comparison lib/Support/YAMLParser.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/YAMLParser.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/SourceMgr.h"
23 #include "llvm/Support/raw_ostream.h"
24
25 using namespace llvm;
26 using namespace yaml;
27
28 enum UnicodeEncodingForm {
29 UEF_UTF32_LE, ///< UTF-32 Little Endian
30 UEF_UTF32_BE, ///< UTF-32 Big Endian
31 UEF_UTF16_LE, ///< UTF-16 Little Endian
32 UEF_UTF16_BE, ///< UTF-16 Big Endian
33 UEF_UTF8, ///< UTF-8 or ascii.
34 UEF_Unknown ///< Not a valid Unicode encoding.
35 };
36
37 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
38 /// it exists. Length is in {0, 2, 3, 4}.
39 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
40
41 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
42 /// encoding form of \a Input.
43 ///
44 /// @param Input A string of length 0 or more.
45 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
46 /// and how long the byte order mark is if one exists.
47 static EncodingInfo getUnicodeEncoding(StringRef Input) {
48 if (Input.size() == 0)
49 return std::make_pair(UEF_Unknown, 0);
50
51 switch (uint8_t(Input[0])) {
52 case 0x00:
53 if (Input.size() >= 4) {
54 if ( Input[1] == 0
55 && uint8_t(Input[2]) == 0xFE
56 && uint8_t(Input[3]) == 0xFF)
57 return std::make_pair(UEF_UTF32_BE, 4);
58 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
59 return std::make_pair(UEF_UTF32_BE, 0);
60 }
61
62 if (Input.size() >= 2 && Input[1] != 0)
63 return std::make_pair(UEF_UTF16_BE, 0);
64 return std::make_pair(UEF_Unknown, 0);
65 case 0xFF:
66 if ( Input.size() >= 4
67 && uint8_t(Input[1]) == 0xFE
68 && Input[2] == 0
69 && Input[3] == 0)
70 return std::make_pair(UEF_UTF32_LE, 4);
71
72 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
73 return std::make_pair(UEF_UTF16_LE, 2);
74 return std::make_pair(UEF_Unknown, 0);
75 case 0xFE:
76 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
77 return std::make_pair(UEF_UTF16_BE, 2);
78 return std::make_pair(UEF_Unknown, 0);
79 case 0xEF:
80 if ( Input.size() >= 3
81 && uint8_t(Input[1]) == 0xBB
82 && uint8_t(Input[2]) == 0xBF)
83 return std::make_pair(UEF_UTF8, 3);
84 return std::make_pair(UEF_Unknown, 0);
85 }
86
87 // It could still be utf-32 or utf-16.
88 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
89 return std::make_pair(UEF_UTF32_LE, 0);
90
91 if (Input.size() >= 2 && Input[1] == 0)
92 return std::make_pair(UEF_UTF16_LE, 0);
93
94 return std::make_pair(UEF_UTF8, 0);
95 }
96
97 namespace llvm {
98 namespace yaml {
99 /// Pin the vtables to this file.
100 void Node::anchor() {}
101 void NullNode::anchor() {}
102 void ScalarNode::anchor() {}
103 void KeyValueNode::anchor() {}
104 void MappingNode::anchor() {}
105 void SequenceNode::anchor() {}
106 void AliasNode::anchor() {}
107
108 /// Token - A single YAML token.
109 struct Token : ilist_node<Token> {
110 enum TokenKind {
111 TK_Error, // Uninitialized token.
112 TK_StreamStart,
113 TK_StreamEnd,
114 TK_VersionDirective,
115 TK_TagDirective,
116 TK_DocumentStart,
117 TK_DocumentEnd,
118 TK_BlockEntry,
119 TK_BlockEnd,
120 TK_BlockSequenceStart,
121 TK_BlockMappingStart,
122 TK_FlowEntry,
123 TK_FlowSequenceStart,
124 TK_FlowSequenceEnd,
125 TK_FlowMappingStart,
126 TK_FlowMappingEnd,
127 TK_Key,
128 TK_Value,
129 TK_Scalar,
130 TK_Alias,
131 TK_Anchor,
132 TK_Tag
133 } Kind;
134
135 /// A string of length 0 or more whose begin() points to the logical location
136 /// of the token in the input.
137 StringRef Range;
138
139 Token() : Kind(TK_Error) {}
140 };
141 }
142 }
143
144 namespace llvm {
145 template<>
146 struct ilist_sentinel_traits<Token> {
147 Token *createSentinel() const {
148 return &Sentinel;
149 }
150 static void destroySentinel(Token*) {}
151
152 Token *provideInitialHead() const { return createSentinel(); }
153 Token *ensureHead(Token*) const { return createSentinel(); }
154 static void noteHead(Token*, Token*) {}
155
156 private:
157 mutable Token Sentinel;
158 };
159
160 template<>
161 struct ilist_node_traits<Token> {
162 Token *createNode(const Token &V) {
163 return new (Alloc.Allocate<Token>()) Token(V);
164 }
165 static void deleteNode(Token *V) {}
166
167 void addNodeToList(Token *) {}
168 void removeNodeFromList(Token *) {}
169 void transferNodesFromList(ilist_node_traits & /*SrcTraits*/,
170 ilist_iterator<Token> /*first*/,
171 ilist_iterator<Token> /*last*/) {}
172
173 BumpPtrAllocator Alloc;
174 };
175 }
176
177 typedef ilist<Token> TokenQueueT;
178
179 namespace {
180 /// @brief This struct is used to track simple keys.
181 ///
182 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
183 /// which could legally be the start of a simple key. When peekNext is called,
184 /// if the Token To be returned is referenced by a SimpleKey, we continue
185 /// tokenizing until that potential simple key has either been found to not be
186 /// a simple key (we moved on to the next line or went further than 1024 chars).
187 /// Or when we run into a Value, and then insert a Key token (and possibly
188 /// others) before the SimpleKey's Tok.
189 struct SimpleKey {
190 TokenQueueT::iterator Tok;
191 unsigned Column;
192 unsigned Line;
193 unsigned FlowLevel;
194 bool IsRequired;
195
196 bool operator ==(const SimpleKey &Other) {
197 return Tok == Other.Tok;
198 }
199 };
200 }
201
202 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
203 /// subsequence and the subsequence's length in code units (uint8_t).
204 /// A length of 0 represents an error.
205 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
206
207 static UTF8Decoded decodeUTF8(StringRef Range) {
208 StringRef::iterator Position= Range.begin();
209 StringRef::iterator End = Range.end();
210 // 1 byte: [0x00, 0x7f]
211 // Bit pattern: 0xxxxxxx
212 if ((*Position & 0x80) == 0) {
213 return std::make_pair(*Position, 1);
214 }
215 // 2 bytes: [0x80, 0x7ff]
216 // Bit pattern: 110xxxxx 10xxxxxx
217 if (Position + 1 != End &&
218 ((*Position & 0xE0) == 0xC0) &&
219 ((*(Position + 1) & 0xC0) == 0x80)) {
220 uint32_t codepoint = ((*Position & 0x1F) << 6) |
221 (*(Position + 1) & 0x3F);
222 if (codepoint >= 0x80)
223 return std::make_pair(codepoint, 2);
224 }
225 // 3 bytes: [0x8000, 0xffff]
226 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
227 if (Position + 2 != End &&
228 ((*Position & 0xF0) == 0xE0) &&
229 ((*(Position + 1) & 0xC0) == 0x80) &&
230 ((*(Position + 2) & 0xC0) == 0x80)) {
231 uint32_t codepoint = ((*Position & 0x0F) << 12) |
232 ((*(Position + 1) & 0x3F) << 6) |
233 (*(Position + 2) & 0x3F);
234 // Codepoints between 0xD800 and 0xDFFF are invalid, as
235 // they are high / low surrogate halves used by UTF-16.
236 if (codepoint >= 0x800 &&
237 (codepoint < 0xD800 || codepoint > 0xDFFF))
238 return std::make_pair(codepoint, 3);
239 }
240 // 4 bytes: [0x10000, 0x10FFFF]
241 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
242 if (Position + 3 != End &&
243 ((*Position & 0xF8) == 0xF0) &&
244 ((*(Position + 1) & 0xC0) == 0x80) &&
245 ((*(Position + 2) & 0xC0) == 0x80) &&
246 ((*(Position + 3) & 0xC0) == 0x80)) {
247 uint32_t codepoint = ((*Position & 0x07) << 18) |
248 ((*(Position + 1) & 0x3F) << 12) |
249 ((*(Position + 2) & 0x3F) << 6) |
250 (*(Position + 3) & 0x3F);
251 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
252 return std::make_pair(codepoint, 4);
253 }
254 return std::make_pair(0, 0);
255 }
256
257 namespace llvm {
258 namespace yaml {
259 /// @brief Scans YAML tokens from a MemoryBuffer.
