
38 // are not in the public header file... | |
39 template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; | |
40 | |
41 | |
42 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, | |
43 BasicBlock *InsertBefore) | |
44 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) { | |
45 | |
46 // Make sure that we get added to a function | |
47 LeakDetector::addGarbageObject(this); | |
48 | |
49 if (InsertBefore) { | |
50 assert(NewParent && | |
51 "Cannot insert block before another block with no function!"); | |
52 NewParent->getBasicBlockList().insert(InsertBefore, this); | |
53 } else if (NewParent) { | |
54 NewParent->getBasicBlockList().push_back(this); | |
55 } | |
56 | |
57 setName(Name); | |
58 } | |
59 | |
60 | |
61 BasicBlock::~BasicBlock() { | |
62 // If the address of the block is taken and it is being deleted (e.g. because | |
63 // it is dead), this means that there is either a dangling constant expr | |
64 // hanging off the block, or an undefined use of the block (source code | |
65 // expecting the address of a label to keep the block alive even though there | |
66 // is no indirect branch). Handle these cases by zapping the BlockAddress | |
67 // nodes. There are no other possible uses at this point. | |
68 if (hasAddressTaken()) { | |
69 assert(!use_empty() && "There should be at least one blockaddress!"); | |
70 Constant *Replacement = | |
71 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); | |
72 while (!use_empty()) { | |
73 BlockAddress *BA = cast<BlockAddress>(use_back()); | |
74 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, | |
75 BA->getType())); | |
76 BA->destroyConstant(); | |
77 } | |
78 } | |
79 | |
80 assert(getParent() == 0 && "BasicBlock still linked into the program!"); | |
81 dropAllReferences(); | |
82 InstList.clear(); | |
83 } | |
84 | |
85 void BasicBlock::setParent(Function *parent) { | |
86 if (getParent()) | |
87 LeakDetector::addGarbageObject(this); | |
88 | |
89 // Set Parent=parent, updating instruction symtab entries as appropriate. | |
90 InstList.setSymTabObject(&Parent, parent); | |
91 | |
92 if (getParent()) | |
93 LeakDetector::removeGarbageObject(this); | |
94 } | |
95 | |
96 void BasicBlock::removeFromParent() { | |
97 getParent()->getBasicBlockList().remove(this); | |
98 } | |
99 | |
100 void BasicBlock::eraseFromParent() { | |
101 getParent()->getBasicBlockList().erase(this); | |
102 } | |
103 | |
104 /// moveBefore - Unlink this basic block from its current function and | |
105 /// insert it into the function that MovePos lives in, right before MovePos. | |
106 void BasicBlock::moveBefore(BasicBlock *MovePos) { | |
107 MovePos->getParent()->getBasicBlockList().splice(MovePos, | |
108 getParent()->getBasicBlockList(), this); | |
109 } | |
110 | |
111 /// moveAfter - Unlink this basic block from its current function and | |
112 /// insert it into the function that MovePos lives in, right after MovePos. | |
113 void BasicBlock::moveAfter(BasicBlock *MovePos) { | |
114 Function::iterator I = MovePos; | |
115 MovePos->getParent()->getBasicBlockList().splice(++I, | |
116 getParent()->getBasicBlockList(), this); | |
117 } | |
118 | |
119 | |
120 TerminatorInst *BasicBlock::getTerminator() { | |
121 if (InstList.empty()) return 0; | |
122 return dyn_cast<TerminatorInst>(&InstList.back()); | |
123 } | |
124 | |
125 const TerminatorInst *BasicBlock::getTerminator() const { | |
126 if (InstList.empty()) return 0; | |
127 return dyn_cast<TerminatorInst>(&InstList.back()); | |
128 } | |
129 | |
130 Instruction* BasicBlock::getFirstNonPHI() { | |
131 BasicBlock::iterator i = begin(); | |
132 // All valid basic blocks should have a terminator, | |
133 // which is not a PHINode. If we have an invalid basic | |
134 // block we'll get an assertion failure when dereferencing | |
135 // a past-the-end iterator. | |
136 while (isa<PHINode>(i)) ++i; | |
137 return &*i; | |
138 } | |
139 | |
140 Instruction* BasicBlock::getFirstNonPHIOrDbg() { | |
141 BasicBlock::iterator i = begin(); | |
142 // All valid basic blocks should have a terminator, | |
143 // which is not a PHINode. If we have an invalid basic | |
144 // block we'll get an assertion failure when dereferencing | |
145 // a past-the-end iterator. | |
146 while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; | |
147 return &*i; | |
148 } | |
149 | |
150 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { | |
151 // All valid basic blocks should have a terminator, | |
152 // which is not a PHINode. If we have an invalid basic | |
153 // block we'll get an assertion failure when dereferencing | |
