comparison lib/Target/SystemZ/SystemZInstrFormats.td @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 //===----------------------------------------------------------------------===//
11 // Basic SystemZ instruction definition
12 //===----------------------------------------------------------------------===//
13
14 class InstSystemZ<int size, dag outs, dag ins, string asmstr,
15 list<dag> pattern> : Instruction {
16 let Namespace = "SystemZ";
17
18 dag OutOperandList = outs;
19 dag InOperandList = ins;
20 let Size = size;
21 let Pattern = pattern;
22 let AsmString = asmstr;
23
24 // Some instructions come in pairs, one having a 12-bit displacement
25 // and the other having a 20-bit displacement. Both instructions in
26 // the pair have the same DispKey and their DispSizes are "12" and "20"
27 // respectively.
28 string DispKey = "";
29 string DispSize = "none";
30
31 // Many register-based <INSN>R instructions have a memory-based <INSN>
32 // counterpart. OpKey uniquely identifies <INSN>, while OpType is
33 // "reg" for <INSN>R and "mem" for <INSN>.
34 string OpKey = "";
35 string OpType = "none";
36
37 // Many distinct-operands instructions have older 2-operand equivalents.
38 // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
39 // with NumOpsValue being "2" or "3" as appropriate.
40 string NumOpsKey = "";
41 string NumOpsValue = "none";
42
43 // True if this instruction is a simple D(X,B) load of a register
44 // (with no sign or zero extension).
45 bit SimpleBDXLoad = 0;
46
47 // True if this instruction is a simple D(X,B) store of a register
48 // (with no truncation).
49 bit SimpleBDXStore = 0;
50
51 // True if this instruction has a 20-bit displacement field.
52 bit Has20BitOffset = 0;
53
54 // True if addresses in this instruction have an index register.
55 bit HasIndex = 0;
56
57 // True if this is a 128-bit pseudo instruction that combines two 64-bit
58 // operations.
59 bit Is128Bit = 0;
60
61 // The access size of all memory operands in bytes, or 0 if not known.
62 bits<5> AccessBytes = 0;
63
64 // If the instruction sets CC to a useful value, this gives the mask
65 // of all possible CC results. The mask has the same form as
66 // SystemZ::CCMASK_*.
67 bits<4> CCValues = 0;
68
69 // The subset of CCValues that have the same meaning as they would after
70 // a comparison of the first operand against zero.
71 bits<4> CompareZeroCCMask = 0;
72
73 // True if the instruction is conditional and if the CC mask operand
74 // comes first (as for BRC, etc.).
75 bit CCMaskFirst = 0;
76
77 // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
78 bit CCMaskLast = 0;
79
80 // True if the instruction is the "logical" rather than "arithmetic" form,
81 // in cases where a distinction exists.
82 bit IsLogical = 0;
83
84 let TSFlags{0} = SimpleBDXLoad;
85 let TSFlags{1} = SimpleBDXStore;
86 let TSFlags{2} = Has20BitOffset;
87 let TSFlags{3} = HasIndex;
88 let TSFlags{4} = Is128Bit;
89 let TSFlags{9-5} = AccessBytes;
90 let TSFlags{13-10} = CCValues;
91 let TSFlags{17-14} = CompareZeroCCMask;
92 let TSFlags{18} = CCMaskFirst;
93 let TSFlags{19} = CCMaskLast;
94 let TSFlags{20} = IsLogical;
95 }
96
97 //===----------------------------------------------------------------------===//
98 // Mappings between instructions
99 //===----------------------------------------------------------------------===//
100
101 // Return the version of an instruction that has an unsigned 12-bit
102 // displacement.
103 def getDisp12Opcode : InstrMapping {
104 let FilterClass = "InstSystemZ";
105 let RowFields = ["DispKey"];
106 let ColFields = ["DispSize"];
107 let KeyCol = ["20"];
108 let ValueCols = [["12"]];
109 }
110
111 // Return the version of an instruction that has a signed 20-bit displacement.
112 def getDisp20Opcode : InstrMapping {
113 let FilterClass = "InstSystemZ";
114 let RowFields = ["DispKey"];
115 let ColFields = ["DispSize"];
116 let KeyCol = ["12"];
117 let ValueCols = [["20"]];
118 }
119
120 // Return the memory form of a register instruction.
121 def getMemOpcode : InstrMapping {
122 let FilterClass = "InstSystemZ";
123 let RowFields = ["OpKey"];
124 let ColFields = ["OpType"];
125 let KeyCol = ["reg"];
126 let ValueCols = [["mem"]];
127 }
128
129 // Return the 3-operand form of a 2-operand instruction.
130 def getThreeOperandOpcode : InstrMapping {
131 let FilterClass = "InstSystemZ";
132 let RowFields = ["NumOpsKey"];
133 let ColFields = ["NumOpsValue"];
134 let KeyCol = ["2"];
135 let ValueCols = [["3"]];
136 }
137
138 //===----------------------------------------------------------------------===//
139 // Instruction formats
140 //===----------------------------------------------------------------------===//
141 //
142 // Formats are specified using operand field declarations of the form:
143 //
144 // bits<4> Rn : register input or output for operand n
145 // bits<m> In : immediate value of width m for operand n
146 // bits<4> BDn : address operand n, which has a base and a displacement
147 // bits<m> XBDn : address operand n, which has an index, a base and a
148 // displacement
149 // bits<4> Xn : index register for address operand n
150 // bits<4> Mn : mode value for operand n
151 //
152 // The operand numbers ("n" in the list above) follow the architecture manual.
153 // Assembly operands sometimes have a different order; in particular, R3 often
154 // is often written between operands 1 and 2.
