comparison tools/clang/lib/Parse/ParseStmt.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children e4204d083e25
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Statement and Block portions of the Parser
11 // interface.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Parse/Parser.h"
16 #include "RAIIObjectsForParser.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/Basic/Diagnostic.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/PrettyDeclStackTrace.h"
24 #include "clang/Sema/Scope.h"
25 #include "clang/Sema/TypoCorrection.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCObjectFileInfo.h"
29 #include "llvm/MC/MCParser/MCAsmParser.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCStreamer.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/MCTargetAsmParser.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include "llvm/Support/TargetSelect.h"
37 #include "llvm/ADT/SmallString.h"
38 using namespace clang;
39
40 //===----------------------------------------------------------------------===//
41 // C99 6.8: Statements and Blocks.
42 //===----------------------------------------------------------------------===//
43
44 /// \brief Parse a standalone statement (for instance, as the body of an 'if',
45 /// 'while', or 'for').
46 StmtResult Parser::ParseStatement(SourceLocation *TrailingElseLoc) {
47 StmtResult Res;
48
49 // We may get back a null statement if we found a #pragma. Keep going until
50 // we get an actual statement.
51 do {
52 StmtVector Stmts;
53 Res = ParseStatementOrDeclaration(Stmts, true, TrailingElseLoc);
54 } while (!Res.isInvalid() && !Res.get());
55
56 return Res;
57 }
58
59 /// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
60 /// StatementOrDeclaration:
61 /// statement
62 /// declaration
63 ///
64 /// statement:
65 /// labeled-statement
66 /// compound-statement
67 /// expression-statement
68 /// selection-statement
69 /// iteration-statement
70 /// jump-statement
71 /// [C++] declaration-statement
72 /// [C++] try-block
73 /// [MS] seh-try-block
74 /// [OBC] objc-throw-statement
75 /// [OBC] objc-try-catch-statement
76 /// [OBC] objc-synchronized-statement
77 /// [GNU] asm-statement
78 /// [OMP] openmp-construct [TODO]
79 ///
80 /// labeled-statement:
81 /// identifier ':' statement
82 /// 'case' constant-expression ':' statement
83 /// 'default' ':' statement
84 ///
85 /// selection-statement:
86 /// if-statement
87 /// switch-statement
88 ///
89 /// iteration-statement:
90 /// while-statement
91 /// do-statement
92 /// for-statement
93 ///
94 /// expression-statement:
95 /// expression[opt] ';'
96 ///
97 /// jump-statement:
98 /// 'goto' identifier ';'
99 /// 'continue' ';'
100 /// 'break' ';'
101 /// 'return' expression[opt] ';'
102 /// [GNU] 'goto' '*' expression ';'
103 ///
104 /// [OBC] objc-throw-statement:
105 /// [OBC] '@' 'throw' expression ';'
106 /// [OBC] '@' 'throw' ';'
107 ///
108 StmtResult
109 Parser::ParseStatementOrDeclaration(StmtVector &Stmts, bool OnlyStatement,
110 SourceLocation *TrailingElseLoc) {
111
112 ParenBraceBracketBalancer BalancerRAIIObj(*this);
113
114 ParsedAttributesWithRange Attrs(AttrFactory);
115 MaybeParseCXX11Attributes(Attrs, 0, /*MightBeObjCMessageSend*/ true);
116
117 StmtResult Res = ParseStatementOrDeclarationAfterAttributes(Stmts,
118 OnlyStatement, TrailingElseLoc, Attrs);
119
120 assert((Attrs.empty() || Res.isInvalid() || Res.isUsable()) &&
121 "attributes on empty statement");
122
123 if (Attrs.empty() || Res.isInvalid())
124 return Res;
125
126 return Actions.ProcessStmtAttributes(Res.get(), Attrs.getList(), Attrs.Range);
127 }
128
129 namespace {
130 class StatementFilterCCC : public CorrectionCandidateCallback {
131 public:
132 StatementFilterCCC(Token nextTok) : NextToken(nextTok) {
133 WantTypeSpecifiers = nextTok.is(tok::l_paren) || nextTok.is(tok::less) ||
134 nextTok.is(tok::identifier) || nextTok.is(tok::star) ||
135 nextTok.is(tok::amp) || nextTok.is(tok::l_square);
136 WantExpressionKeywords = nextTok.is(tok::l_paren) ||
137 nextTok.is(tok::identifier) ||
138 nextTok.is(tok::arrow) || nextTok.is(tok::period);
139 WantRemainingKeywords = nextTok.is(tok::l_paren) || nextTok.is(tok::semi) ||
140 nextTok.is(tok::identifier) ||
141 nextTok.is(tok::l_brace);
142 WantCXXNamedCasts = false;
143 }
144
145 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
146 if (FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>())
147 return !candidate.getCorrectionSpecifier() || isa<ObjCIvarDecl>(FD);
148 if (NextToken.is(tok::equal))
149 return candidate.getCorrectionDeclAs<VarDecl>();
150 if (NextToken.is(tok::period) &&
151 candidate.getCorrectionDeclAs<NamespaceDecl>())
152 return false;
153 return CorrectionCandidateCallback::ValidateCandidate(candidate);
154 }
155
156 private:
157 Token NextToken;
158 };
159 }
160
161 StmtResult
162 Parser::ParseStatementOrDeclarationAfterAttributes(StmtVector &Stmts,
163 bool OnlyStatement, SourceLocation *TrailingElseLoc,
164 ParsedAttributesWithRange &Attrs) {
165 const char *SemiError = 0;
166 StmtResult Res;
167
168 // Cases in this switch statement should fall through if the parser expects
169 // the token to end in a semicolon (in which case SemiError should be set),
170 // or they directly 'return;' if not.