260 class Scanner {
261 public:
262 Scanner(const StringRef Input, SourceMgr &SM);
263 Scanner(MemoryBuffer *Buffer, SourceMgr &SM_);
264
265 /// @brief Parse the next token and return it without popping it.
266 Token &peekNext();
267
268 /// @brief Parse the next token and pop it from the queue.
269 Token getNext();
270
271 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
272 ArrayRef<SMRange> Ranges = None) {
273 SM.PrintMessage(Loc, Kind, Message, Ranges);
274 }
275
276 void setError(const Twine &Message, StringRef::iterator Position) {
277 if (Current >= End)
278 Current = End - 1;
279
280 // Don't print out more errors after the first one we encounter. The rest
281 // are just the result of the first, and have no meaning.
282 if (!Failed)
283 printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
284 Failed = true;
285 }
286
287 void setError(const Twine &Message) {
288 setError(Message, Current);
289 }
290
291 /// @brief Returns true if an error occurred while parsing.
292 bool failed() {
293 return Failed;
294 }
295
296 private:
297 StringRef currentInput() {
298 return StringRef(Current, End - Current);
299 }
300
301 /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
302 /// at \a Position.
303 ///
304 /// If the UTF-8 code units starting at Position do not form a well-formed
305 /// code unit subsequence, then the Unicode scalar value is 0, and the length
306 /// is 0.
307 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
308 return ::decodeUTF8(StringRef(Position, End - Position));
309 }
310
311 // The following functions are based on the gramar rules in the YAML spec. The
312 // style of the function names it meant to closely match how they are written
313 // in the spec. The number within the [] is the number of the grammar rule in
314 // the spec.
315 //
316 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
317 //
318 // c-
319 // A production starting and ending with a special character.
320 // b-
321 // A production matching a single line break.
322 // nb-
323 // A production starting and ending with a non-break character.
324 // s-
325 // A production starting and ending with a white space character.
326 // ns-
327 // A production starting and ending with a non-space character.
328 // l-
329 // A production matching complete line(s).
330
331 /// @brief Skip a single nb-char[27] starting at Position.
332 ///
333 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
334 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
335 ///
336 /// @returns The code unit after the nb-char, or Position if it's not an
337 /// nb-char.
338 StringRef::iterator skip_nb_char(StringRef::iterator Position);
339
340 /// @brief Skip a single b-break[28] starting at Position.
341 ///
342 /// A b-break is 0xD 0xA | 0xD | 0xA
343 ///
344 /// @returns The code unit after the b-break, or Position if it's not a
345 /// b-break.
346 StringRef::iterator skip_b_break(StringRef::iterator Position);
347
348 /// @brief Skip a single s-white[33] starting at Position.
349 ///
350 /// A s-white is 0x20 | 0x9
351 ///
352 /// @returns The code unit after the s-white, or Position if it's not a
353 /// s-white.
354 StringRef::iterator skip_s_white(StringRef::iterator Position);
355
356 /// @brief Skip a single ns-char[34] starting at Position.
357 ///
358 /// A ns-char is nb-char - s-white
359 ///
360 /// @returns The code unit after the ns-char, or Position if it's not a
361 /// ns-char.
362 StringRef::iterator skip_ns_char(StringRef::iterator Position);
363
364 typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
365 /// @brief Skip minimal well-formed code unit subsequences until Func
366 /// returns its input.
367 ///
368 /// @returns The code unit after the last minimal well-formed code unit
369 /// subsequence that Func accepted.
370 StringRef::iterator skip_while( SkipWhileFunc Func
371 , StringRef::iterator Position);
372
373 /// @brief Scan ns-uri-char[39]s starting at Cur.
374 ///
375 /// This updates Cur and Column while scanning.
376 ///
377 /// @returns A StringRef starting at Cur which covers the longest contiguous
378 /// sequence of ns-uri-char.
379 StringRef scan_ns_uri_char();
380
381 /// @brief Scan ns-plain-one-line[133] starting at \a Cur.
382 StringRef scan_ns_plain_one_line();
383
384 /// @brief Consume a minimal well-formed code unit subsequence starting at
385 /// \a Cur. Return false if it is not the same Unicode scalar value as
386 /// \a Expected. This updates \a Column.
387 bool consume(uint32_t Expected);
388
389 /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
390 void skip(uint32_t Distance);
391
392 /// @brief Return true if the minimal well-formed code unit subsequence at
393 /// Pos is whitespace or a new line
394 bool isBlankOrBreak(StringRef::iterator Position);
395
396 /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
397 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
398 , unsigned AtColumn
399 , bool IsRequired);
400
401 /// @brief Remove simple keys that can no longer be valid simple keys.
402 ///
403 /// Invalid simple keys are not on the current line or are further than 1024
404 /// columns back.
405 void removeStaleSimpleKeyCandidates();
406
407 /// @brief Remove all simple keys on FlowLevel \a Level.
408 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
409
410 /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
411 /// tokens if needed.
412 bool unrollIndent(int ToColumn);
413
414 /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
415 /// if needed.
416 bool rollIndent( int ToColumn
417 , Token::TokenKind Kind
418 , TokenQueueT::iterator InsertPoint);
419
420 /// @brief Skip whitespace and comments until the start of the next token.
421 void scanToNextToken();
422
423 /// @brief Must be the first token generated.
424 bool scanStreamStart();
425
426 /// @brief Generate tokens needed to close out the stream.
427 bool scanStreamEnd();
428
429 /// @brief Scan a %BLAH directive.
430 bool scanDirective();
431
432 /// @brief Scan a ... or ---.
433 bool scanDocumentIndicator(bool IsStart);
434
435 /// @brief Scan a [ or { and generate the proper flow collection start token.
436 bool scanFlowCollectionStart(bool IsSequence);
437
438 /// @brief Scan a ] or } and generate the proper flow collection end token.
439 bool scanFlowCollectionEnd(bool IsSequence);
440
441 /// @brief Scan the , that separates entries in a flow collection.
442 bool scanFlowEntry();
443
444 /// @brief Scan the - that starts block sequence entries.
445 bool scanBlockEntry();
446
447 /// @brief Scan an explicit ? indicating a key.
448 bool scanKey();
449
450 /// @brief Scan an explicit : indicating a value.
451 bool scanValue();
452
453 /// @brief Scan a quoted scalar.
454 bool scanFlowScalar(bool IsDoubleQuoted);
455
456 /// @brief Scan an unquoted scalar.
457 bool scanPlainScalar();
458
459 /// @brief Scan an Alias or Anchor starting with * or &.
460 bool scanAliasOrAnchor(bool IsAlias);
461
462 /// @brief Scan a block scalar starting with | or >.
463 bool scanBlockScalar(bool IsLiteral);
464
465 /// @brief Scan a tag of the form !stuff.
466 bool scanTag();
467
468 /// @brief Dispatch to the next scanning function based on \a *Cur.
469 bool fetchMoreTokens();
470
471 /// @brief The SourceMgr used for diagnostics and buffer management.
472 SourceMgr &SM;
473
474 /// @brief The original input.
475 MemoryBuffer *InputBuffer;
476
477 /// @brief The current position of the scanner.
478 StringRef::iterator Current;
479
480 /// @brief The end of the input (one past the last character).
481 StringRef::iterator End;
482
483 /// @brief Current YAML indentation level in spaces.
484 int Indent;
485
486 /// @brief Current column number in Unicode code points.
487 unsigned Column;
488
489 /// @brief Current line number.
490 unsigned Line;
491
492 /// @brief How deep we are in flow style containers. 0 Means at block level.
493 unsigned FlowLevel;
494
495 /// @brief Are we at the start of the stream?
496 bool IsStartOfStream;
497
498 /// @brief Can the next token be the start of a simple key?
499 bool IsSimpleKeyAllowed;
500
501 /// @brief True if an error has occurred.
502 bool Failed;
503
504 /// @brief Queue of tokens. This is required to queue up tokens while looking
505 /// for the end of a simple key. And for cases where a single character
506 /// can produce multiple tokens (e.g. BlockEnd).
507 TokenQueueT TokenQueue;
508
509 /// @brief Indentation levels.
510 SmallVector<int, 4> Indents;
511
512 /// @brief Potential simple keys.