155 //
156 //===----------------------------------------------------------------------===//
157
158 class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
159 : InstSystemZ<4, outs, ins, asmstr, pattern> {
160 field bits<32> Inst;
161 field bits<32> SoftFail = 0;
162
163 bits<4> R1;
164 bits<16> I2;
165
166 let Inst{31-24} = op{11-4};
167 let Inst{23-20} = R1;
168 let Inst{19-16} = op{3-0};
169 let Inst{15-0} = I2;
170 }
171
172 class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
173 : InstSystemZ<6, outs, ins, asmstr, pattern> {
174 field bits<48> Inst;
175 field bits<48> SoftFail = 0;
176
177 bits<4> R1;
178 bits<4> R2;
179 bits<4> M3;
180 bits<16> RI4;
181
182 let Inst{47-40} = op{15-8};
183 let Inst{39-36} = R1;
184 let Inst{35-32} = R2;
185 let Inst{31-16} = RI4;
186 let Inst{15-12} = M3;
187 let Inst{11-8} = 0;
188 let Inst{7-0} = op{7-0};
189 }
190
191 class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
192 : InstSystemZ<6, outs, ins, asmstr, pattern> {
193 field bits<48> Inst;
194 field bits<48> SoftFail = 0;
195
196 bits<4> R1;
197 bits<8> I2;
198 bits<4> M3;
199 bits<16> RI4;
200
201 let Inst{47-40} = op{15-8};
202 let Inst{39-36} = R1;
203 let Inst{35-32} = M3;
204 let Inst{31-16} = RI4;
205 let Inst{15-8} = I2;
206 let Inst{7-0} = op{7-0};
207 }
208
209 class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
210 : InstSystemZ<6, outs, ins, asmstr, pattern> {
211 field bits<48> Inst;
212 field bits<48> SoftFail = 0;
213
214 bits<4> R1;
215 bits<4> R3;
216 bits<16> I2;
217
218 let Inst{47-40} = op{15-8};
219 let Inst{39-36} = R1;
220 let Inst{35-32} = R3;
221 let Inst{31-16} = I2;
222 let Inst{15-8} = 0;
223 let Inst{7-0} = op{7-0};
224 }
225
226 class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
227 : InstSystemZ<6, outs, ins, asmstr, pattern> {
228 field bits<48> Inst;
229 field bits<48> SoftFail = 0;
230
231 bits<4> R1;
232 bits<4> R2;
233 bits<8> I3;
234 bits<8> I4;
235 bits<8> I5;
236
237 let Inst{47-40} = op{15-8};
238 let Inst{39-36} = R1;
239 let Inst{35-32} = R2;
240 let Inst{31-24} = I3;
241 let Inst{23-16} = I4;
242 let Inst{15-8} = I5;
243 let Inst{7-0} = op{7-0};
244 }
245
246 class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
247 : InstSystemZ<6, outs, ins, asmstr, pattern> {
248 field bits<48> Inst;
249 field bits<48> SoftFail = 0;
250
251 bits<4> R1;
252 bits<32> I2;
253
254 let Inst{47-40} = op{11-4};
255 let Inst{39-36} = R1;
256 let Inst{35-32} = op{3-0};
257 let Inst{31-0} = I2;
258 }
259
260 class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
261 : InstSystemZ<2, outs, ins, asmstr, pattern> {
262 field bits<16> Inst;
263 field bits<16> SoftFail = 0;
264
265 bits<4> R1;
266 bits<4> R2;
267
268 let Inst{15-8} = op;
269 let Inst{7-4} = R1;
270 let Inst{3-0} = R2;
271 }
272
273 class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
274 : InstSystemZ<4, outs, ins, asmstr, pattern> {
275 field bits<32> Inst;
276 field bits<32> SoftFail = 0;
277
278 bits<4> R1;
279 bits<4> R3;
280 bits<4> R2;
281
282 let Inst{31-16} = op;
283 let Inst{15-12} = R1;
284 let Inst{11-8} = 0;
285 let Inst{7-4} = R3;
286 let Inst{3-0} = R2;
287 }
288
289 class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
290 : InstSystemZ<4, outs, ins, asmstr, pattern> {
291 field bits<32> Inst;
292 field bits<32> SoftFail = 0;
293
294 bits<4> R1;
295 bits<4> R2;
296
297 let Inst{31-16} = op;
298 let Inst{15-8} = 0;
299 let Inst{7-4} = R1;
300 let Inst{3-0} = R2;
301 }
302
303 class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
304 : InstSystemZ<4, outs, ins, asmstr, pattern> {
305 field bits<32> Inst;
306 field bits<32> SoftFail = 0;
307
308 bits<4> R1;
309 bits<4> R2;
310 bits<4> R3;
311 bits<4> R4;
312
313 let Inst{31-16} = op;
314 let Inst{15-12} = R3;
315 let Inst{11-8} = R4;
316 let Inst{7-4} = R1;
317 let Inst{3-0} = R2;
318 }
319
320 class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
321 : InstSystemZ<4, outs, ins, asmstr, pattern> {
322 field bits<32> Inst;
323 field bits<32> SoftFail = 0;
324
325 bits<4> R1;
326 bits<20> XBD2;
327
328 let Inst{31-24} = op;
329 let Inst{23-20} = R1;
330 let Inst{19-0} = XBD2;
331
332 let HasIndex = 1;
333 }
334
335 class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
336 : InstSystemZ<6, outs, ins, asmstr, pattern> {
337 field bits<48> Inst;
338 field bits<48> SoftFail = 0;
339
340 bits<4> R1;
341 bits<20> XBD2;
342
343 let Inst{47-40} = op{15-8};
344 let Inst{39-36} = R1;
345 let Inst{35-16} = XBD2;
346 let Inst{15-8} = 0;
347 let Inst{7-0} = op{7-0};
348
349 let HasIndex = 1;
350 }
351
352 class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
353 : InstSystemZ<6, outs, ins, asmstr, pattern> {
354 field bits<48> Inst;
355 field bits<48> SoftFail = 0;
356
357 bits<4> R1;
358 bits<4> R3;
359 bits<20> XBD2;
360
361 let Inst{47-40} = op{15-8};
362 let Inst{39-36} = R3;
363 let Inst{35-16} = XBD2;
364 let Inst{15-12} = R1;
365 let Inst{11-8} = 0;
366 let Inst{7-0} = op{7-0};
367
368 let HasIndex = 1;
369 }
370
371 class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
372 : InstSystemZ<6, outs, ins, asmstr, pattern> {
373 field bits<48> Inst;
374 field bits<48> SoftFail = 0;
375
376 bits<4> R1;
377 bits<28> XBD2;
378
379 let Inst{47-40} = op{15-8};
380 let Inst{39-36} = R1;
381 let Inst{35-8} = XBD2;
382 let Inst{7-0} = op{7-0};
383
384 let Has20BitOffset = 1;
385 let HasIndex = 1;
386 }
387
388 class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
389 : InstSystemZ<4, outs, ins, asmstr, pattern> {
390 field bits<32> Inst;
391 field bits<32> SoftFail = 0;
392
393 bits<4> R1;
394 bits<4> R3;
395 bits<16> BD2;
396
397 let Inst{31-24} = op;
398 let Inst{23-20} = R1;
399 let Inst{19-16} = R3;
400 let Inst{15-0} = BD2;
401 }
402
403 class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
404 : InstSystemZ<6, outs, ins, asmstr, pattern> {
405 field bits<48> Inst;
406 field bits<48> SoftFail = 0;
407
408 bits<4> R1;
409 bits<4> R3;
410 bits<24> BD2;
411
412 let Inst{47-40} = op{15-8};
413 let Inst{39-36} = R1;
414 let Inst{35-32} = R3;
415 let Inst{31-8} = BD2;
416 let Inst{7-0} = op{7-0};
417
418 let Has20BitOffset = 1;
419 }
420
421 class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
422 : InstSystemZ<4, outs, ins, asmstr, pattern> {
423 field bits<32> Inst;
424 field bits<32> SoftFail = 0;
425
426 bits<16> BD1;
427 bits<8> I2;
428
429 let Inst{31-24} = op;
430 let Inst{23-16} = I2;
431 let Inst{15-0} = BD1;
432 }
433
434 class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
435 : InstSystemZ<6, outs, ins, asmstr, pattern> {
436 field bits<48> Inst;
437 field bits<48> SoftFail = 0;
438
439 bits<16> BD1;
440 bits<16> I2;
441
442 let Inst{47-32} = op;
443 let Inst{31-16} = BD1;
444 let Inst{15-0} = I2;
445 }
446
447 class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
448 : InstSystemZ<6, outs, ins, asmstr, pattern> {
449 field bits<48> Inst;