171 Retry:
172 tok::TokenKind Kind = Tok.getKind();
173 SourceLocation AtLoc;
174 switch (Kind) {
175 case tok::at: // May be a @try or @throw statement
176 {
177 ProhibitAttributes(Attrs); // TODO: is it correct?
178 AtLoc = ConsumeToken(); // consume @
179 return ParseObjCAtStatement(AtLoc);
180 }
181
182 case tok::code_completion:
183 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Statement);
184 cutOffParsing();
185 return StmtError();
186
187 case tok::identifier: {
188 Token Next = NextToken();
189 if (Next.is(tok::colon)) { // C99 6.8.1: labeled-statement
190 // identifier ':' statement
191 return ParseLabeledStatement(Attrs);
192 }
193
194 // Look up the identifier, and typo-correct it to a keyword if it's not
195 // found.
196 if (Next.isNot(tok::coloncolon)) {
197 // Try to limit which sets of keywords should be included in typo
198 // correction based on what the next token is.
199 StatementFilterCCC Validator(Next);
200 if (TryAnnotateName(/*IsAddressOfOperand*/false, &Validator)
201 == ANK_Error) {
202 // Handle errors here by skipping up to the next semicolon or '}', and
203 // eat the semicolon if that's what stopped us.
204 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
205 if (Tok.is(tok::semi))
206 ConsumeToken();
207 return StmtError();
208 }
209
210 // If the identifier was typo-corrected, try again.
211 if (Tok.isNot(tok::identifier))
212 goto Retry;
213 }
214
215 // Fall through
216 }
217
218 default: {
219 if ((getLangOpts().CPlusPlus || !OnlyStatement) && isDeclarationStatement()) {
220 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
221 DeclGroupPtrTy Decl = ParseDeclaration(Stmts, Declarator::BlockContext,
222 DeclEnd, Attrs);
223 return Actions.ActOnDeclStmt(Decl, DeclStart, DeclEnd);
224 }
225
226 if (Tok.is(tok::r_brace)) {
227 Diag(Tok, diag::err_expected_statement);
228 return StmtError();
229 }
230
231 return ParseExprStatement();
232 }
233
234 case tok::kw_case: // C99 6.8.1: labeled-statement
235 return ParseCaseStatement();
236 case tok::kw_default: // C99 6.8.1: labeled-statement
237 return ParseDefaultStatement();
238
239 case tok::l_brace: // C99 6.8.2: compound-statement
240 return ParseCompoundStatement();
241 case tok::semi: { // C99 6.8.3p3: expression[opt] ';'
242 bool HasLeadingEmptyMacro = Tok.hasLeadingEmptyMacro();
243 return Actions.ActOnNullStmt(ConsumeToken(), HasLeadingEmptyMacro);
244 }
245
246 case tok::kw_if: // C99 6.8.4.1: if-statement
247 return ParseIfStatement(TrailingElseLoc);
248 case tok::kw_switch: // C99 6.8.4.2: switch-statement
249 return ParseSwitchStatement(TrailingElseLoc);
250
251 case tok::kw_while: // C99 6.8.5.1: while-statement
252 return ParseWhileStatement(TrailingElseLoc);
253 case tok::kw_do: // C99 6.8.5.2: do-statement
254 Res = ParseDoStatement();
255 SemiError = "do/while";
256 break;
257 case tok::kw_for: // C99 6.8.5.3: for-statement
258 return ParseForStatement(TrailingElseLoc);
259
260 case tok::kw_goto: // C99 6.8.6.1: goto-statement
261 Res = ParseGotoStatement();
262 SemiError = "goto";
263 break;
264 case tok::kw_continue: // C99 6.8.6.2: continue-statement
265 Res = ParseContinueStatement();
266 SemiError = "continue";
267 break;
268 case tok::kw_break: // C99 6.8.6.3: break-statement
269 Res = ParseBreakStatement();
270 SemiError = "break";
271 break;
272 case tok::kw_return: // C99 6.8.6.4: return-statement
273 Res = ParseReturnStatement();
274 SemiError = "return";
275 break;
276
277 case tok::kw_asm: {
278 ProhibitAttributes(Attrs);
279 bool msAsm = false;
280 Res = ParseAsmStatement(msAsm);
281 Res = Actions.ActOnFinishFullStmt(Res.get());
282 if (msAsm) return Res;
283 SemiError = "asm";
284 break;
285 }
286
287 case tok::kw_try: // C++ 15: try-block
288 return ParseCXXTryBlock();
289
290 case tok::kw___try:
291 ProhibitAttributes(Attrs); // TODO: is it correct?
292 return ParseSEHTryBlock();
293
294 case tok::annot_pragma_vis:
295 ProhibitAttributes(Attrs);
296 HandlePragmaVisibility();
297 return StmtEmpty();
298
299 case tok::annot_pragma_pack:
300 ProhibitAttributes(Attrs);
301 HandlePragmaPack();
302 return StmtEmpty();
303
304 case tok::annot_pragma_msstruct:
305 ProhibitAttributes(Attrs);
306 HandlePragmaMSStruct();
307 return StmtEmpty();
308
309 case tok::annot_pragma_align:
310 ProhibitAttributes(Attrs);
311 HandlePragmaAlign();
312 return StmtEmpty();
313
314 case tok::annot_pragma_weak:
315 ProhibitAttributes(Attrs);
316 HandlePragmaWeak();
317 return StmtEmpty();
318
319 case tok::annot_pragma_weakalias:
320 ProhibitAttributes(Attrs);
321 HandlePragmaWeakAlias();
322 return StmtEmpty();
323
324 case tok::annot_pragma_redefine_extname:
325 ProhibitAttributes(Attrs);
326 HandlePragmaRedefineExtname();
327 return StmtEmpty();
328
329 case tok::annot_pragma_fp_contract:
330 ProhibitAttributes(Attrs);
331 Diag(Tok, diag::err_pragma_fp_contract_scope);
332 ConsumeToken();
333 return StmtError();
334
335 case tok::annot_pragma_opencl_extension:
336 ProhibitAttributes(Attrs);
337 HandlePragmaOpenCLExtension();
338 return StmtEmpty();
339
340 case tok::annot_pragma_captured:
341 ProhibitAttributes(Attrs);
342 return HandlePragmaCaptured();
343
344 case tok::annot_pragma_openmp:
345 ProhibitAttributes(Attrs);
346 return ParseOpenMPDeclarativeOrExecutableDirective();
347
348 }
349
350 // If we reached this code, the statement must end in a semicolon.
351 if (Tok.is(tok::semi)) {
352 ConsumeToken();
353 } else if (!Res.isInvalid()) {
354 // If the result was valid, then we do want to diagnose this. Use
355 // ExpectAndConsume to emit the diagnostic, even though we know it won't
356 // succeed.
357 ExpectAndConsume(tok::semi, diag::err_expected_semi_after_stmt, SemiError);
358 // Skip until we see a } or ;, but don't eat it.
359 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
360 }
361
362 return Res;
363 }
364
365 /// \brief Parse an expression statement.
366 StmtResult Parser::ParseExprStatement() {
367 // If a case keyword is missing, this is where it should be inserted.
368 Token OldToken = Tok;
369
370 // expression[opt] ';'
371 ExprResult Expr(ParseExpression());
372 if (Expr.isInvalid()) {
373 // If the expression is invalid, skip ahead to the next semicolon or '}'.
374 // Not doing this opens us up to the possibility of infinite loops if
375 // ParseExpression does not consume any tokens.
376 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
377 if (Tok.is(tok::semi))
378 ConsumeToken();
379 return Actions.ActOnExprStmtError();
380 }
381
382 if (Tok.is(tok::colon) && getCurScope()->isSwitchScope() &&
383 Actions.CheckCaseExpression(Expr.get())) {
384 // If a constant expression is followed by a colon inside a switch block,
385 // suggest a missing case keyword.
386 Diag(OldToken, diag::err_expected_case_before_expression)
387 << FixItHint::CreateInsertion(OldToken.getLocation(), "case ");
388
389 // Recover parsing as a case statement.
390 return ParseCaseStatement(/*MissingCase=*/true, Expr);
391 }
392
393 // Otherwise, eat the semicolon.