154 // a past-the-end iterator. | |
155 BasicBlock::iterator i = begin(); | |
156 for (;; ++i) { | |
157 if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) | |
158 continue; | |
159 | |
160 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i); | |
161 if (!II) | |
162 break; | |
163 if (II->getIntrinsicID() != Intrinsic::lifetime_start && | |
164 II->getIntrinsicID() != Intrinsic::lifetime_end) | |
165 break; | |
166 } | |
167 return &*i; | |
168 } | |
169 | |
170 BasicBlock::iterator BasicBlock::getFirstInsertionPt() { | |
171 iterator InsertPt = getFirstNonPHI(); | |
172 if (isa<LandingPadInst>(InsertPt)) ++InsertPt; | |
173 return InsertPt; | |
174 } | |
175 | |
176 void BasicBlock::dropAllReferences() { | |
177 for(iterator I = begin(), E = end(); I != E; ++I) | |
178 I->dropAllReferences(); | |
179 } | |
180 | |
181 /// getSinglePredecessor - If this basic block has a single predecessor block, | |
182 /// return the block, otherwise return a null pointer. | |
183 BasicBlock *BasicBlock::getSinglePredecessor() { | |
184 pred_iterator PI = pred_begin(this), E = pred_end(this); | |
185 if (PI == E) return 0; // No preds. | |
186 BasicBlock *ThePred = *PI; | |
187 ++PI; | |
188 return (PI == E) ? ThePred : 0 /*multiple preds*/; | |
189 } | |
190 | |
191 /// getUniquePredecessor - If this basic block has a unique predecessor block, | |
192 /// return the block, otherwise return a null pointer. | |
193 /// Note that unique predecessor doesn't mean single edge, there can be | |
194 /// multiple edges from the unique predecessor to this block (for example | |
195 /// a switch statement with multiple cases having the same destination). | |
196 BasicBlock *BasicBlock::getUniquePredecessor() { | |
197 pred_iterator PI = pred_begin(this), E = pred_end(this); | |
198 if (PI == E) return 0; // No preds. | |
199 BasicBlock *PredBB = *PI; | |
200 ++PI; | |
201 for (;PI != E; ++PI) { | |
202 if (*PI != PredBB) | |
203 return 0; | |
204 // The same predecessor appears multiple times in the predecessor list. | |
205 // This is OK. | |
206 } | |
207 return PredBB; | |
208 } | |
209 | |
210 /// removePredecessor - This method is used to notify a BasicBlock that the | |
211 /// specified Predecessor of the block is no longer able to reach it. This is | |
212 /// actually not used to update the Predecessor list, but is actually used to | |
213 /// update the PHI nodes that reside in the block. Note that this should be | |
214 /// called while the predecessor still refers to this block. | |
215 /// | |
216 void BasicBlock::removePredecessor(BasicBlock *Pred, | |
217 bool DontDeleteUselessPHIs) { | |
218 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. | |
219 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && | |
220 "removePredecessor: BB is not a predecessor!"); | |
221 | |
222 if (InstList.empty()) return; | |
223 PHINode *APN = dyn_cast<PHINode>(&front()); | |
224 if (!APN) return; // Quick exit. | |
225 | |
226 // If there are exactly two predecessors, then we want to nuke the PHI nodes | |
227 // altogether. However, we cannot do this, if this in this case: | |
228 // | |
229 // Loop: | |
230 // %x = phi [X, Loop] | |
231 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 | |
232 // br Loop ;; %x2 does not dominate all uses | |
233 // | |
234 // This is because the PHI node input is actually taken from the predecessor | |
235 // basic block. The only case this can happen is with a self loop, so we | |
236 // check for this case explicitly now. | |
237 // | |
238 unsigned max_idx = APN->getNumIncomingValues(); | |
239 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); | |
240 if (max_idx == 2) { | |
241 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); | |
242 | |
243 // Disable PHI elimination! | |
244 if (this == Other) max_idx = 3; | |
245 } | |
246 | |
247 // <= Two predecessors BEFORE I remove one? | |
248 if (max_idx <= 2 && !DontDeleteUselessPHIs) { | |
249 // Yup, loop through and nuke the PHI nodes | |
250 while (PHINode *PN = dyn_cast<PHINode>(&front())) { | |
251 // Remove the predecessor first. | |
252 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); | |
253 | |
254 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value | |
255 if (max_idx == 2) { | |
256 if (PN->getIncomingValue(0) != PN) | |
257 PN->replaceAllUsesWith(PN->getIncomingValue(0)); | |
258 else | |
259 // We are left with an infinite loop with no entries: kill the PHI. | |
260 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | |
261 getInstList().pop_front(); // Remove the PHI node | |
262 } | |
263 | |