450 field bits<48> SoftFail = 0;
451
452 bits<24> BD1;
453 bits<8> I2;
454
455 let Inst{47-40} = op{15-8};
456 let Inst{39-32} = I2;
457 let Inst{31-8} = BD1;
458 let Inst{7-0} = op{7-0};
459
460 let Has20BitOffset = 1;
461 }
462
463 class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
464 : InstSystemZ<6, outs, ins, asmstr, pattern> {
465 field bits<48> Inst;
466 field bits<48> SoftFail = 0;
467
468 bits<24> BDL1;
469 bits<16> BD2;
470
471 let Inst{47-40} = op;
472 let Inst{39-16} = BDL1;
473 let Inst{15-0} = BD2;
474 }
475
476 //===----------------------------------------------------------------------===//
477 // Instruction definitions with semantics
478 //===----------------------------------------------------------------------===//
479 //
480 // These classes have the form [Cond]<Category><Format>, where <Format> is one
481 // of the formats defined above and where <Category> describes the inputs
482 // and outputs. "Cond" is used if the instruction is conditional,
483 // in which case the 4-bit condition-code mask is added as a final operand.
484 // <Category> can be one of:
485 //
486 // Inherent:
487 // One register output operand and no input operands.
488 //
489 // BranchUnary:
490 // One register output operand, one register input operand and
491 // one branch displacement. The instructions stores a modified
492 // form of the source register in the destination register and
493 // branches on the result.
494 //
495 // Store:
496 // One register or immediate input operand and one address input operand.
497 // The instruction stores the first operand to the address.
498 //
499 // This category is used for both pure and truncating stores.
500 //
501 // LoadMultiple:
502 // One address input operand and two explicit output operands.
503 // The instruction loads a range of registers from the address,
504 // with the explicit operands giving the first and last register
505 // to load. Other loaded registers are added as implicit definitions.
506 //
507 // StoreMultiple:
508 // Two explicit input register operands and an address operand.
509 // The instruction stores a range of registers to the address,
510 // with the explicit operands giving the first and last register
511 // to store. Other stored registers are added as implicit uses.
512 //
513 // Unary:
514 // One register output operand and one input operand. The input
515 // operand may be a register, immediate or memory.
516 //
517 // Binary:
518 // One register output operand and two input operands. The first
519 // input operand is always a register and he second may be a register,
520 // immediate or memory.
521 //
522 // Shift:
523 // One register output operand and two input operands. The first
524 // input operand is a register and the second has the same form as
525 // an address (although it isn't actually used to address memory).
526 //
527 // Compare:
528 // Two input operands. The first operand is always a register,
529 // the second may be a register, immediate or memory.
530 //
531 // Ternary:
532 // One register output operand and three register input operands.
533 //
534 // CmpSwap:
535 // One output operand and three input operands. The first two
536 // operands are registers and the third is an address. The instruction
537 // both reads from and writes to the address.
538 //
539 // RotateSelect:
540 // One output operand and five input operands. The first two operands
541 // are registers and the other three are immediates.
542 //
543 // Prefetch:
544 // One 4-bit immediate operand and one address operand. The immediate
545 // operand is 1 for a load prefetch and 2 for a store prefetch.
546 //
547 // The format determines which input operands are tied to output operands,
548 // and also determines the shape of any address operand.
549 //
550 // Multiclasses of the form <Category><Format>Pair define two instructions,
551 // one with <Category><Format> and one with <Category><Format>Y. The name
552 // of the first instruction has no suffix, the name of the second has
553 // an extra "y".
554 //
555 //===----------------------------------------------------------------------===//
556
557 class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
558 dag src>
559 : InstRRE<opcode, (outs cls:$R1), (ins),
560 mnemonic#"\t$R1",
561 [(set cls:$R1, src)]> {
562 let R2 = 0;
563 }
564
565 class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
566 : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
567 mnemonic##"\t$R1, $I2", []> {
568 let isBranch = 1;
569 let isTerminator = 1;
570 let Constraints = "$R1 = $R1src";
571 let DisableEncoding = "$R1src";
572 }
573
574 class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
575 : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
576 mnemonic#"\t$R1, $R3, $BD2", []> {
577 let mayLoad = 1;
578 }
579
580 class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
581 RegisterOperand cls>
582 : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
583 mnemonic#"\t$R1, $I2",
584 [(operator cls:$R1, pcrel32:$I2)]> {
585 let mayStore = 1;
586 // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
587 // However, BDXs have two extra operands and are therefore 6 units more
588 // complex.
589 let AddedComplexity = 7;
590 }
591
592 class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
593 RegisterOperand cls, bits<5> bytes,
594 AddressingMode mode = bdxaddr12only>
595 : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
596 mnemonic#"\t$R1, $XBD2",
597 [(operator cls:$R1, mode:$XBD2)]> {
598 let OpKey = mnemonic ## cls;
599 let OpType = "mem";
600 let mayStore = 1;
601 let AccessBytes = bytes;
602 }
603
604 class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
605 RegisterOperand cls, bits<5> bytes,
606 AddressingMode mode = bdxaddr20only>
607 : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
608 mnemonic#"\t$R1, $XBD2",
609 [(operator cls:$R1, mode:$XBD2)]> {
610 let OpKey = mnemonic ## cls;
611 let OpType = "mem";
612 let mayStore = 1;
613 let AccessBytes = bytes;
614 }
615
616 multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
617 SDPatternOperator operator, RegisterOperand cls,
618 bits<5> bytes> {
619 let DispKey = mnemonic ## #cls in {
620 let DispSize = "12" in
621 def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
622 let DispSize = "20" in
623 def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
624 bdxaddr20pair>;
625 }
626 }
627
628 class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
629 : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
630 mnemonic#"\t$R1, $R3, $BD2", []> {
631 let mayStore = 1;
632 }
633
634 // StoreSI* instructions are used to store an integer to memory, but the
635 // addresses are more restricted than for normal stores. If we are in the
636 // situation of having to force either the address into a register or the
637 // constant into a register, it's usually better to do the latter.