394 ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
395 return Actions.ActOnExprStmt(Expr);
396 }
397
398 StmtResult Parser::ParseSEHTryBlock() {
399 assert(Tok.is(tok::kw___try) && "Expected '__try'");
400 SourceLocation Loc = ConsumeToken();
401 return ParseSEHTryBlockCommon(Loc);
402 }
403
404 /// ParseSEHTryBlockCommon
405 ///
406 /// seh-try-block:
407 /// '__try' compound-statement seh-handler
408 ///
409 /// seh-handler:
410 /// seh-except-block
411 /// seh-finally-block
412 ///
413 StmtResult Parser::ParseSEHTryBlockCommon(SourceLocation TryLoc) {
414 if(Tok.isNot(tok::l_brace))
415 return StmtError(Diag(Tok,diag::err_expected_lbrace));
416
417 StmtResult TryBlock(ParseCompoundStatement());
418 if(TryBlock.isInvalid())
419 return TryBlock;
420
421 StmtResult Handler;
422 if (Tok.is(tok::identifier) &&
423 Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
424 SourceLocation Loc = ConsumeToken();
425 Handler = ParseSEHExceptBlock(Loc);
426 } else if (Tok.is(tok::kw___finally)) {
427 SourceLocation Loc = ConsumeToken();
428 Handler = ParseSEHFinallyBlock(Loc);
429 } else {
430 return StmtError(Diag(Tok,diag::err_seh_expected_handler));
431 }
432
433 if(Handler.isInvalid())
434 return Handler;
435
436 return Actions.ActOnSEHTryBlock(false /* IsCXXTry */,
437 TryLoc,
438 TryBlock.take(),
439 Handler.take());
440 }
441
442 /// ParseSEHExceptBlock - Handle __except
443 ///
444 /// seh-except-block:
445 /// '__except' '(' seh-filter-expression ')' compound-statement
446 ///
447 StmtResult Parser::ParseSEHExceptBlock(SourceLocation ExceptLoc) {
448 PoisonIdentifierRAIIObject raii(Ident__exception_code, false),
449 raii2(Ident___exception_code, false),
450 raii3(Ident_GetExceptionCode, false);
451
452 if(ExpectAndConsume(tok::l_paren,diag::err_expected_lparen))
453 return StmtError();
454
455 ParseScope ExpectScope(this, Scope::DeclScope | Scope::ControlScope);
456
457 if (getLangOpts().Borland) {
458 Ident__exception_info->setIsPoisoned(false);
459 Ident___exception_info->setIsPoisoned(false);
460 Ident_GetExceptionInfo->setIsPoisoned(false);
461 }
462 ExprResult FilterExpr(ParseExpression());
463
464 if (getLangOpts().Borland) {
465 Ident__exception_info->setIsPoisoned(true);
466 Ident___exception_info->setIsPoisoned(true);
467 Ident_GetExceptionInfo->setIsPoisoned(true);
468 }
469
470 if(FilterExpr.isInvalid())
471 return StmtError();
472
473 if(ExpectAndConsume(tok::r_paren,diag::err_expected_rparen))
474 return StmtError();
475
476 StmtResult Block(ParseCompoundStatement());
477
478 if(Block.isInvalid())
479 return Block;
480
481 return Actions.ActOnSEHExceptBlock(ExceptLoc, FilterExpr.take(), Block.take());
482 }
483
484 /// ParseSEHFinallyBlock - Handle __finally
485 ///
486 /// seh-finally-block:
487 /// '__finally' compound-statement
488 ///
489 StmtResult Parser::ParseSEHFinallyBlock(SourceLocation FinallyBlock) {
490 PoisonIdentifierRAIIObject raii(Ident__abnormal_termination, false),
491 raii2(Ident___abnormal_termination, false),
492 raii3(Ident_AbnormalTermination, false);
493
494 StmtResult Block(ParseCompoundStatement());
495 if(Block.isInvalid())
496 return Block;
497
498 return Actions.ActOnSEHFinallyBlock(FinallyBlock,Block.take());
499 }
500
501 /// ParseLabeledStatement - We have an identifier and a ':' after it.
502 ///
503 /// labeled-statement:
504 /// identifier ':' statement
505 /// [GNU] identifier ':' attributes[opt] statement
506 ///
507 StmtResult Parser::ParseLabeledStatement(ParsedAttributesWithRange &attrs) {
508 assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() &&
509 "Not an identifier!");
510
511 Token IdentTok = Tok; // Save the whole token.
512 ConsumeToken(); // eat the identifier.
513
514 assert(Tok.is(tok::colon) && "Not a label!");
515
516 // identifier ':' statement
517 SourceLocation ColonLoc = ConsumeToken();
518
519 // Read label attributes, if present.
520 StmtResult SubStmt;
521 if (Tok.is(tok::kw___attribute)) {
522 ParsedAttributesWithRange TempAttrs(AttrFactory);
523 ParseGNUAttributes(TempAttrs);
524
525 // In C++, GNU attributes only apply to the label if they are followed by a
526 // semicolon, to disambiguate label attributes from attributes on a labeled
527 // declaration.
528 //
529 // This doesn't quite match what GCC does; if the attribute list is empty
530 // and followed by a semicolon, GCC will reject (it appears to parse the
531 // attributes as part of a statement in that case). That looks like a bug.
532 if (!getLangOpts().CPlusPlus || Tok.is(tok::semi))
533 attrs.takeAllFrom(TempAttrs);
534 else if (isDeclarationStatement()) {
535 StmtVector Stmts;
536 // FIXME: We should do this whether or not we have a declaration
537 // statement, but that doesn't work correctly (because ProhibitAttributes
538 // can't handle GNU attributes), so only call it in the one case where
539 // GNU attributes are allowed.
540 SubStmt = ParseStatementOrDeclarationAfterAttributes(
541 Stmts, /*OnlyStmts*/ true, 0, TempAttrs);
542 if (!TempAttrs.empty() && !SubStmt.isInvalid())
543 SubStmt = Actions.ProcessStmtAttributes(
544 SubStmt.get(), TempAttrs.getList(), TempAttrs.Range);
545 } else {
546 Diag(Tok, diag::err_expected_semi_after) << "__attribute__";
547 }
548 }
549
550 // If we've not parsed a statement yet, parse one now.
551 if (!SubStmt.isInvalid() && !SubStmt.isUsable())
552 SubStmt = ParseStatement();
553
554 // Broken substmt shouldn't prevent the label from being added to the AST.