513 SmallVector<SimpleKey, 4> SimpleKeys;
514 };
515
516 } // end namespace yaml
517 } // end namespace llvm
518
519 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
520 static void encodeUTF8( uint32_t UnicodeScalarValue
521 , SmallVectorImpl<char> &Result) {
522 if (UnicodeScalarValue <= 0x7F) {
523 Result.push_back(UnicodeScalarValue & 0x7F);
524 } else if (UnicodeScalarValue <= 0x7FF) {
525 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
526 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
527 Result.push_back(FirstByte);
528 Result.push_back(SecondByte);
529 } else if (UnicodeScalarValue <= 0xFFFF) {
530 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
531 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
532 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
533 Result.push_back(FirstByte);
534 Result.push_back(SecondByte);
535 Result.push_back(ThirdByte);
536 } else if (UnicodeScalarValue <= 0x10FFFF) {
537 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
538 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
539 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
540 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
541 Result.push_back(FirstByte);
542 Result.push_back(SecondByte);
543 Result.push_back(ThirdByte);
544 Result.push_back(FourthByte);
545 }
546 }
547
548 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
549 SourceMgr SM;
550 Scanner scanner(Input, SM);
551 while (true) {
552 Token T = scanner.getNext();
553 switch (T.Kind) {
554 case Token::TK_StreamStart:
555 OS << "Stream-Start: ";
556 break;
557 case Token::TK_StreamEnd:
558 OS << "Stream-End: ";
559 break;
560 case Token::TK_VersionDirective:
561 OS << "Version-Directive: ";
562 break;
563 case Token::TK_TagDirective:
564 OS << "Tag-Directive: ";
565 break;
566 case Token::TK_DocumentStart:
567 OS << "Document-Start: ";
568 break;
569 case Token::TK_DocumentEnd:
570 OS << "Document-End: ";
571 break;
572 case Token::TK_BlockEntry:
573 OS << "Block-Entry: ";
574 break;
575 case Token::TK_BlockEnd:
576 OS << "Block-End: ";
577 break;
578 case Token::TK_BlockSequenceStart:
579 OS << "Block-Sequence-Start: ";
580 break;
581 case Token::TK_BlockMappingStart:
582 OS << "Block-Mapping-Start: ";
583 break;
584 case Token::TK_FlowEntry:
585 OS << "Flow-Entry: ";
586 break;
587 case Token::TK_FlowSequenceStart:
588 OS << "Flow-Sequence-Start: ";
589 break;
590 case Token::TK_FlowSequenceEnd:
591 OS << "Flow-Sequence-End: ";
592 break;
593 case Token::TK_FlowMappingStart:
594 OS << "Flow-Mapping-Start: ";
595 break;
596 case Token::TK_FlowMappingEnd:
597 OS << "Flow-Mapping-End: ";
598 break;
599 case Token::TK_Key:
600 OS << "Key: ";
601 break;
602 case Token::TK_Value:
603 OS << "Value: ";
604 break;
605 case Token::TK_Scalar:
606 OS << "Scalar: ";
607 break;
608 case Token::TK_Alias:
609 OS << "Alias: ";
610 break;
611 case Token::TK_Anchor:
612 OS << "Anchor: ";
613 break;
614 case Token::TK_Tag:
615 OS << "Tag: ";
616 break;
617 case Token::TK_Error:
618 break;
619 }
620 OS << T.Range << "\n";
621 if (T.Kind == Token::TK_StreamEnd)
622 break;
623 else if (T.Kind == Token::TK_Error)
624 return false;
625 }
626 return true;
627 }
628
629 bool yaml::scanTokens(StringRef Input) {
630 llvm::SourceMgr SM;
631 llvm::yaml::Scanner scanner(Input, SM);
632 for (;;) {
633 llvm::yaml::Token T = scanner.getNext();
634 if (T.Kind == Token::TK_StreamEnd)
635 break;
636 else if (T.Kind == Token::TK_Error)
637 return false;
638 }
639 return true;
640 }
641
642 std::string yaml::escape(StringRef Input) {
643 std::string EscapedInput;
644 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
645 if (*i == '\\')
646 EscapedInput += "\\\\";
647 else if (*i == '"')
648 EscapedInput += "\\\"";
649 else if (*i == 0)
650 EscapedInput += "\\0";
651 else if (*i == 0x07)
652 EscapedInput += "\\a";
653 else if (*i == 0x08)
654 EscapedInput += "\\b";
655 else if (*i == 0x09)
656 EscapedInput += "\\t";
657 else if (*i == 0x0A)
658 EscapedInput += "\\n";
659 else if (*i == 0x0B)
660 EscapedInput += "\\v";
661 else if (*i == 0x0C)
662 EscapedInput += "\\f";
663 else if (*i == 0x0D)
664 EscapedInput += "\\r";
665 else if (*i == 0x1B)
666 EscapedInput += "\\e";
667 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
668 std::string HexStr = utohexstr(*i);
669 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
670 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
671 UTF8Decoded UnicodeScalarValue
672 = decodeUTF8(StringRef(i, Input.end() - i));
673 if (UnicodeScalarValue.second == 0) {
674 // Found invalid char.
675 SmallString<4> Val;
676 encodeUTF8(0xFFFD, Val);
677 EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
678 // FIXME: Error reporting.
679 return EscapedInput;
680 }
681 if (UnicodeScalarValue.first == 0x85)
682 EscapedInput += "\\N";
683 else if (UnicodeScalarValue.first == 0xA0)
684 EscapedInput += "\\_";
685 else if (UnicodeScalarValue.first == 0x2028)
686 EscapedInput += "\\L";
687 else if (UnicodeScalarValue.first == 0x2029)
688 EscapedInput += "\\P";
689 else {
690 std::string HexStr = utohexstr(UnicodeScalarValue.first);
691 if (HexStr.size() <= 2)
692 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
693 else if (HexStr.size() <= 4)
694 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
695 else if (HexStr.size() <= 8)
696 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
697 }
698 i += UnicodeScalarValue.second - 1;
699 } else
700 EscapedInput.push_back(*i);
701 }
702 return EscapedInput;
703 }
704
705 Scanner::Scanner(StringRef Input, SourceMgr &sm)
706 : SM(sm)
707 , Indent(-1)
708 , Column(0)
709 , Line(0)
710 , FlowLevel(0)
711 , IsStartOfStream(true)
712 , IsSimpleKeyAllowed(true)
713 , Failed(false) {
714 InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
715 SM.AddNewSourceBuffer(InputBuffer, SMLoc());
716 Current = InputBuffer->getBufferStart();
717 End = InputBuffer->getBufferEnd();
718 }
719
720 Scanner::Scanner(MemoryBuffer *Buffer, SourceMgr &SM_)
721 : SM(SM_)
722 , InputBuffer(Buffer)
723 , Current(InputBuffer->getBufferStart())
724 , End(InputBuffer->getBufferEnd())
725 , Indent(-1)
726 , Column(0)
727 , Line(0)
728 , FlowLevel(0)
729 , IsStartOfStream(true)
730 , IsSimpleKeyAllowed(true)
731 , Failed(false) {
732 SM.AddNewSourceBuffer(InputBuffer, SMLoc());
733 }
734
735 Token &Scanner::peekNext() {
736 // If the current token is a possible simple key, keep parsing until we
737 // can confirm.
738 bool NeedMore = false;
739 while (true) {
740 if (TokenQueue.empty() || NeedMore) {
741 if (!fetchMoreTokens()) {
742 TokenQueue.clear();
743 TokenQueue.push_back(Token());
744 return TokenQueue.front();
745 }
746 }
747 assert(!TokenQueue.empty() &&
748 "fetchMoreTokens lied about getting tokens!");
749
750 removeStaleSimpleKeyCandidates();
751 SimpleKey SK;
752 SK.Tok = TokenQueue.front();
753 if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
754 == SimpleKeys.end())
755 break;
756 else
757 NeedMore = true;
758 }
759 return TokenQueue.front();
760 }
761
762 Token Scanner::getNext() {
763 Token Ret = peekNext();
764 // TokenQueue can be empty if there was an error getting the next token.
765 if (!TokenQueue.empty())
766 TokenQueue.pop_front();
767
768 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
769 // quick deallocation of them all.
770 if (TokenQueue.empty()) {
771 TokenQueue.Alloc.Reset();
772 }
773
774 return Ret;
775 }
776
777 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
778 if (Position == End)
779 return Position;
780 // Check 7 bit c-printable - b-char.
781 if ( *Position == 0x09
782 || (*Position >= 0x20 && *Position <= 0x7E))
783 return Position + 1;
784
785 // Check for valid UTF-8.