638 // We therefore match the address in the same way as a normal store and
639 // only use the StoreSI* instruction if the matched address is suitable.
640 class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
641 Immediate imm>
642 : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
643 mnemonic#"\t$BD1, $I2",
644 [(operator imm:$I2, mviaddr12pair:$BD1)]> {
645 let mayStore = 1;
646 }
647
648 class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
649 Immediate imm>
650 : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
651 mnemonic#"\t$BD1, $I2",
652 [(operator imm:$I2, mviaddr20pair:$BD1)]> {
653 let mayStore = 1;
654 }
655
656 class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
657 Immediate imm>
658 : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
659 mnemonic#"\t$BD1, $I2",
660 [(operator imm:$I2, mviaddr12pair:$BD1)]> {
661 let mayStore = 1;
662 }
663
664 multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
665 SDPatternOperator operator, Immediate imm> {
666 let DispKey = mnemonic in {
667 let DispSize = "12" in
668 def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
669 let DispSize = "20" in
670 def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
671 }
672 }
673
674 class CondStoreRSY<string mnemonic, bits<16> opcode,
675 RegisterOperand cls, bits<5> bytes,
676 AddressingMode mode = bdaddr20only>
677 : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
678 mnemonic#"$R3\t$R1, $BD2", []>,
679 Requires<[FeatureLoadStoreOnCond]> {
680 let mayStore = 1;
681 let AccessBytes = bytes;
682 let CCMaskLast = 1;
683 }
684
685 // Like CondStoreRSY, but used for the raw assembly form. The condition-code
686 // mask is the third operand rather than being part of the mnemonic.
687 class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
688 RegisterOperand cls, bits<5> bytes,
689 AddressingMode mode = bdaddr20only>
690 : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, uimm8zx4:$R3),
691 mnemonic#"\t$R1, $BD2, $R3", []>,
692 Requires<[FeatureLoadStoreOnCond]> {
693 let mayStore = 1;
694 let AccessBytes = bytes;
695 }
696
697 // Like CondStoreRSY, but with a fixed CC mask.
698 class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
699 RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
700 AddressingMode mode = bdaddr20only>
701 : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
702 mnemonic#"\t$R1, $BD2", []>,
703 Requires<[FeatureLoadStoreOnCond]> {
704 let mayStore = 1;
705 let AccessBytes = bytes;
706 let R3 = ccmask;
707 }
708
709 class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
710 RegisterOperand cls1, RegisterOperand cls2>
711 : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
712 mnemonic#"r\t$R1, $R2",
713 [(set cls1:$R1, (operator cls2:$R2))]> {
714 let OpKey = mnemonic ## cls1;
715 let OpType = "reg";
716 }
717
718 class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
719 RegisterOperand cls1, RegisterOperand cls2>
720 : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
721 mnemonic#"r\t$R1, $R2",
722 [(set cls1:$R1, (operator cls2:$R2))]> {
723 let OpKey = mnemonic ## cls1;
724 let OpType = "reg";
725 }
726
727 class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
728 RegisterOperand cls2>
729 : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2),
730 mnemonic#"r\t$R1, $R3, $R2", []> {
731 let OpKey = mnemonic ## cls1;
732 let OpType = "reg";
733 let R4 = 0;
734 }
735
736 class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
737 RegisterOperand cls2>
738 : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2, uimm8zx4:$R4),
739 mnemonic#"\t$R1, $R3, $R2, $R4", []>;
740
741 // These instructions are generated by if conversion. The old value of R1
742 // is added as an implicit use.
743 class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
744 RegisterOperand cls2>
745 : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
746 mnemonic#"r$R3\t$R1, $R2", []>,
747 Requires<[FeatureLoadStoreOnCond]> {
748 let CCMaskLast = 1;
749 let R4 = 0;
750 }
751
752 // Like CondUnaryRRF, but used for the raw assembly form. The condition-code
753 // mask is the third operand rather than being part of the mnemonic.
754 class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
755 RegisterOperand cls2>
756 : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, uimm8zx4:$R3),
757 mnemonic#"r\t$R1, $R2, $R3", []>,
758 Requires<[FeatureLoadStoreOnCond]> {
759 let Constraints = "$R1 = $R1src";
760 let DisableEncoding = "$R1src";
761 let R4 = 0;
762 }
763
764 // Like CondUnaryRRF, but with a fixed CC mask.
765 class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
766 RegisterOperand cls2, bits<4> ccmask>
767 : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
768 mnemonic#"\t$R1, $R2", []>,
769 Requires<[FeatureLoadStoreOnCond]> {
770 let Constraints = "$R1 = $R1src";
771 let DisableEncoding = "$R1src";
772 let R3 = ccmask;
773 let R4 = 0;
774 }
775
776 class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
777 RegisterOperand cls, Immediate imm>
778 : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
779 mnemonic#"\t$R1, $I2",
780 [(set cls:$R1, (operator imm:$I2))]>;
781
782 class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
783 RegisterOperand cls, Immediate imm>
784 : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
785 mnemonic#"\t$R1, $I2",
786 [(set cls:$R1, (operator imm:$I2))]>;
787
788 class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
789 RegisterOperand cls>
790 : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
791 mnemonic#"\t$R1, $I2",
792 [(set cls:$R1, (operator pcrel32:$I2))]> {
793 let mayLoad = 1;
794 // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
795 // However, BDXs have two extra operands and are therefore 6 units more
796 // complex.
797 let AddedComplexity = 7;
798 }
799
800 class CondUnaryRSY<string mnemonic, bits<16> opcode,
801 SDPatternOperator operator, RegisterOperand cls,
802 bits<5> bytes, AddressingMode mode = bdaddr20only>
803 : InstRSY<opcode, (outs cls:$R1),
804 (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
805 mnemonic#"$R3\t$R1, $BD2",
806 [(set cls:$R1,
807 (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
808 cond4:$valid, cond4:$R3))]>,
809 Requires<[FeatureLoadStoreOnCond]> {
810 let Constraints = "$R1 = $R1src";
811 let DisableEncoding = "$R1src";
812 let mayLoad = 1;
813 let AccessBytes = bytes;
814 let CCMaskLast = 1;
815 }
816
817 // Like CondUnaryRSY, but used for the raw assembly form. The condition-code
818 // mask is the third operand rather than being part of the mnemonic.