555 if (SubStmt.isInvalid())
556 SubStmt = Actions.ActOnNullStmt(ColonLoc);
557
558 LabelDecl *LD = Actions.LookupOrCreateLabel(IdentTok.getIdentifierInfo(),
559 IdentTok.getLocation());
560 if (AttributeList *Attrs = attrs.getList()) {
561 Actions.ProcessDeclAttributeList(Actions.CurScope, LD, Attrs);
562 attrs.clear();
563 }
564
565 return Actions.ActOnLabelStmt(IdentTok.getLocation(), LD, ColonLoc,
566 SubStmt.get());
567 }
568
569 /// ParseCaseStatement
570 /// labeled-statement:
571 /// 'case' constant-expression ':' statement
572 /// [GNU] 'case' constant-expression '...' constant-expression ':' statement
573 ///
574 StmtResult Parser::ParseCaseStatement(bool MissingCase, ExprResult Expr) {
575 assert((MissingCase || Tok.is(tok::kw_case)) && "Not a case stmt!");
576
577 // It is very very common for code to contain many case statements recursively
578 // nested, as in (but usually without indentation):
579 // case 1:
580 // case 2:
581 // case 3:
582 // case 4:
583 // case 5: etc.
584 //
585 // Parsing this naively works, but is both inefficient and can cause us to run
586 // out of stack space in our recursive descent parser. As a special case,
587 // flatten this recursion into an iterative loop. This is complex and gross,
588 // but all the grossness is constrained to ParseCaseStatement (and some
589 // weirdness in the actions), so this is just local grossness :).
590
591 // TopLevelCase - This is the highest level we have parsed. 'case 1' in the
592 // example above.
593 StmtResult TopLevelCase(true);
594
595 // DeepestParsedCaseStmt - This is the deepest statement we have parsed, which
596 // gets updated each time a new case is parsed, and whose body is unset so
597 // far. When parsing 'case 4', this is the 'case 3' node.
598 Stmt *DeepestParsedCaseStmt = 0;
599
600 // While we have case statements, eat and stack them.
601 SourceLocation ColonLoc;
602 do {
603 SourceLocation CaseLoc = MissingCase ? Expr.get()->getExprLoc() :
604 ConsumeToken(); // eat the 'case'.
605
606 if (Tok.is(tok::code_completion)) {
607 Actions.CodeCompleteCase(getCurScope());
608 cutOffParsing();
609 return StmtError();
610 }
611
612 /// We don't want to treat 'case x : y' as a potential typo for 'case x::y'.
613 /// Disable this form of error recovery while we're parsing the case
614 /// expression.
615 ColonProtectionRAIIObject ColonProtection(*this);
616
617 ExprResult LHS(MissingCase ? Expr : ParseConstantExpression());
618 MissingCase = false;
619 if (LHS.isInvalid()) {
620 SkipUntil(tok::colon, StopAtSemi);
621 return StmtError();
622 }
623
624 // GNU case range extension.
625 SourceLocation DotDotDotLoc;
626 ExprResult RHS;
627 if (Tok.is(tok::ellipsis)) {
628 Diag(Tok, diag::ext_gnu_case_range);
629 DotDotDotLoc = ConsumeToken();
630
631 RHS = ParseConstantExpression();
632 if (RHS.isInvalid()) {
633 SkipUntil(tok::colon, StopAtSemi);
634 return StmtError();
635 }
636 }
637
638 ColonProtection.restore();
639
640 if (Tok.is(tok::colon)) {
641 ColonLoc = ConsumeToken();
642
643 // Treat "case blah;" as a typo for "case blah:".
644 } else if (Tok.is(tok::semi)) {
645 ColonLoc = ConsumeToken();
646 Diag(ColonLoc, diag::err_expected_colon_after) << "'case'"
647 << FixItHint::CreateReplacement(ColonLoc, ":");
648 } else {
649 SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
650 Diag(ExpectedLoc, diag::err_expected_colon_after) << "'case'"
651 << FixItHint::CreateInsertion(ExpectedLoc, ":");
652 ColonLoc = ExpectedLoc;
653 }
654
655 StmtResult Case =
656 Actions.ActOnCaseStmt(CaseLoc, LHS.get(), DotDotDotLoc,
657 RHS.get(), ColonLoc);
658
659 // If we had a sema error parsing this case, then just ignore it and
660 // continue parsing the sub-stmt.
661 if (Case.isInvalid()) {
662 if (TopLevelCase.isInvalid()) // No parsed case stmts.
663 return ParseStatement();
664 // Otherwise, just don't add it as a nested case.
665 } else {
666 // If this is the first case statement we parsed, it becomes TopLevelCase.
667 // Otherwise we link it into the current chain.
668 Stmt *NextDeepest = Case.get();
669 if (TopLevelCase.isInvalid())
670 TopLevelCase = Case;
671 else
672 Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, Case.get());
673 DeepestParsedCaseStmt = NextDeepest;
674 }
675
676 // Handle all case statements.
677 } while (Tok.is(tok::kw_case));
678
679 assert(!TopLevelCase.isInvalid() && "Should have parsed at least one case!");
680
681 // If we found a non-case statement, start by parsing it.
682 StmtResult SubStmt;
683
684 if (Tok.isNot(tok::r_brace)) {
685 SubStmt = ParseStatement();
686 } else {
687 // Nicely diagnose the common error "switch (X) { case 4: }", which is
688 // not valid.