786 if (uint8_t(*Position) & 0x80) {
787 UTF8Decoded u8d = decodeUTF8(Position);
788 if ( u8d.second != 0
789 && u8d.first != 0xFEFF
790 && ( u8d.first == 0x85
791 || ( u8d.first >= 0xA0
792 && u8d.first <= 0xD7FF)
793 || ( u8d.first >= 0xE000
794 && u8d.first <= 0xFFFD)
795 || ( u8d.first >= 0x10000
796 && u8d.first <= 0x10FFFF)))
797 return Position + u8d.second;
798 }
799 return Position;
800 }
801
802 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
803 if (Position == End)
804 return Position;
805 if (*Position == 0x0D) {
806 if (Position + 1 != End && *(Position + 1) == 0x0A)
807 return Position + 2;
808 return Position + 1;
809 }
810
811 if (*Position == 0x0A)
812 return Position + 1;
813 return Position;
814 }
815
816
817 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
818 if (Position == End)
819 return Position;
820 if (*Position == ' ' || *Position == '\t')
821 return Position + 1;
822 return Position;
823 }
824
825 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
826 if (Position == End)
827 return Position;
828 if (*Position == ' ' || *Position == '\t')
829 return Position;
830 return skip_nb_char(Position);
831 }
832
833 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
834 , StringRef::iterator Position) {
835 while (true) {
836 StringRef::iterator i = (this->*Func)(Position);
837 if (i == Position)
838 break;
839 Position = i;
840 }
841 return Position;
842 }
843
844 static bool is_ns_hex_digit(const char C) {
845 return (C >= '0' && C <= '9')
846 || (C >= 'a' && C <= 'z')
847 || (C >= 'A' && C <= 'Z');
848 }
849
850 static bool is_ns_word_char(const char C) {
851 return C == '-'
852 || (C >= 'a' && C <= 'z')
853 || (C >= 'A' && C <= 'Z');
854 }
855
856 StringRef Scanner::scan_ns_uri_char() {
857 StringRef::iterator Start = Current;
858 while (true) {
859 if (Current == End)
860 break;
861 if (( *Current == '%'
862 && Current + 2 < End
863 && is_ns_hex_digit(*(Current + 1))
864 && is_ns_hex_digit(*(Current + 2)))
865 || is_ns_word_char(*Current)
866 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
867 != StringRef::npos) {
868 ++Current;
869 ++Column;
870 } else
871 break;
872 }
873 return StringRef(Start, Current - Start);
874 }
875
876 StringRef Scanner::scan_ns_plain_one_line() {
877 StringRef::iterator start = Current;
878 // The first character must already be verified.
879 ++Current;
880 while (true) {
881 if (Current == End) {
882 break;
883 } else if (*Current == ':') {
884 // Check if the next character is a ns-char.
885 if (Current + 1 == End)
886 break;
887 StringRef::iterator i = skip_ns_char(Current + 1);
888 if (Current + 1 != i) {
889 Current = i;
890 Column += 2; // Consume both the ':' and ns-char.
891 } else
892 break;
893 } else if (*Current == '#') {
894 // Check if the previous character was a ns-char.
895 // The & 0x80 check is to check for the trailing byte of a utf-8
896 if (*(Current - 1) & 0x80 || skip_ns_char(Current - 1) == Current) {
897 ++Current;
898 ++Column;
899 } else
900 break;
901 } else {
902 StringRef::iterator i = skip_nb_char(Current);
903 if (i == Current)
904 break;
905 Current = i;
906 ++Column;
907 }
908 }
909 return StringRef(start, Current - start);
910 }
911
912 bool Scanner::consume(uint32_t Expected) {
913 if (Expected >= 0x80)
914 report_fatal_error("Not dealing with this yet");
915 if (Current == End)
916 return false;
917 if (uint8_t(*Current) >= 0x80)
918 report_fatal_error("Not dealing with this yet");
919 if (uint8_t(*Current) == Expected) {
920 ++Current;
921 ++Column;
922 return true;
923 }
924 return false;
925 }
926
927 void Scanner::skip(uint32_t Distance) {
928 Current += Distance;
929 Column += Distance;
930 assert(Current <= End && "Skipped past the end");
931 }
932
933 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
934 if (Position == End)
935 return false;
936 if ( *Position == ' ' || *Position == '\t'
937 || *Position == '\r' || *Position == '\n')
938 return true;
939 return false;
940 }
941
942 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
943 , unsigned AtColumn
944 , bool IsRequired) {
945 if (IsSimpleKeyAllowed) {
946 SimpleKey SK;
947 SK.Tok = Tok;
948 SK.Line = Line;
949 SK.Column = AtColumn;
950 SK.IsRequired = IsRequired;
951 SK.FlowLevel = FlowLevel;
952 SimpleKeys.push_back(SK);
953 }
954 }
955
956 void Scanner::removeStaleSimpleKeyCandidates() {
957 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
958 i != SimpleKeys.end();) {
959 if (i->Line != Line || i->Column + 1024 < Column) {
960 if (i->IsRequired)
961 setError( "Could not find expected : for simple key"
962 , i->Tok->Range.begin());
963 i = SimpleKeys.erase(i);
964 } else
965 ++i;
966 }
967 }
968
969 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
970 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
971 SimpleKeys.pop_back();
972 }
973
974 bool Scanner::unrollIndent(int ToColumn) {
975 Token T;
976 // Indentation is ignored in flow.
977 if (FlowLevel != 0)
978 return true;
979
980 while (Indent > ToColumn) {
981 T.Kind = Token::TK_BlockEnd;
982 T.Range = StringRef(Current, 1);
983 TokenQueue.push_back(T);
984 Indent = Indents.pop_back_val();
985 }
986
987 return true;
988 }
989
990 bool Scanner::rollIndent( int ToColumn
991 , Token::TokenKind Kind
992 , TokenQueueT::iterator InsertPoint) {
993 if (FlowLevel)
994 return true;
995 if (Indent < ToColumn) {
996 Indents.push_back(Indent);
997 Indent = ToColumn;
998
999 Token T;
1000 T.Kind = Kind;
1001 T.Range = StringRef(Current, 0);
1002 TokenQueue.insert(InsertPoint, T);
1003 }
1004 return true;
1005 }
1006
1007 void Scanner::scanToNextToken() {
1008 while (true) {
1009 while (*Current == ' ' || *Current == '\t') {
1010 skip(1);
1011 }
1012
1013 // Skip comment.
1014 if (*Current == '#') {
1015 while (true) {
1016 // This may skip more than one byte, thus Column is only incremented
1017 // for code points.
1018 StringRef::iterator i = skip_nb_char(Current);
1019 if (i == Current)
1020 break;
1021 Current = i;
1022 ++Column;
1023 }
1024 }
1025
1026 // Skip EOL.
1027 StringRef::iterator i = skip_b_break(Current);
1028 if (i == Current)
1029 break;
1030 Current = i;
1031 ++Line;
1032 Column = 0;
1033 // New lines may start a simple key.
1034 if (!FlowLevel)
1035 IsSimpleKeyAllowed = true;
1036 }
1037 }
1038
1039 bool Scanner::scanStreamStart() {
1040 IsStartOfStream = false;
1041
1042 EncodingInfo EI = getUnicodeEncoding(currentInput());
1043
1044 Token T;
1045 T.Kind = Token::TK_StreamStart;
1046 T.Range = StringRef(Current, EI.second);
1047 TokenQueue.push_back(T);
1048 Current += EI.second;
1049 return true;
1050 }
1051
1052 bool Scanner::scanStreamEnd() {
1053 // Force an ending new line if one isn't present.
1054 if (Column != 0) {
1055 Column = 0;
1056 ++Line;
1057 }
1058
1059 unrollIndent(-1);
1060 SimpleKeys.clear();
1061 IsSimpleKeyAllowed = false;
1062
1063 Token T;
1064 T.Kind = Token::TK_StreamEnd;
1065 T.Range = StringRef(Current, 0);
1066 TokenQueue.push_back(T);
1067 return true;
1068 }
1069
1070 bool Scanner::scanDirective() {
1071 // Reset the indentation level.
1072 unrollIndent(-1);
1073 SimpleKeys.clear();
1074 IsSimpleKeyAllowed = false;
1075
1076 StringRef::iterator Start = Current;
1077 consume('%');
1078 StringRef::iterator NameStart = Current;
1079 Current = skip_while(&Scanner::skip_ns_char, Current);
1080 StringRef Name(NameStart, Current - NameStart);
1081 Current = skip_while(&Scanner::skip_s_white, Current);
1082
1083 Token T;
1084 if (Name == "YAML") {
1085 Current = skip_while(&Scanner::skip_ns_char, Current);
1086 T.Kind = Token::TK_VersionDirective;
1087 T.Range = StringRef(Start, Current - Start);
1088 TokenQueue.push_back(T);
1089 return true;
1090 } else if(Name == "TAG") {
1091 Current = skip_while(&Scanner::skip_ns_char, Current);
1092 Current = skip_while(&Scanner::skip_s_white, Current);
1093 Current = skip_while(&Scanner::skip_ns_char, Current);
1094 T.Kind = Token::TK_TagDirective;
1095 T.Range = StringRef(Start, Current - Start);
1096 TokenQueue.push_back(T);
1097 return true;
1098 }
1099 return false;
1100 }
1101
1102 bool Scanner::scanDocumentIndicator(bool IsStart) {
1103 unrollIndent(-1);
1104 SimpleKeys.clear();
1105 IsSimpleKeyAllowed = false;
1106
1107 Token T;
1108 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1109 T.Range = StringRef(Current, 3);
1110 skip(3);
1111 TokenQueue.push_back(T);
1112 return true;
1113 }
1114
1115 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1116 Token T;
1117 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1118 : Token::TK_FlowMappingStart;
1119 T.Range = StringRef(Current, 1);
1120 skip(1);
1121 TokenQueue.push_back(T);
1122
1123 // [ and { may begin a simple key.