819 class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
820 RegisterOperand cls, bits<5> bytes,
821 AddressingMode mode = bdaddr20only>
822 : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, uimm8zx4:$R3),
823 mnemonic#"\t$R1, $BD2, $R3", []>,
824 Requires<[FeatureLoadStoreOnCond]> {
825 let mayLoad = 1;
826 let AccessBytes = bytes;
827 let Constraints = "$R1 = $R1src";
828 let DisableEncoding = "$R1src";
829 }
830
831 // Like CondUnaryRSY, but with a fixed CC mask.
832 class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
833 RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
834 AddressingMode mode = bdaddr20only>
835 : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
836 mnemonic#"\t$R1, $BD2", []>,
837 Requires<[FeatureLoadStoreOnCond]> {
838 let Constraints = "$R1 = $R1src";
839 let DisableEncoding = "$R1src";
840 let R3 = ccmask;
841 let mayLoad = 1;
842 let AccessBytes = bytes;
843 }
844
845 class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
846 RegisterOperand cls, bits<5> bytes,
847 AddressingMode mode = bdxaddr12only>
848 : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
849 mnemonic#"\t$R1, $XBD2",
850 [(set cls:$R1, (operator mode:$XBD2))]> {
851 let OpKey = mnemonic ## cls;
852 let OpType = "mem";
853 let mayLoad = 1;
854 let AccessBytes = bytes;
855 }
856
857 class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
858 RegisterOperand cls, bits<5> bytes>
859 : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
860 mnemonic#"\t$R1, $XBD2",
861 [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
862 let OpKey = mnemonic ## cls;
863 let OpType = "mem";
864 let mayLoad = 1;
865 let AccessBytes = bytes;
866 }
867
868 class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
869 RegisterOperand cls, bits<5> bytes,
870 AddressingMode mode = bdxaddr20only>
871 : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
872 mnemonic#"\t$R1, $XBD2",
873 [(set cls:$R1, (operator mode:$XBD2))]> {
874 let OpKey = mnemonic ## cls;
875 let OpType = "mem";
876 let mayLoad = 1;
877 let AccessBytes = bytes;
878 }
879
880 multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
881 SDPatternOperator operator, RegisterOperand cls,
882 bits<5> bytes> {
883 let DispKey = mnemonic ## #cls in {
884 let DispSize = "12" in
885 def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
886 let DispSize = "20" in
887 def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
888 bdxaddr20pair>;
889 }
890 }
891
892 class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
893 RegisterOperand cls1, RegisterOperand cls2>
894 : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
895 mnemonic#"r\t$R1, $R2",
896 [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
897 let OpKey = mnemonic ## cls1;
898 let OpType = "reg";
899 let Constraints = "$R1 = $R1src";
900 let DisableEncoding = "$R1src";
901 }
902
903 class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
904 RegisterOperand cls1, RegisterOperand cls2>
905 : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
906 mnemonic#"r\t$R1, $R2",
907 [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
908 let OpKey = mnemonic ## cls1;
909 let OpType = "reg";
910 let Constraints = "$R1 = $R1src";
911 let DisableEncoding = "$R1src";
912 }
913
914 class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
915 RegisterOperand cls1, RegisterOperand cls2>
916 : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
917 mnemonic#"r\t$R1, $R3, $R2",
918 [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
919 let OpKey = mnemonic ## cls1;
920 let OpType = "reg";
921 let R4 = 0;
922 }
923
924 class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
925 RegisterOperand cls1, RegisterOperand cls2>
926 : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
927 mnemonic#"rk\t$R1, $R2, $R3",
928 [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
929 let R4 = 0;
930 }
931
932 multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
933 SDPatternOperator operator, RegisterOperand cls1,
934 RegisterOperand cls2> {
935 let NumOpsKey = mnemonic in {
936 let NumOpsValue = "3" in
937 def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
938 Requires<[FeatureDistinctOps]>;
939 let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
940 def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
941 }
942 }
943
944 multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
945 SDPatternOperator operator, RegisterOperand cls1,
946 RegisterOperand cls2> {
947 let NumOpsKey = mnemonic in {
948 let NumOpsValue = "3" in
949 def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
950 Requires<[FeatureDistinctOps]>;
951 let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
952 def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
953 }
954 }
955
956 class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
957 RegisterOperand cls, Immediate imm>
958 : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
959 mnemonic#"\t$R1, $I2",
960 [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
961 let Constraints = "$R1 = $R1src";
962 let DisableEncoding = "$R1src";
963 }
964
965 class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
966 RegisterOperand cls, Immediate imm>
967 : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
968 mnemonic#"\t$R1, $R3, $I2",
969 [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
970
971 multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
972 SDPatternOperator operator, RegisterOperand cls,
973 Immediate imm> {
974 let NumOpsKey = mnemonic in {
975 let NumOpsValue = "3" in
976 def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
977 Requires<[FeatureDistinctOps]>;
978 let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
979 def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
980 }
981 }
982
983 class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
984 RegisterOperand cls, Immediate imm>
985 : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
986 mnemonic#"\t$R1, $I2",
987 [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
988 let Constraints = "$R1 = $R1src";
989 let DisableEncoding = "$R1src";
990 }
991
992 class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
993 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
994 AddressingMode mode = bdxaddr12only>
995 : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
996 mnemonic#"\t$R1, $XBD2",
997 [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
998 let OpKey = mnemonic ## cls;
999 let OpType = "mem";
1000 let Constraints = "$R1 = $R1src";
1001 let DisableEncoding = "$R1src";
1002 let mayLoad = 1;
1003 let AccessBytes = bytes;
1004 }
1005
1006 class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1007 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1008 : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
1009 mnemonic#"\t$R1, $XBD2",
1010 [(set cls:$R1, (operator cls:$R1src,
1011 (load bdxaddr12only:$XBD2)))]> {
1012 let OpKey = mnemonic ## cls;
1013 let OpType = "mem";
1014 let Constraints = "$R1 = $R1src";
1015 let DisableEncoding = "$R1src";
1016 let mayLoad = 1;
1017 let AccessBytes = bytes;
1018 }
1019
1020 class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1021 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1022 AddressingMode mode = bdxaddr20only>
1023 : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1024 mnemonic#"\t$R1, $XBD2",