689 SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
690 Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
691 << FixItHint::CreateInsertion(AfterColonLoc, " ;");
692 SubStmt = true;
693 }
694
695 // Broken sub-stmt shouldn't prevent forming the case statement properly.
696 if (SubStmt.isInvalid())
697 SubStmt = Actions.ActOnNullStmt(SourceLocation());
698
699 // Install the body into the most deeply-nested case.
700 Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, SubStmt.get());
701
702 // Return the top level parsed statement tree.
703 return TopLevelCase;
704 }
705
706 /// ParseDefaultStatement
707 /// labeled-statement:
708 /// 'default' ':' statement
709 /// Note that this does not parse the 'statement' at the end.
710 ///
711 StmtResult Parser::ParseDefaultStatement() {
712 assert(Tok.is(tok::kw_default) && "Not a default stmt!");
713 SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'.
714
715 SourceLocation ColonLoc;
716 if (Tok.is(tok::colon)) {
717 ColonLoc = ConsumeToken();
718
719 // Treat "default;" as a typo for "default:".
720 } else if (Tok.is(tok::semi)) {
721 ColonLoc = ConsumeToken();
722 Diag(ColonLoc, diag::err_expected_colon_after) << "'default'"
723 << FixItHint::CreateReplacement(ColonLoc, ":");
724 } else {
725 SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
726 Diag(ExpectedLoc, diag::err_expected_colon_after) << "'default'"
727 << FixItHint::CreateInsertion(ExpectedLoc, ":");
728 ColonLoc = ExpectedLoc;
729 }
730
731 StmtResult SubStmt;
732
733 if (Tok.isNot(tok::r_brace)) {
734 SubStmt = ParseStatement();
735 } else {
736 // Diagnose the common error "switch (X) {... default: }", which is
737 // not valid.
738 SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
739 Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
740 << FixItHint::CreateInsertion(AfterColonLoc, " ;");
741 SubStmt = true;
742 }
743
744 // Broken sub-stmt shouldn't prevent forming the case statement properly.
745 if (SubStmt.isInvalid())
746 SubStmt = Actions.ActOnNullStmt(ColonLoc);
747
748 return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc,
749 SubStmt.get(), getCurScope());
750 }
751
752 StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
753 return ParseCompoundStatement(isStmtExpr, Scope::DeclScope);
754 }
755
756 /// ParseCompoundStatement - Parse a "{}" block.
757 ///
758 /// compound-statement: [C99 6.8.2]
759 /// { block-item-list[opt] }
760 /// [GNU] { label-declarations block-item-list } [TODO]
761 ///
762 /// block-item-list:
763 /// block-item
764 /// block-item-list block-item
765 ///
766 /// block-item:
767 /// declaration
768 /// [GNU] '__extension__' declaration
769 /// statement
770 /// [OMP] openmp-directive [TODO]
771 ///
772 /// [GNU] label-declarations:
773 /// [GNU] label-declaration
774 /// [GNU] label-declarations label-declaration
775 ///
776 /// [GNU] label-declaration:
777 /// [GNU] '__label__' identifier-list ';'
778 ///
779 /// [OMP] openmp-directive: [TODO]
780 /// [OMP] barrier-directive
781 /// [OMP] flush-directive
782 ///
783 StmtResult Parser::ParseCompoundStatement(bool isStmtExpr,
784 unsigned ScopeFlags) {
785 assert(Tok.is(tok::l_brace) && "Not a compount stmt!");
786
787 // Enter a scope to hold everything within the compound stmt. Compound
788 // statements can always hold declarations.
789 ParseScope CompoundScope(this, ScopeFlags);
790
791 // Parse the statements in the body.
792 return ParseCompoundStatementBody(isStmtExpr);
793 }
794
795 /// Parse any pragmas at the start of the compound expression. We handle these
796 /// separately since some pragmas (FP_CONTRACT) must appear before any C
797 /// statement in the compound, but may be intermingled with other pragmas.
798 void Parser::ParseCompoundStatementLeadingPragmas() {
799 bool checkForPragmas = true;
800 while (checkForPragmas) {
801 switch (Tok.getKind()) {
802 case tok::annot_pragma_vis:
803 HandlePragmaVisibility();
804 break;
805 case tok::annot_pragma_pack:
806 HandlePragmaPack();
807 break;
808 case tok::annot_pragma_msstruct:
809 HandlePragmaMSStruct();
810 break;
811 case tok::annot_pragma_align:
812 HandlePragmaAlign();
813 break;
814 case tok::annot_pragma_weak:
815 HandlePragmaWeak();
816 break;
817 case tok::annot_pragma_weakalias:
818 HandlePragmaWeakAlias();
819 break;
820 case tok::annot_pragma_redefine_extname:
821 HandlePragmaRedefineExtname();
822 break;
823 case tok::annot_pragma_opencl_extension:
824 HandlePragmaOpenCLExtension();
825 break;
826 case tok::annot_pragma_fp_contract:
827 HandlePragmaFPContract();
828 break;
829 default:
830 checkForPragmas = false;
831 break;
832 }
833 }
834
835 }
836
837 /// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
838 /// ActOnCompoundStmt action. This expects the '{' to be the current token, and
839 /// consume the '}' at the end of the block. It does not manipulate the scope
840 /// stack.