1124 saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
1125
1126 // And may also be followed by a simple key.
1127 IsSimpleKeyAllowed = true;
1128 ++FlowLevel;
1129 return true;
1130 }
1131
1132 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1133 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1134 IsSimpleKeyAllowed = false;
1135 Token T;
1136 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1137 : Token::TK_FlowMappingEnd;
1138 T.Range = StringRef(Current, 1);
1139 skip(1);
1140 TokenQueue.push_back(T);
1141 if (FlowLevel)
1142 --FlowLevel;
1143 return true;
1144 }
1145
1146 bool Scanner::scanFlowEntry() {
1147 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1148 IsSimpleKeyAllowed = true;
1149 Token T;
1150 T.Kind = Token::TK_FlowEntry;
1151 T.Range = StringRef(Current, 1);
1152 skip(1);
1153 TokenQueue.push_back(T);
1154 return true;
1155 }
1156
1157 bool Scanner::scanBlockEntry() {
1158 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1159 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1160 IsSimpleKeyAllowed = true;
1161 Token T;
1162 T.Kind = Token::TK_BlockEntry;
1163 T.Range = StringRef(Current, 1);
1164 skip(1);
1165 TokenQueue.push_back(T);
1166 return true;
1167 }
1168
1169 bool Scanner::scanKey() {
1170 if (!FlowLevel)
1171 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1172
1173 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1174 IsSimpleKeyAllowed = !FlowLevel;
1175
1176 Token T;
1177 T.Kind = Token::TK_Key;
1178 T.Range = StringRef(Current, 1);
1179 skip(1);
1180 TokenQueue.push_back(T);
1181 return true;
1182 }
1183
1184 bool Scanner::scanValue() {
1185 // If the previous token could have been a simple key, insert the key token
1186 // into the token queue.
1187 if (!SimpleKeys.empty()) {
1188 SimpleKey SK = SimpleKeys.pop_back_val();
1189 Token T;
1190 T.Kind = Token::TK_Key;
1191 T.Range = SK.Tok->Range;
1192 TokenQueueT::iterator i, e;
1193 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1194 if (i == SK.Tok)
1195 break;
1196 }
1197 assert(i != e && "SimpleKey not in token queue!");
1198 i = TokenQueue.insert(i, T);
1199
1200 // We may also need to add a Block-Mapping-Start token.
1201 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1202
1203 IsSimpleKeyAllowed = false;
1204 } else {
1205 if (!FlowLevel)
1206 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1207 IsSimpleKeyAllowed = !FlowLevel;
1208 }
1209
1210 Token T;
1211 T.Kind = Token::TK_Value;
1212 T.Range = StringRef(Current, 1);
1213 skip(1);
1214 TokenQueue.push_back(T);
1215 return true;
1216 }
1217
1218 // Forbidding inlining improves performance by roughly 20%.
1219 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1220 LLVM_ATTRIBUTE_NOINLINE static bool
1221 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1222
1223 // Returns whether a character at 'Position' was escaped with a leading '\'.
1224 // 'First' specifies the position of the first character in the string.
1225 static bool wasEscaped(StringRef::iterator First,
1226 StringRef::iterator Position) {
1227 assert(Position - 1 >= First);
1228 StringRef::iterator I = Position - 1;
1229 // We calculate the number of consecutive '\'s before the current position
1230 // by iterating backwards through our string.
1231 while (I >= First && *I == '\\') --I;
1232 // (Position - 1 - I) now contains the number of '\'s before the current
1233 // position. If it is odd, the character at 'Position' was escaped.
1234 return (Position - 1 - I) % 2 == 1;
1235 }
1236
1237 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1238 StringRef::iterator Start = Current;
1239 unsigned ColStart = Column;
1240 if (IsDoubleQuoted) {
1241 do {
1242 ++Current;
1243 while (Current != End && *Current != '"')
1244 ++Current;
1245 // Repeat until the previous character was not a '\' or was an escaped
1246 // backslash.
1247 } while ( Current != End
1248 && *(Current - 1) == '\\'
1249 && wasEscaped(Start + 1, Current));
1250 } else {
1251 skip(1);
1252 while (true) {
1253 // Skip a ' followed by another '.
1254 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1255 skip(2);
1256 continue;
1257 } else if (*Current == '\'')
1258 break;
1259 StringRef::iterator i = skip_nb_char(Current);
1260 if (i == Current) {
1261 i = skip_b_break(Current);
1262 if (i == Current)
1263 break;
1264 Current = i;
1265 Column = 0;
1266 ++Line;
1267 } else {
1268 if (i == End)
1269 break;
1270 Current = i;
1271 ++Column;
1272 }
1273 }
1274 }
1275
1276 if (Current == End) {
1277 setError("Expected quote at end of scalar", Current);
1278 return false;
1279 }
1280
1281 skip(1); // Skip ending quote.
1282 Token T;
1283 T.Kind = Token::TK_Scalar;
1284 T.Range = StringRef(Start, Current - Start);
1285 TokenQueue.push_back(T);
1286
1287 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1288
1289 IsSimpleKeyAllowed = false;
1290
1291 return true;
1292 }
1293
1294 bool Scanner::scanPlainScalar() {
1295 StringRef::iterator Start = Current;
1296 unsigned ColStart = Column;
1297 unsigned LeadingBlanks = 0;
1298 assert(Indent >= -1 && "Indent must be >= -1 !");
1299 unsigned indent = static_cast<unsigned>(Indent + 1);
1300 while (true) {
1301 if (*Current == '#')
1302 break;
1303
1304 while (!isBlankOrBreak(Current)) {
1305 if ( FlowLevel && *Current == ':'
1306 && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1307 setError("Found unexpected ':' while scanning a plain scalar", Current);
1308 return false;
1309 }
1310
1311 // Check for the end of the plain scalar.
1312 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1313 || ( FlowLevel
1314 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1315 != StringRef::npos)))
1316 break;
1317
1318 StringRef::iterator i = skip_nb_char(Current);
1319 if (i == Current)
1320 break;
1321 Current = i;
1322 ++Column;
1323 }
1324
1325 // Are we at the end?
1326 if (!isBlankOrBreak(Current))
1327 break;
1328
1329 // Eat blanks.
1330 StringRef::iterator Tmp = Current;
1331 while (isBlankOrBreak(Tmp)) {
1332 StringRef::iterator i = skip_s_white(Tmp);
1333 if (i != Tmp) {
1334 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1335 setError("Found invalid tab character in indentation", Tmp);
1336 return false;
1337 }
1338 Tmp = i;
1339 ++Column;
1340 } else {
1341 i = skip_b_break(Tmp);
1342 if (!LeadingBlanks)
1343 LeadingBlanks = 1;
1344 Tmp = i;
1345 Column = 0;
1346 ++Line;
1347 }
1348 }
1349
1350 if (!FlowLevel && Column < indent)
1351 break;
1352
1353 Current = Tmp;
1354 }
1355 if (Start == Current) {
1356 setError("Got empty plain scalar", Start);
1357 return false;
1358 }
1359 Token T;
1360 T.Kind = Token::TK_Scalar;
1361 T.Range = StringRef(Start, Current - Start);
1362 TokenQueue.push_back(T);
1363
1364 // Plain scalars can be simple keys.
1365 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1366
1367 IsSimpleKeyAllowed = false;
1368
1369 return true;
1370 }
1371
1372 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1373 StringRef::iterator Start = Current;
1374 unsigned ColStart = Column;
1375 skip(1);
1376 while(true) {
1377 if ( *Current == '[' || *Current == ']'
1378 || *Current == '{' || *Current == '}'
1379 || *Current == ','
1380 || *Current == ':')
1381 break;
1382 StringRef::iterator i = skip_ns_char(Current);
1383 if (i == Current)
1384 break;
1385 Current = i;
1386 ++Column;
1387 }
1388
1389 if (Start == Current) {
1390 setError("Got empty alias or anchor", Start);
1391 return false;
1392 }
1393
1394 Token T;
1395 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1396 T.Range = StringRef(Start, Current - Start);
1397 TokenQueue.push_back(T);
1398
1399 // Alias and anchors can be simple keys.