1025 [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1026 let OpKey = mnemonic ## cls;
1027 let OpType = "mem";
1028 let Constraints = "$R1 = $R1src";
1029 let DisableEncoding = "$R1src";
1030 let mayLoad = 1;
1031 let AccessBytes = bytes;
1032 }
1033
1034 multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1035 SDPatternOperator operator, RegisterOperand cls,
1036 SDPatternOperator load, bits<5> bytes> {
1037 let DispKey = mnemonic ## #cls in {
1038 let DispSize = "12" in
1039 def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
1040 bdxaddr12pair>;
1041 let DispSize = "20" in
1042 def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
1043 bdxaddr20pair>;
1044 }
1045 }
1046
1047 class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1048 Operand imm, AddressingMode mode = bdaddr12only>
1049 : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1050 mnemonic#"\t$BD1, $I2",
1051 [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1052 let mayLoad = 1;
1053 let mayStore = 1;
1054 }
1055
1056 class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1057 Operand imm, AddressingMode mode = bdaddr20only>
1058 : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1059 mnemonic#"\t$BD1, $I2",
1060 [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1061 let mayLoad = 1;
1062 let mayStore = 1;
1063 }
1064
1065 multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
1066 bits<16> siyOpcode, SDPatternOperator operator,
1067 Operand imm> {
1068 let DispKey = mnemonic ## #cls in {
1069 let DispSize = "12" in
1070 def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
1071 let DispSize = "20" in
1072 def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
1073 }
1074 }
1075
1076 class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1077 RegisterOperand cls>
1078 : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
1079 mnemonic#"\t$R1, $BD2",
1080 [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
1081 let R3 = 0;
1082 let Constraints = "$R1 = $R1src";
1083 let DisableEncoding = "$R1src";
1084 }
1085
1086 class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1087 RegisterOperand cls>
1088 : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
1089 mnemonic#"\t$R1, $R3, $BD2",
1090 [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
1091
1092 multiclass ShiftRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
1093 SDPatternOperator operator, RegisterOperand cls> {
1094 let NumOpsKey = mnemonic in {
1095 let NumOpsValue = "3" in
1096 def K : ShiftRSY<mnemonic##"k", opcode2, null_frag, cls>,
1097 Requires<[FeatureDistinctOps]>;
1098 let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1099 def "" : ShiftRS<mnemonic, opcode1, operator, cls>;
1100 }
1101 }
1102
1103 class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1104 RegisterOperand cls1, RegisterOperand cls2>
1105 : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1106 mnemonic#"r\t$R1, $R2",
1107 [(operator cls1:$R1, cls2:$R2)]> {
1108 let OpKey = mnemonic ## cls1;
1109 let OpType = "reg";
1110 let isCompare = 1;
1111 }
1112
1113 class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1114 RegisterOperand cls1, RegisterOperand cls2>
1115 : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1116 mnemonic#"r\t$R1, $R2",
1117 [(operator cls1:$R1, cls2:$R2)]> {
1118 let OpKey = mnemonic ## cls1;
1119 let OpType = "reg";
1120 let isCompare = 1;
1121 }
1122
1123 class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1124 RegisterOperand cls, Immediate imm>
1125 : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
1126 mnemonic#"\t$R1, $I2",
1127 [(operator cls:$R1, imm:$I2)]> {
1128 let isCompare = 1;
1129 }
1130
1131 class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1132 RegisterOperand cls, Immediate imm>
1133 : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
1134 mnemonic#"\t$R1, $I2",
1135 [(operator cls:$R1, imm:$I2)]> {
1136 let isCompare = 1;
1137 }
1138
1139 class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1140 RegisterOperand cls, SDPatternOperator load>
1141 : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
1142 mnemonic#"\t$R1, $I2",
1143 [(operator cls:$R1, (load pcrel32:$I2))]> {
1144 let isCompare = 1;
1145 let mayLoad = 1;
1146 // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1147 // However, BDXs have two extra operands and are therefore 6 units more
1148 // complex.
1149 let AddedComplexity = 7;
1150 }
1151
1152 class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1153 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1154 AddressingMode mode = bdxaddr12only>
1155 : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1156 mnemonic#"\t$R1, $XBD2",
1157 [(operator cls:$R1, (load mode:$XBD2))]> {
1158 let OpKey = mnemonic ## cls;
1159 let OpType = "mem";
1160 let isCompare = 1;
1161 let mayLoad = 1;
1162 let AccessBytes = bytes;
1163 }
1164
1165 class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1166 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1167 : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
1168 mnemonic#"\t$R1, $XBD2",
1169 [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
1170 let OpKey = mnemonic ## cls;
1171 let OpType = "mem";
1172 let isCompare = 1;
1173 let mayLoad = 1;
1174 let AccessBytes = bytes;
1175 }
1176
1177 class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1178 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1179 AddressingMode mode = bdxaddr20only>
1180 : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1181 mnemonic#"\t$R1, $XBD2",
1182 [(operator cls:$R1, (load mode:$XBD2))]> {
1183 let OpKey = mnemonic ## cls;
1184 let OpType = "mem";
1185 let isCompare = 1;
1186 let mayLoad = 1;
1187 let AccessBytes = bytes;
1188 }
1189
1190 multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1191 SDPatternOperator operator, RegisterOperand cls,
1192 SDPatternOperator load, bits<5> bytes> {
1193 let DispKey = mnemonic ## #cls in {
1194 let DispSize = "12" in
1195 def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
1196 load, bytes, bdxaddr12pair>;
1197 let DispSize = "20" in
1198 def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
1199 load, bytes, bdxaddr20pair>;
1200 }
1201 }
1202
1203 class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1204 SDPatternOperator load, Immediate imm,
1205 AddressingMode mode = bdaddr12only>
1206 : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1207 mnemonic#"\t$BD1, $I2",
1208 [(operator (load mode:$BD1), imm:$I2)]> {
1209 let isCompare = 1;
1210 let mayLoad = 1;
1211 }
1212
1213 class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1214 SDPatternOperator load, Immediate imm>
1215 : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
1216 mnemonic#"\t$BD1, $I2",
1217 [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
1218 let isCompare = 1;
1219 let mayLoad = 1;
1220 }
1221
1222 class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1223 SDPatternOperator load, Immediate imm,
1224 AddressingMode mode = bdaddr20only>
1225 : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1226 mnemonic#"\t$BD1, $I2",
1227 [(operator (load mode:$BD1), imm:$I2)]> {
1228 let isCompare = 1;
1229 let mayLoad = 1;
1230 }
1231
1232 multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
1233 SDPatternOperator operator, SDPatternOperator load,
1234 Immediate imm> {
1235 let DispKey = mnemonic in {
1236 let DispSize = "12" in