264 // If the PHI node already only had one entry, it got deleted by | |
265 // removeIncomingValue. | |
266 } | |
267 } else { | |
268 // Okay, now we know that we need to remove predecessor #pred_idx from all | |
269 // PHI nodes. Iterate over each PHI node fixing them up | |
270 PHINode *PN; | |
271 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { | |
272 ++II; | |
273 PN->removeIncomingValue(Pred, false); | |
274 // If all incoming values to the Phi are the same, we can replace the Phi | |
275 // with that value. | |
276 Value* PNV = 0; | |
277 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) | |
278 if (PNV != PN) { | |
279 PN->replaceAllUsesWith(PNV); | |
280 PN->eraseFromParent(); | |
281 } | |
282 } | |
283 } | |
284 } | |
285 | |
286 | |
287 /// splitBasicBlock - This splits a basic block into two at the specified | |
288 /// instruction. Note that all instructions BEFORE the specified iterator stay | |
289 /// as part of the original basic block, an unconditional branch is added to | |
290 /// the new BB, and the rest of the instructions in the BB are moved to the new | |
291 /// BB, including the old terminator. This invalidates the iterator. | |
292 /// | |
293 /// Note that this only works on well formed basic blocks (must have a | |
294 /// terminator), and 'I' must not be the end of instruction list (which would | |
295 /// cause a degenerate basic block to be formed, having a terminator inside of | |
296 /// the basic block). | |
297 /// | |
298 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { | |
299 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); | |
300 assert(I != InstList.end() && | |
301 "Trying to get me to create degenerate basic block!"); | |
302 | |
303 BasicBlock *InsertBefore = llvm::next(Function::iterator(this)) | |
304 .getNodePtrUnchecked(); | |
305 BasicBlock *New = BasicBlock::Create(getContext(), BBName, | |
306 getParent(), InsertBefore); | |
307 | |
308 // Move all of the specified instructions from the original basic block into | |
309 // the new basic block. | |
310 New->getInstList().splice(New->end(), this->getInstList(), I, end()); | |
311 | |
312 // Add a branch instruction to the newly formed basic block. | |
313 BranchInst::Create(New, this); | |
314 | |
315 // Now we must loop through all of the successors of the New block (which | |
316 // _were_ the successors of the 'this' block), and update any PHI nodes in | |
317 // successors. If there were PHI nodes in the successors, then they need to | |
318 // know that incoming branches will be from New, not from Old. | |
319 // | |
320 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { | |
321 // Loop over any phi nodes in the basic block, updating the BB field of | |
322 // incoming values... | |
323 BasicBlock *Successor = *I; | |
324 PHINode *PN; | |
325 for (BasicBlock::iterator II = Successor->begin(); | |
326 (PN = dyn_cast<PHINode>(II)); ++II) { | |
327 int IDX = PN->getBasicBlockIndex(this); | |
328 while (IDX != -1) { | |
329 PN->setIncomingBlock((unsigned)IDX, New); | |
330 IDX = PN->getBasicBlockIndex(this); | |
331 } | |
332 } | |
333 } | |
334 return New; | |
335 } | |
336 | |
337 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { | |
338 TerminatorInst *TI = getTerminator(); | |
339 if (!TI) | |
340 // Cope with being called on a BasicBlock that doesn't have a terminator | |
341 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. | |
342 return; | |
343 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | |
344 BasicBlock *Succ = TI->getSuccessor(i); | |
345 // N.B. Succ might not be a complete BasicBlock, so don't assume | |
346 // that it ends with a non-phi instruction. | |
347 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { | |
348 PHINode *PN = dyn_cast<PHINode>(II); | |
349 if (!PN) | |
350 break; | |
351 int i; | |
352 while ((i = PN->getBasicBlockIndex(this)) >= 0) | |
353 PN->setIncomingBlock(i, New); | |
354 } | |
355 } | |
356 } | |
357 | |
358 /// isLandingPad - Return true if this basic block is a landing pad. I.e., it's | |
359 /// the destination of the 'unwind' edge of an invoke instruction. | |
360 bool BasicBlock::isLandingPad() const { | |
361 return isa<LandingPadInst>(getFirstNonPHI()); | |
362 } | |
363 | |
364 /// getLandingPadInst() - Return the landingpad instruction associated with | |
365 /// the landing pad. | |
366 LandingPadInst *BasicBlock::getLandingPadInst() { | |
367 return dyn_cast<LandingPadInst>(getFirstNonPHI()); | |
368 } | |
369 const LandingPadInst *BasicBlock::getLandingPadInst() const { | |
370 return dyn_cast<LandingPadInst>(getFirstNonPHI()); | |
371 } |