1400 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1401
1402 IsSimpleKeyAllowed = false;
1403
1404 return true;
1405 }
1406
1407 bool Scanner::scanBlockScalar(bool IsLiteral) {
1408 StringRef::iterator Start = Current;
1409 skip(1); // Eat | or >
1410 while(true) {
1411 StringRef::iterator i = skip_nb_char(Current);
1412 if (i == Current) {
1413 if (Column == 0)
1414 break;
1415 i = skip_b_break(Current);
1416 if (i != Current) {
1417 // We got a line break.
1418 Column = 0;
1419 ++Line;
1420 Current = i;
1421 continue;
1422 } else {
1423 // There was an error, which should already have been printed out.
1424 return false;
1425 }
1426 }
1427 Current = i;
1428 ++Column;
1429 }
1430
1431 if (Start == Current) {
1432 setError("Got empty block scalar", Start);
1433 return false;
1434 }
1435
1436 Token T;
1437 T.Kind = Token::TK_Scalar;
1438 T.Range = StringRef(Start, Current - Start);
1439 TokenQueue.push_back(T);
1440 return true;
1441 }
1442
1443 bool Scanner::scanTag() {
1444 StringRef::iterator Start = Current;
1445 unsigned ColStart = Column;
1446 skip(1); // Eat !.
1447 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1448 else if (*Current == '<') {
1449 skip(1);
1450 scan_ns_uri_char();
1451 if (!consume('>'))
1452 return false;
1453 } else {
1454 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1455 Current = skip_while(&Scanner::skip_ns_char, Current);
1456 }
1457
1458 Token T;
1459 T.Kind = Token::TK_Tag;
1460 T.Range = StringRef(Start, Current - Start);
1461 TokenQueue.push_back(T);
1462
1463 // Tags can be simple keys.
1464 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1465
1466 IsSimpleKeyAllowed = false;
1467
1468 return true;
1469 }
1470
1471 bool Scanner::fetchMoreTokens() {
1472 if (IsStartOfStream)
1473 return scanStreamStart();
1474
1475 scanToNextToken();
1476
1477 if (Current == End)
1478 return scanStreamEnd();
1479
1480 removeStaleSimpleKeyCandidates();
1481
1482 unrollIndent(Column);
1483
1484 if (Column == 0 && *Current == '%')
1485 return scanDirective();
1486
1487 if (Column == 0 && Current + 4 <= End
1488 && *Current == '-'
1489 && *(Current + 1) == '-'
1490 && *(Current + 2) == '-'
1491 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1492 return scanDocumentIndicator(true);
1493
1494 if (Column == 0 && Current + 4 <= End
1495 && *Current == '.'
1496 && *(Current + 1) == '.'
1497 && *(Current + 2) == '.'
1498 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1499 return scanDocumentIndicator(false);
1500
1501 if (*Current == '[')
1502 return scanFlowCollectionStart(true);
1503
1504 if (*Current == '{')
1505 return scanFlowCollectionStart(false);
1506
1507 if (*Current == ']')
1508 return scanFlowCollectionEnd(true);
1509
1510 if (*Current == '}')
1511 return scanFlowCollectionEnd(false);
1512
1513 if (*Current == ',')
1514 return scanFlowEntry();
1515
1516 if (*Current == '-' && isBlankOrBreak(Current + 1))
1517 return scanBlockEntry();
1518
1519 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1520 return scanKey();
1521
1522 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1523 return scanValue();
1524
1525 if (*Current == '*')
1526 return scanAliasOrAnchor(true);
1527
1528 if (*Current == '&')
1529 return scanAliasOrAnchor(false);
1530
1531 if (*Current == '!')
1532 return scanTag();
1533
1534 if (*Current == '|' && !FlowLevel)
1535 return scanBlockScalar(true);
1536
1537 if (*Current == '>' && !FlowLevel)
1538 return scanBlockScalar(false);
1539
1540 if (*Current == '\'')
1541 return scanFlowScalar(false);
1542
1543 if (*Current == '"')
1544 return scanFlowScalar(true);
1545
1546 // Get a plain scalar.
1547 StringRef FirstChar(Current, 1);
1548 if (!(isBlankOrBreak(Current)
1549 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1550 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1551 || (!FlowLevel && (*Current == '?' || *Current == ':')
1552 && isBlankOrBreak(Current + 1))
1553 || (!FlowLevel && *Current == ':'
1554 && Current + 2 < End
1555 && *(Current + 1) == ':'
1556 && !isBlankOrBreak(Current + 2)))
1557 return scanPlainScalar();
1558
1559 setError("Unrecognized character while tokenizing.");
1560 return false;
1561 }
1562
1563 Stream::Stream(StringRef Input, SourceMgr &SM)
1564 : scanner(new Scanner(Input, SM))
1565 , CurrentDoc(0) {}
1566
1567 Stream::Stream(MemoryBuffer *InputBuffer, SourceMgr &SM)
1568 : scanner(new Scanner(InputBuffer, SM))
1569 , CurrentDoc(0) {}
1570
1571 Stream::~Stream() {}
1572
1573 bool Stream::failed() { return scanner->failed(); }
1574
1575 void Stream::printError(Node *N, const Twine &Msg) {
1576 SmallVector<SMRange, 1> Ranges;
1577 Ranges.push_back(N->getSourceRange());
1578 scanner->printError( N->getSourceRange().Start
1579 , SourceMgr::DK_Error
1580 , Msg
1581 , Ranges);
1582 }
1583
1584 document_iterator Stream::begin() {
1585 if (CurrentDoc)
1586 report_fatal_error("Can only iterate over the stream once");
1587
1588 // Skip Stream-Start.
1589 scanner->getNext();
1590
1591 CurrentDoc.reset(new Document(*this));
1592 return document_iterator(CurrentDoc);
1593 }
1594
1595 document_iterator Stream::end() {
1596 return document_iterator();
1597 }
1598
1599 void Stream::skip() {
1600 for (document_iterator i = begin(), e = end(); i != e; ++i)
1601 i->skip();
1602 }
1603
1604 Node::Node(unsigned int Type, OwningPtr<Document> &D, StringRef A, StringRef T)
1605 : Doc(D)
1606 , TypeID(Type)
1607 , Anchor(A)
1608 , Tag(T) {
1609 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1610 SourceRange = SMRange(Start, Start);
1611 }
1612
1613 std::string Node::getVerbatimTag() const {
1614 StringRef Raw = getRawTag();
1615 if (!Raw.empty() && Raw != "!") {
1616 std::string Ret;
1617 if (Raw.find_last_of('!') == 0) {
1618 Ret = Doc->getTagMap().find("!")->second;
1619 Ret += Raw.substr(1);
1620 return llvm_move(Ret);
1621 } else if (Raw.startswith("!!")) {
1622 Ret = Doc->getTagMap().find("!!")->second;
1623 Ret += Raw.substr(2);
1624 return llvm_move(Ret);
1625 } else {
1626 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1627 std::map<StringRef, StringRef>::const_iterator It =
1628 Doc->getTagMap().find(TagHandle);
1629 if (It != Doc->getTagMap().end())
1630 Ret = It->second;
1631 else {
1632 Token T;
1633 T.Kind = Token::TK_Tag;
1634 T.Range = TagHandle;
1635 setError(Twine("Unknown tag handle ") + TagHandle, T);
1636 }
1637 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1638 return llvm_move(Ret);
1639 }
1640 }
1641
1642 switch (getType()) {
1643 case NK_Null:
1644 return "tag:yaml.org,2002:null";
1645 case NK_Scalar:
1646 // TODO: Tag resolution.
1647 return "tag:yaml.org,2002:str";
1648 case NK_Mapping:
1649 return "tag:yaml.org,2002:map";
1650 case NK_Sequence:
1651 return "tag:yaml.org,2002:seq";
1652 }
1653
1654 return "";
1655 }
1656
1657 Token &Node::peekNext() {
1658 return Doc->peekNext();
1659 }
1660
1661 Token Node::getNext() {
1662 return Doc->getNext();
1663 }
1664
1665 Node *Node::parseBlockNode() {
1666 return Doc->parseBlockNode();
1667 }
1668
1669 BumpPtrAllocator &Node::getAllocator() {
1670 return Doc->NodeAllocator;
1671 }
1672
1673 void Node::setError(const Twine &Msg, Token &Tok) const {
1674 Doc->setError(Msg, Tok);
1675 }
1676
1677 bool Node::failed() const {
1678 return Doc->failed();
1679 }
1680
1681
1682
1683 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1684 // TODO: Handle newlines properly. We need to remove leading whitespace.
1685 if (Value[0] == '"') { // Double quoted.
1686 // Pull off the leading and trailing "s.
1687 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1688 // Search for characters that would require unescaping the value.
1689 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1690 if (i != StringRef::npos)
1691 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1692 return UnquotedValue;
1693 } else if (Value[0] == '\'') { // Single quoted.