1237 def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
1238 let DispSize = "20" in
1239 def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
1240 bdaddr20pair>;
1241 }
1242 }
1243
1244 class TernaryRRD<string mnemonic, bits<16> opcode,
1245 SDPatternOperator operator, RegisterOperand cls>
1246 : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
1247 mnemonic#"r\t$R1, $R3, $R2",
1248 [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
1249 let OpKey = mnemonic ## cls;
1250 let OpType = "reg";
1251 let Constraints = "$R1 = $R1src";
1252 let DisableEncoding = "$R1src";
1253 }
1254
1255 class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1256 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1257 : InstRXF<opcode, (outs cls:$R1),
1258 (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
1259 mnemonic#"\t$R1, $R3, $XBD2",
1260 [(set cls:$R1, (operator cls:$R1src, cls:$R3,
1261 (load bdxaddr12only:$XBD2)))]> {
1262 let OpKey = mnemonic ## cls;
1263 let OpType = "mem";
1264 let Constraints = "$R1 = $R1src";
1265 let DisableEncoding = "$R1src";
1266 let mayLoad = 1;
1267 let AccessBytes = bytes;
1268 }
1269
1270 class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1271 RegisterOperand cls, AddressingMode mode = bdaddr12only>
1272 : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1273 mnemonic#"\t$R1, $R3, $BD2",
1274 [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1275 let Constraints = "$R1 = $R1src";
1276 let DisableEncoding = "$R1src";
1277 let mayLoad = 1;
1278 let mayStore = 1;
1279 }
1280
1281 class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1282 RegisterOperand cls, AddressingMode mode = bdaddr20only>
1283 : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1284 mnemonic#"\t$R1, $R3, $BD2",
1285 [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1286 let Constraints = "$R1 = $R1src";
1287 let DisableEncoding = "$R1src";
1288 let mayLoad = 1;
1289 let mayStore = 1;
1290 }
1291
1292 multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
1293 SDPatternOperator operator, RegisterOperand cls> {
1294 let DispKey = mnemonic ## #cls in {
1295 let DispSize = "12" in
1296 def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
1297 let DispSize = "20" in
1298 def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
1299 }
1300 }
1301
1302 class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
1303 RegisterOperand cls2>
1304 : InstRIEf<opcode, (outs cls1:$R1),
1305 (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5),
1306 mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
1307 let Constraints = "$R1 = $R1src";
1308 let DisableEncoding = "$R1src";
1309 }
1310
1311 class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
1312 : InstRXY<opcode, (outs), (ins uimm8zx4:$R1, bdxaddr20only:$XBD2),
1313 mnemonic##"\t$R1, $XBD2",
1314 [(operator uimm8zx4:$R1, bdxaddr20only:$XBD2)]>;
1315
1316 class PrefetchRILPC<string mnemonic, bits<12> opcode,
1317 SDPatternOperator operator>
1318 : InstRIL<opcode, (outs), (ins uimm8zx4:$R1, pcrel32:$I2),
1319 mnemonic##"\t$R1, $I2",
1320 [(operator uimm8zx4:$R1, pcrel32:$I2)]> {
1321 // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1322 // However, BDXs have two extra operands and are therefore 6 units more
1323 // complex.
1324 let AddedComplexity = 7;
1325 }
1326
1327 // A floating-point load-and test operation. Create both a normal unary
1328 // operation and one that acts as a comparison against zero.
1329 multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
1330 RegisterOperand cls> {
1331 def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
1332 let isCodeGenOnly = 1 in
1333 def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
1334 }
1335
1336 //===----------------------------------------------------------------------===//
1337 // Pseudo instructions
1338 //===----------------------------------------------------------------------===//
1339 //
1340 // Convenience instructions that get lowered to real instructions
1341 // by either SystemZTargetLowering::EmitInstrWithCustomInserter()
1342 // or SystemZInstrInfo::expandPostRAPseudo().
1343 //
1344 //===----------------------------------------------------------------------===//
1345
1346 class Pseudo<dag outs, dag ins, list<dag> pattern>
1347 : InstSystemZ<0, outs, ins, "", pattern> {
1348 let isPseudo = 1;
1349 let isCodeGenOnly = 1;
1350 }
1351
1352 // Like UnaryRI, but expanded after RA depending on the choice of register.
1353 class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1354 Immediate imm>
1355 : Pseudo<(outs cls:$R1), (ins imm:$I2),
1356 [(set cls:$R1, (operator imm:$I2))]>;
1357
1358 // Like UnaryRXY, but expanded after RA depending on the choice of register.
1359 class UnaryRXYPseudo<string key, SDPatternOperator operator,
1360 RegisterOperand cls, bits<5> bytes,
1361 AddressingMode mode = bdxaddr20only>
1362 : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
1363 [(set cls:$R1, (operator mode:$XBD2))]> {
1364 let OpKey = key ## cls;
1365 let OpType = "mem";
1366 let mayLoad = 1;
1367 let Has20BitOffset = 1;
1368 let HasIndex = 1;
1369 let AccessBytes = bytes;
1370 }
1371
1372 // Like UnaryRR, but expanded after RA depending on the choice of registers.
1373 class UnaryRRPseudo<string key, SDPatternOperator operator,
1374 RegisterOperand cls1, RegisterOperand cls2>
1375 : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
1376 [(set cls1:$R1, (operator cls2:$R2))]> {
1377 let OpKey = key ## cls1;
1378 let OpType = "reg";
1379 }
1380
1381 // Like BinaryRI, but expanded after RA depending on the choice of register.
1382 class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1383 Immediate imm>
1384 : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
1385 [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1386 let Constraints = "$R1 = $R1src";
1387 }
1388
1389 // Like BinaryRIE, but expanded after RA depending on the choice of register.
1390 class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
1391 Immediate imm>
1392 : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
1393 [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
1394
1395 // Like BinaryRIAndK, but expanded after RA depending on the choice of register.
1396 multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
1397 RegisterOperand cls, Immediate imm> {
1398 let NumOpsKey = key in {
1399 let NumOpsValue = "3" in
1400 def K : BinaryRIEPseudo<null_frag, cls, imm>,
1401 Requires<[FeatureHighWord, FeatureDistinctOps]>;
1402 let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1403 def "" : BinaryRIPseudo<operator, cls, imm>,
1404 Requires<[FeatureHighWord]>;
1405 }
1406 }
1407
1408 // Like CompareRI, but expanded after RA depending on the choice of register.
1409 class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1410 Immediate imm>
1411 : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
1412
1413 // Like CompareRXY, but expanded after RA depending on the choice of register.
1414 class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1415 SDPatternOperator load, bits<5> bytes,
1416 AddressingMode mode = bdxaddr20only>
1417 : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1418 [(operator cls:$R1, (load mode:$XBD2))]> {
1419 let mayLoad = 1;
1420 let Has20BitOffset = 1;
1421 let HasIndex = 1;
1422 let AccessBytes = bytes;
1423 }
1424
1425 // Like StoreRXY, but expanded after RA depending on the choice of register.