841 StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
842 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(),
843 Tok.getLocation(),
844 "in compound statement ('{}')");
845
846 // Record the state of the FP_CONTRACT pragma, restore on leaving the
847 // compound statement.
848 Sema::FPContractStateRAII SaveFPContractState(Actions);
849
850 InMessageExpressionRAIIObject InMessage(*this, false);
851 BalancedDelimiterTracker T(*this, tok::l_brace);
852 if (T.consumeOpen())
853 return StmtError();
854
855 Sema::CompoundScopeRAII CompoundScope(Actions);
856
857 // Parse any pragmas at the beginning of the compound statement.
858 ParseCompoundStatementLeadingPragmas();
859
860 StmtVector Stmts;
861
862 // "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are
863 // only allowed at the start of a compound stmt regardless of the language.
864 while (Tok.is(tok::kw___label__)) {
865 SourceLocation LabelLoc = ConsumeToken();
866
867 SmallVector<Decl *, 8> DeclsInGroup;
868 while (1) {
869 if (Tok.isNot(tok::identifier)) {
870 Diag(Tok, diag::err_expected_ident);
871 break;
872 }
873
874 IdentifierInfo *II = Tok.getIdentifierInfo();
875 SourceLocation IdLoc = ConsumeToken();
876 DeclsInGroup.push_back(Actions.LookupOrCreateLabel(II, IdLoc, LabelLoc));
877
878 if (!Tok.is(tok::comma))
879 break;
880 ConsumeToken();
881 }
882
883 DeclSpec DS(AttrFactory);
884 DeclGroupPtrTy Res =
885 Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
886 StmtResult R = Actions.ActOnDeclStmt(Res, LabelLoc, Tok.getLocation());
887
888 ExpectAndConsumeSemi(diag::err_expected_semi_declaration);
889 if (R.isUsable())
890 Stmts.push_back(R.release());
891 }
892
893 while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
894 if (Tok.is(tok::annot_pragma_unused)) {
895 HandlePragmaUnused();
896 continue;
897 }
898
899 if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
900 Tok.is(tok::kw___if_not_exists))) {
901 ParseMicrosoftIfExistsStatement(Stmts);
902 continue;
903 }
904
905 StmtResult R;
906 if (Tok.isNot(tok::kw___extension__)) {
907 R = ParseStatementOrDeclaration(Stmts, false);
908 } else {
909 // __extension__ can start declarations and it can also be a unary
910 // operator for expressions. Consume multiple __extension__ markers here
911 // until we can determine which is which.
912 // FIXME: This loses extension expressions in the AST!
913 SourceLocation ExtLoc = ConsumeToken();
914 while (Tok.is(tok::kw___extension__))
915 ConsumeToken();
916
917 ParsedAttributesWithRange attrs(AttrFactory);
918 MaybeParseCXX11Attributes(attrs, 0, /*MightBeObjCMessageSend*/ true);
919
920 // If this is the start of a declaration, parse it as such.
921 if (isDeclarationStatement()) {
922 // __extension__ silences extension warnings in the subdeclaration.
923 // FIXME: Save the __extension__ on the decl as a node somehow?
924 ExtensionRAIIObject O(Diags);
925
926 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
927 DeclGroupPtrTy Res = ParseDeclaration(Stmts,
928 Declarator::BlockContext, DeclEnd,
929 attrs);
930 R = Actions.ActOnDeclStmt(Res, DeclStart, DeclEnd);
931 } else {
932 // Otherwise this was a unary __extension__ marker.
933 ExprResult Res(ParseExpressionWithLeadingExtension(ExtLoc));
934
935 if (Res.isInvalid()) {
936 SkipUntil(tok::semi);
937 continue;
938 }
939
940 // FIXME: Use attributes?
941 // Eat the semicolon at the end of stmt and convert the expr into a
942 // statement.
943 ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
944 R = Actions.ActOnExprStmt(Res);
945 }
946 }
947
948 if (R.isUsable())
949 Stmts.push_back(R.release());
950 }
951
952 SourceLocation CloseLoc = Tok.getLocation();
953
954 // We broke out of the while loop because we found a '}' or EOF.
955 if (!T.consumeClose())
956 // Recover by creating a compound statement with what we parsed so far,
957 // instead of dropping everything and returning StmtError();
958 CloseLoc = T.getCloseLocation();
959
960 return Actions.ActOnCompoundStmt(T.getOpenLocation(), CloseLoc,
961 Stmts, isStmtExpr);
962 }
963
964 /// ParseParenExprOrCondition:
965 /// [C ] '(' expression ')'
966 /// [C++] '(' condition ')' [not allowed if OnlyAllowCondition=true]
967 ///
968 /// This function parses and performs error recovery on the specified condition
969 /// or expression (depending on whether we're in C++ or C mode). This function
970 /// goes out of its way to recover well. It returns true if there was a parser
971 /// error (the right paren couldn't be found), which indicates that the caller
972 /// should try to recover harder. It returns false if the condition is
973 /// successfully parsed. Note that a successful parse can still have semantic
974 /// errors in the condition.