1694 // Pull off the leading and trailing 's.
1695 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1696 StringRef::size_type i = UnquotedValue.find('\'');
1697 if (i != StringRef::npos) {
1698 // We're going to need Storage.
1699 Storage.clear();
1700 Storage.reserve(UnquotedValue.size());
1701 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1702 StringRef Valid(UnquotedValue.begin(), i);
1703 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1704 Storage.push_back('\'');
1705 UnquotedValue = UnquotedValue.substr(i + 2);
1706 }
1707 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1708 return StringRef(Storage.begin(), Storage.size());
1709 }
1710 return UnquotedValue;
1711 }
1712 // Plain or block.
1713 return Value.rtrim(" ");
1714 }
1715
1716 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1717 , StringRef::size_type i
1718 , SmallVectorImpl<char> &Storage)
1719 const {
1720 // Use Storage to build proper value.
1721 Storage.clear();
1722 Storage.reserve(UnquotedValue.size());
1723 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1724 // Insert all previous chars into Storage.
1725 StringRef Valid(UnquotedValue.begin(), i);
1726 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1727 // Chop off inserted chars.
1728 UnquotedValue = UnquotedValue.substr(i);
1729
1730 assert(!UnquotedValue.empty() && "Can't be empty!");
1731
1732 // Parse escape or line break.
1733 switch (UnquotedValue[0]) {
1734 case '\r':
1735 case '\n':
1736 Storage.push_back('\n');
1737 if ( UnquotedValue.size() > 1
1738 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1739 UnquotedValue = UnquotedValue.substr(1);
1740 UnquotedValue = UnquotedValue.substr(1);
1741 break;
1742 default:
1743 if (UnquotedValue.size() == 1)
1744 // TODO: Report error.
1745 break;
1746 UnquotedValue = UnquotedValue.substr(1);
1747 switch (UnquotedValue[0]) {
1748 default: {
1749 Token T;
1750 T.Range = StringRef(UnquotedValue.begin(), 1);
1751 setError("Unrecognized escape code!", T);
1752 return "";
1753 }
1754 case '\r':
1755 case '\n':
1756 // Remove the new line.
1757 if ( UnquotedValue.size() > 1
1758 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1759 UnquotedValue = UnquotedValue.substr(1);
1760 // If this was just a single byte newline, it will get skipped
1761 // below.
1762 break;
1763 case '0':
1764 Storage.push_back(0x00);
1765 break;
1766 case 'a':
1767 Storage.push_back(0x07);
1768 break;
1769 case 'b':
1770 Storage.push_back(0x08);
1771 break;
1772 case 't':
1773 case 0x09:
1774 Storage.push_back(0x09);
1775 break;
1776 case 'n':
1777 Storage.push_back(0x0A);
1778 break;
1779 case 'v':
1780 Storage.push_back(0x0B);
1781 break;
1782 case 'f':
1783 Storage.push_back(0x0C);
1784 break;
1785 case 'r':
1786 Storage.push_back(0x0D);
1787 break;
1788 case 'e':
1789 Storage.push_back(0x1B);
1790 break;
1791 case ' ':
1792 Storage.push_back(0x20);
1793 break;
1794 case '"':
1795 Storage.push_back(0x22);
1796 break;
1797 case '/':
1798 Storage.push_back(0x2F);
1799 break;
1800 case '\\':
1801 Storage.push_back(0x5C);
1802 break;
1803 case 'N':
1804 encodeUTF8(0x85, Storage);
1805 break;
1806 case '_':
1807 encodeUTF8(0xA0, Storage);
1808 break;
1809 case 'L':
1810 encodeUTF8(0x2028, Storage);
1811 break;
1812 case 'P':
1813 encodeUTF8(0x2029, Storage);
1814 break;
1815 case 'x': {
1816 if (UnquotedValue.size() < 3)
1817 // TODO: Report error.
1818 break;
1819 unsigned int UnicodeScalarValue;
1820 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
1821 // TODO: Report error.
1822 UnicodeScalarValue = 0xFFFD;
1823 encodeUTF8(UnicodeScalarValue, Storage);
1824 UnquotedValue = UnquotedValue.substr(2);
1825 break;
1826 }
1827 case 'u': {
1828 if (UnquotedValue.size() < 5)
1829 // TODO: Report error.
1830 break;
1831 unsigned int UnicodeScalarValue;
1832 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
1833 // TODO: Report error.
1834 UnicodeScalarValue = 0xFFFD;
1835 encodeUTF8(UnicodeScalarValue, Storage);
1836 UnquotedValue = UnquotedValue.substr(4);
1837 break;
1838 }
1839 case 'U': {
1840 if (UnquotedValue.size() < 9)
1841 // TODO: Report error.
1842 break;
1843 unsigned int UnicodeScalarValue;
1844 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
1845 // TODO: Report error.
1846 UnicodeScalarValue = 0xFFFD;
1847 encodeUTF8(UnicodeScalarValue, Storage);
1848 UnquotedValue = UnquotedValue.substr(8);
1849 break;
1850 }
1851 }
1852 UnquotedValue = UnquotedValue.substr(1);
1853 }
1854 }
1855 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1856 return StringRef(Storage.begin(), Storage.size());
1857 }
1858
1859 Node *KeyValueNode::getKey() {
1860 if (Key)
1861 return Key;
1862 // Handle implicit null keys.
1863 {
1864 Token &t = peekNext();
1865 if ( t.Kind == Token::TK_BlockEnd
1866 || t.Kind == Token::TK_Value
1867 || t.Kind == Token::TK_Error) {
1868 return Key = new (getAllocator()) NullNode(Doc);
1869 }
1870 if (t.Kind == Token::TK_Key)
1871 getNext(); // skip TK_Key.
1872 }
1873
1874 // Handle explicit null keys.
1875 Token &t = peekNext();
1876 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
1877 return Key = new (getAllocator()) NullNode(Doc);
1878 }
1879
1880 // We've got a normal key.
1881 return Key = parseBlockNode();
1882 }
1883
1884 Node *KeyValueNode::getValue() {
1885 if (Value)
1886 return Value;
1887 getKey()->skip();
1888 if (failed())
1889 return Value = new (getAllocator()) NullNode(Doc);
1890
1891 // Handle implicit null values.
1892 {
1893 Token &t = peekNext();
1894 if ( t.Kind == Token::TK_BlockEnd
1895 || t.Kind == Token::TK_FlowMappingEnd
1896 || t.Kind == Token::TK_Key
1897 || t.Kind == Token::TK_FlowEntry
1898 || t.Kind == Token::TK_Error) {
1899 return Value = new (getAllocator()) NullNode(Doc);
1900 }
1901
1902 if (t.Kind != Token::TK_Value) {
1903 setError("Unexpected token in Key Value.", t);
1904 return Value = new (getAllocator()) NullNode(Doc);
1905 }
1906 getNext(); // skip TK_Value.
1907 }
1908
1909 // Handle explicit null values.
1910 Token &t = peekNext();
1911 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
1912 return Value = new (getAllocator()) NullNode(Doc);
1913 }
1914
1915 // We got a normal value.
1916 return Value = parseBlockNode();
1917 }
1918
1919 void MappingNode::increment() {
1920 if (failed()) {
1921 IsAtEnd = true;
1922 CurrentEntry = 0;
1923 return;
1924 }
1925 if (CurrentEntry) {
1926 CurrentEntry->skip();
1927 if (Type == MT_Inline) {
1928 IsAtEnd = true;
1929 CurrentEntry = 0;
1930 return;
1931 }
1932 }
1933 Token T = peekNext();
1934 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
1935 // KeyValueNode eats the TK_Key. That way it can detect null keys.
1936 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
1937 } else if (Type == MT_Block) {
1938 switch (T.Kind) {
1939 case Token::TK_BlockEnd:
1940 getNext();
1941 IsAtEnd = true;
1942 CurrentEntry = 0;
1943 break;
1944 default:
1945 setError("Unexpected token. Expected Key or Block End", T);
1946 case Token::TK_Error:
1947 IsAtEnd = true;
1948 CurrentEntry = 0;
1949 }
1950 } else {
1951 switch (T.Kind) {
1952 case Token::TK_FlowEntry:
1953 // Eat the flow entry and recurse.
1954 getNext();
1955 return increment();
1956 case Token::TK_FlowMappingEnd:
1957 getNext();
1958 case Token::TK_Error:
1959 // Set this to end iterator.
1960 IsAtEnd = true;
1961 CurrentEntry = 0;
1962 break;
1963 default:
1964 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
1965 "Mapping End."