1426 class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1427 bits<5> bytes, AddressingMode mode = bdxaddr20only>
1428 : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1429 [(operator cls:$R1, mode:$XBD2)]> {
1430 let mayStore = 1;
1431 let Has20BitOffset = 1;
1432 let HasIndex = 1;
1433 let AccessBytes = bytes;
1434 }
1435
1436 // Like RotateSelectRIEf, but expanded after RA depending on the choice
1437 // of registers.
1438 class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
1439 : Pseudo<(outs cls1:$R1),
1440 (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5),
1441 []> {
1442 let Constraints = "$R1 = $R1src";
1443 let DisableEncoding = "$R1src";
1444 }
1445
1446 // Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
1447 // the value of the PSW's 2-bit condition code field.
1448 class SelectWrapper<RegisterOperand cls>
1449 : Pseudo<(outs cls:$dst),
1450 (ins cls:$src1, cls:$src2, uimm8zx4:$valid, uimm8zx4:$cc),
1451 [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
1452 uimm8zx4:$valid, uimm8zx4:$cc))]> {
1453 let usesCustomInserter = 1;
1454 // Although the instructions used by these nodes do not in themselves
1455 // change CC, the insertion requires new blocks, and CC cannot be live
1456 // across them.
1457 let Defs = [CC];
1458 let Uses = [CC];
1459 }
1460
1461 // Stores $new to $addr if $cc is true ("" case) or false (Inv case).
1462 multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
1463 SDPatternOperator load, AddressingMode mode> {
1464 let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
1465 def "" : Pseudo<(outs),
1466 (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc),
1467 [(store (z_select_ccmask cls:$new, (load mode:$addr),
1468 uimm8zx4:$valid, uimm8zx4:$cc),
1469 mode:$addr)]>;
1470 def Inv : Pseudo<(outs),
1471 (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc),
1472 [(store (z_select_ccmask (load mode:$addr), cls:$new,
1473 uimm8zx4:$valid, uimm8zx4:$cc),
1474 mode:$addr)]>;
1475 }
1476 }
1477
1478 // OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
1479 // describe the second (non-memory) operand.
1480 class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
1481 dag pat, DAGOperand operand>
1482 : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
1483 [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
1484 let Defs = [CC];
1485 let Has20BitOffset = 1;
1486 let mayLoad = 1;
1487 let mayStore = 1;
1488 let usesCustomInserter = 1;
1489 }
1490
1491 // Specializations of AtomicLoadWBinary.
1492 class AtomicLoadBinaryReg32<SDPatternOperator operator>
1493 : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
1494 class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
1495 : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
1496 class AtomicLoadBinaryReg64<SDPatternOperator operator>
1497 : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
1498 class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
1499 : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
1500
1501 // OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
1502 // describe the second (non-memory) operand.
1503 class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
1504 DAGOperand operand>
1505 : Pseudo<(outs GR32:$dst),
1506 (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
1507 ADDR32:$negbitshift, uimm32:$bitsize),
1508 [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
1509 ADDR32:$negbitshift, uimm32:$bitsize))]> {
1510 let Defs = [CC];
1511 let Has20BitOffset = 1;
1512 let mayLoad = 1;
1513 let mayStore = 1;
1514 let usesCustomInserter = 1;
1515 }
1516
1517 // Specializations of AtomicLoadWBinary.
1518 class AtomicLoadWBinaryReg<SDPatternOperator operator>
1519 : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
1520 class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
1521 : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
1522
1523 // Define an instruction that operates on two fixed-length blocks of memory,
1524 // and associated pseudo instructions for operating on blocks of any size.
1525 // The Sequence form uses a straight-line sequence of instructions and
1526 // the Loop form uses a loop of length-256 instructions followed by
1527 // another instruction to handle the excess.
1528 multiclass MemorySS<string mnemonic, bits<8> opcode,
1529 SDPatternOperator sequence, SDPatternOperator loop> {
1530 def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
1531 bdaddr12only:$BD2),
1532 mnemonic##"\t$BDL1, $BD2", []>;
1533 let usesCustomInserter = 1 in {
1534 def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1535 imm64:$length),
1536 [(sequence bdaddr12only:$dest, bdaddr12only:$src,
1537 imm64:$length)]>;
1538 def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1539 imm64:$length, GR64:$count256),
1540 [(loop bdaddr12only:$dest, bdaddr12only:$src,
1541 imm64:$length, GR64:$count256)]>;
1542 }
1543 }
1544
1545 // Define an instruction that operates on two strings, both terminated
1546 // by the character in R0. The instruction processes a CPU-determinated
1547 // number of bytes at a time and sets CC to 3 if the instruction needs
1548 // to be repeated. Also define a pseudo instruction that represents
1549 // the full loop (the main instruction plus the branch on CC==3).
1550 multiclass StringRRE<string mnemonic, bits<16> opcode,
1551 SDPatternOperator operator> {
1552 def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
1553 (ins GR64:$R1src, GR64:$R2src),
1554 mnemonic#"\t$R1, $R2", []> {
1555 let Constraints = "$R1 = $R1src, $R2 = $R2src";
1556 let DisableEncoding = "$R1src, $R2src";
1557 }
1558 let usesCustomInserter = 1 in
1559 def Loop : Pseudo<(outs GR64:$end),
1560 (ins GR64:$start1, GR64:$start2, GR32:$char),
1561 [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
1562 GR32:$char))]>;
1563 }
1564
1565 // A pseudo instruction that is a direct alias of a real instruction.
1566 // These aliases are used in cases where a particular register operand is
1567 // fixed or where the same instruction is used with different register sizes.
1568 // The size parameter is the size in bytes of the associated real instruction.
1569 class Alias<int size, dag outs, dag ins, list<dag> pattern>
1570 : InstSystemZ<size, outs, ins, "", pattern> {
1571 let isPseudo = 1;
1572 let isCodeGenOnly = 1;
1573 }
1574
1575 // An alias of a BinaryRI, but with different register sizes.
1576 class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
1577 Immediate imm>
1578 : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1579 [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1580 let Constraints = "$R1 = $R1src";
1581 }
1582
1583 // An alias of a BinaryRIL, but with different register sizes.
1584 class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
1585 Immediate imm>
1586 : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1587 [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1588 let Constraints = "$R1 = $R1src";
1589 }
1590
1591 // An alias of a CompareRI, but with different register sizes.
1592 class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
1593 Immediate imm>
1594 : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
1595 let isCompare = 1;
1596 }
1597
1598 // An alias of a RotateSelectRIEf, but with different register sizes.
1599 class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
1600 : Alias<6, (outs cls1:$R1),
1601 (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5), []> {
1602 let Constraints = "$R1 = $R1src";
1603 }