1966 , T);
1967 IsAtEnd = true;
1968 CurrentEntry = 0;
1969 }
1970 }
1971 }
1972
1973 void SequenceNode::increment() {
1974 if (failed()) {
1975 IsAtEnd = true;
1976 CurrentEntry = 0;
1977 return;
1978 }
1979 if (CurrentEntry)
1980 CurrentEntry->skip();
1981 Token T = peekNext();
1982 if (SeqType == ST_Block) {
1983 switch (T.Kind) {
1984 case Token::TK_BlockEntry:
1985 getNext();
1986 CurrentEntry = parseBlockNode();
1987 if (CurrentEntry == 0) { // An error occurred.
1988 IsAtEnd = true;
1989 CurrentEntry = 0;
1990 }
1991 break;
1992 case Token::TK_BlockEnd:
1993 getNext();
1994 IsAtEnd = true;
1995 CurrentEntry = 0;
1996 break;
1997 default:
1998 setError( "Unexpected token. Expected Block Entry or Block End."
1999 , T);
2000 case Token::TK_Error:
2001 IsAtEnd = true;
2002 CurrentEntry = 0;
2003 }
2004 } else if (SeqType == ST_Indentless) {
2005 switch (T.Kind) {
2006 case Token::TK_BlockEntry:
2007 getNext();
2008 CurrentEntry = parseBlockNode();
2009 if (CurrentEntry == 0) { // An error occurred.
2010 IsAtEnd = true;
2011 CurrentEntry = 0;
2012 }
2013 break;
2014 default:
2015 case Token::TK_Error:
2016 IsAtEnd = true;
2017 CurrentEntry = 0;
2018 }
2019 } else if (SeqType == ST_Flow) {
2020 switch (T.Kind) {
2021 case Token::TK_FlowEntry:
2022 // Eat the flow entry and recurse.
2023 getNext();
2024 WasPreviousTokenFlowEntry = true;
2025 return increment();
2026 case Token::TK_FlowSequenceEnd:
2027 getNext();
2028 case Token::TK_Error:
2029 // Set this to end iterator.
2030 IsAtEnd = true;
2031 CurrentEntry = 0;
2032 break;
2033 case Token::TK_StreamEnd:
2034 case Token::TK_DocumentEnd:
2035 case Token::TK_DocumentStart:
2036 setError("Could not find closing ]!", T);
2037 // Set this to end iterator.
2038 IsAtEnd = true;
2039 CurrentEntry = 0;
2040 break;
2041 default:
2042 if (!WasPreviousTokenFlowEntry) {
2043 setError("Expected , between entries!", T);
2044 IsAtEnd = true;
2045 CurrentEntry = 0;
2046 break;
2047 }
2048 // Otherwise it must be a flow entry.
2049 CurrentEntry = parseBlockNode();
2050 if (!CurrentEntry) {
2051 IsAtEnd = true;
2052 }
2053 WasPreviousTokenFlowEntry = false;
2054 break;
2055 }
2056 }
2057 }
2058
2059 Document::Document(Stream &S) : stream(S), Root(0) {
2060 // Tag maps starts with two default mappings.
2061 TagMap["!"] = "!";
2062 TagMap["!!"] = "tag:yaml.org,2002:";
2063
2064 if (parseDirectives())
2065 expectToken(Token::TK_DocumentStart);
2066 Token &T = peekNext();
2067 if (T.Kind == Token::TK_DocumentStart)
2068 getNext();
2069 }
2070
2071 bool Document::skip() {
2072 if (stream.scanner->failed())
2073 return false;
2074 if (!Root)
2075 getRoot();
2076 Root->skip();
2077 Token &T = peekNext();
2078 if (T.Kind == Token::TK_StreamEnd)
2079 return false;
2080 if (T.Kind == Token::TK_DocumentEnd) {
2081 getNext();
2082 return skip();
2083 }
2084 return true;
2085 }
2086
2087 Token &Document::peekNext() {
2088 return stream.scanner->peekNext();
2089 }
2090
2091 Token Document::getNext() {
2092 return stream.scanner->getNext();
2093 }
2094
2095 void Document::setError(const Twine &Message, Token &Location) const {
2096 stream.scanner->setError(Message, Location.Range.begin());
2097 }
2098
2099 bool Document::failed() const {
2100 return stream.scanner->failed();
2101 }
2102
2103 Node *Document::parseBlockNode() {
2104 Token T = peekNext();
2105 // Handle properties.
2106 Token AnchorInfo;
2107 Token TagInfo;
2108 parse_property:
2109 switch (T.Kind) {
2110 case Token::TK_Alias:
2111 getNext();
2112 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2113 case Token::TK_Anchor:
2114 if (AnchorInfo.Kind == Token::TK_Anchor) {
2115 setError("Already encountered an anchor for this node!", T);
2116 return 0;
2117 }
2118 AnchorInfo = getNext(); // Consume TK_Anchor.
2119 T = peekNext();
2120 goto parse_property;
2121 case Token::TK_Tag:
2122 if (TagInfo.Kind == Token::TK_Tag) {
2123 setError("Already encountered a tag for this node!", T);
2124 return 0;
2125 }
2126 TagInfo = getNext(); // Consume TK_Tag.
2127 T = peekNext();
2128 goto parse_property;
2129 default:
2130 break;
2131 }
2132
2133 switch (T.Kind) {
2134 case Token::TK_BlockEntry:
2135 // We got an unindented BlockEntry sequence. This is not terminated with
2136 // a BlockEnd.
2137 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2138 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2139 , AnchorInfo.Range.substr(1)
2140 , TagInfo.Range
2141 , SequenceNode::ST_Indentless);
2142 case Token::TK_BlockSequenceStart:
2143 getNext();
2144 return new (NodeAllocator)
2145 SequenceNode( stream.CurrentDoc
2146 , AnchorInfo.Range.substr(1)
2147 , TagInfo.Range
2148 , SequenceNode::ST_Block);
2149 case Token::TK_BlockMappingStart:
2150 getNext();
2151 return new (NodeAllocator)
2152 MappingNode( stream.CurrentDoc
2153 , AnchorInfo.Range.substr(1)
2154 , TagInfo.Range
2155 , MappingNode::MT_Block);
2156 case Token::TK_FlowSequenceStart:
2157 getNext();
2158 return new (NodeAllocator)
2159 SequenceNode( stream.CurrentDoc
2160 , AnchorInfo.Range.substr(1)
2161 , TagInfo.Range
2162 , SequenceNode::ST_Flow);
2163 case Token::TK_FlowMappingStart:
2164 getNext();
2165 return new (NodeAllocator)
2166 MappingNode( stream.CurrentDoc
2167 , AnchorInfo.Range.substr(1)
2168 , TagInfo.Range
2169 , MappingNode::MT_Flow);
2170 case Token::TK_Scalar:
2171 getNext();
2172 return new (NodeAllocator)
2173 ScalarNode( stream.CurrentDoc
2174 , AnchorInfo.Range.substr(1)
2175 , TagInfo.Range
2176 , T.Range);
2177 case Token::TK_Key:
2178 // Don't eat the TK_Key, KeyValueNode expects it.
2179 return new (NodeAllocator)
2180 MappingNode( stream.CurrentDoc
2181 , AnchorInfo.Range.substr(1)
2182 , TagInfo.Range
2183 , MappingNode::MT_Inline);
2184 case Token::TK_DocumentStart:
2185 case Token::TK_DocumentEnd:
2186 case Token::TK_StreamEnd:
2187 default:
2188 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2189 // !!null null.
2190 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2191 case Token::TK_Error:
2192 return 0;
2193 }
2194 llvm_unreachable("Control flow shouldn't reach here.");
2195 return 0;
2196 }
2197
2198 bool Document::parseDirectives() {
2199 bool isDirective = false;
2200 while (true) {
2201 Token T = peekNext();
2202 if (T.Kind == Token::TK_TagDirective) {
2203 parseTAGDirective();
2204 isDirective = true;
2205 } else if (T.Kind == Token::TK_VersionDirective) {
2206 parseYAMLDirective();
2207 isDirective = true;
2208 } else
2209 break;
2210 }
2211 return isDirective;
2212 }
2213
2214 void Document::parseYAMLDirective() {
2215 getNext(); // Eat %YAML <version>
2216 }
2217
2218 void Document::parseTAGDirective() {
2219 Token Tag = getNext(); // %TAG <handle> <prefix>
2220 StringRef T = Tag.Range;
2221 // Strip %TAG
2222 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2223 std::size_t HandleEnd = T.find_first_of(" \t");
2224 StringRef TagHandle = T.substr(0, HandleEnd);
2225 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2226 TagMap[TagHandle] = TagPrefix;
2227 }
2228
2229 bool Document::expectToken(int TK) {
2230 Token T = getNext();
2231 if (T.Kind != TK) {
2232 setError("Unexpected token", T);
2233 return false;
2234 }
2235 return true;
2236 }