975 bool Parser::ParseParenExprOrCondition(ExprResult &ExprResult,
976 Decl *&DeclResult,
977 SourceLocation Loc,
978 bool ConvertToBoolean) {
979 BalancedDelimiterTracker T(*this, tok::l_paren);
980 T.consumeOpen();
981
982 if (getLangOpts().CPlusPlus)
983 ParseCXXCondition(ExprResult, DeclResult, Loc, ConvertToBoolean);
984 else {
985 ExprResult = ParseExpression();
986 DeclResult = 0;
987
988 // If required, convert to a boolean value.
989 if (!ExprResult.isInvalid() && ConvertToBoolean)
990 ExprResult
991 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprResult.get());
992 }
993
994 // If the parser was confused by the condition and we don't have a ')', try to
995 // recover by skipping ahead to a semi and bailing out. If condexp is
996 // semantically invalid but we have well formed code, keep going.
997 if (ExprResult.isInvalid() && !DeclResult && Tok.isNot(tok::r_paren)) {
998 SkipUntil(tok::semi);
999 // Skipping may have stopped if it found the containing ')'. If so, we can
1000 // continue parsing the if statement.
1001 if (Tok.isNot(tok::r_paren))
1002 return true;
1003 }
1004
1005 // Otherwise the condition is valid or the rparen is present.
1006 T.consumeClose();
1007
1008 // Check for extraneous ')'s to catch things like "if (foo())) {". We know
1009 // that all callers are looking for a statement after the condition, so ")"
1010 // isn't valid.
1011 while (Tok.is(tok::r_paren)) {
1012 Diag(Tok, diag::err_extraneous_rparen_in_condition)
1013 << FixItHint::CreateRemoval(Tok.getLocation());
1014 ConsumeParen();
1015 }
1016
1017 return false;
1018 }
1019
1020
1021 /// ParseIfStatement
1022 /// if-statement: [C99 6.8.4.1]
1023 /// 'if' '(' expression ')' statement
1024 /// 'if' '(' expression ')' statement 'else' statement
1025 /// [C++] 'if' '(' condition ')' statement
1026 /// [C++] 'if' '(' condition ')' statement 'else' statement
1027 ///
1028 StmtResult Parser::ParseIfStatement(SourceLocation *TrailingElseLoc) {
1029 assert(Tok.is(tok::kw_if) && "Not an if stmt!");
1030 SourceLocation IfLoc = ConsumeToken(); // eat the 'if'.
1031
1032 if (Tok.isNot(tok::l_paren)) {
1033 Diag(Tok, diag::err_expected_lparen_after) << "if";
1034 SkipUntil(tok::semi);
1035 return StmtError();
1036 }
1037
1038 bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
1039
1040 // C99 6.8.4p3 - In C99, the if statement is a block. This is not
1041 // the case for C90.
1042 //
1043 // C++ 6.4p3:
1044 // A name introduced by a declaration in a condition is in scope from its
1045 // point of declaration until the end of the substatements controlled by the
1046 // condition.
1047 // C++ 3.3.2p4:
1048 // Names declared in the for-init-statement, and in the condition of if,
1049 // while, for, and switch statements are local to the if, while, for, or
1050 // switch statement (including the controlled statement).
1051 //
1052 ParseScope IfScope(this, Scope::DeclScope | Scope::ControlScope, C99orCXX);
1053
1054 // Parse the condition.
1055 ExprResult CondExp;
1056 Decl *CondVar = 0;
1057 if (ParseParenExprOrCondition(CondExp, CondVar, IfLoc, true))
1058 return StmtError();
1059
1060 FullExprArg FullCondExp(Actions.MakeFullExpr(CondExp.get(), IfLoc));
1061
1062 // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
1063 // there is no compound stmt. C90 does not have this clause. We only do this
1064 // if the body isn't a compound statement to avoid push/pop in common cases.
1065 //
1066 // C++ 6.4p1:
1067 // The substatement in a selection-statement (each substatement, in the else
1068 // form of the if statement) implicitly defines a local scope.
1069 //
1070 // For C++ we create a scope for the condition and a new scope for
1071 // substatements because:
1072 // -When the 'then' scope exits, we want the condition declaration to still be
1073 // active for the 'else' scope too.
1074 // -Sema will detect name clashes by considering declarations of a
1075 // 'ControlScope' as part of its direct subscope.
1076 // -If we wanted the condition and substatement to be in the same scope, we
1077 // would have to notify ParseStatement not to create a new scope. It's
1078 // simpler to let it create a new scope.
1079 //
1080 ParseScope InnerScope(this, Scope::DeclScope,
1081 C99orCXX && Tok.isNot(tok::l_brace));
1082
1083 // Read the 'then' stmt.
1084 SourceLocation ThenStmtLoc = Tok.getLocation();
1085
1086 SourceLocation InnerStatementTrailingElseLoc;
1087 StmtResult ThenStmt(ParseStatement(&InnerStatementTrailingElseLoc));
1088
1089 // Pop the 'if' scope if needed.
1090 InnerScope.Exit();
1091
1092 // If it has an else, parse it.
1093 SourceLocation ElseLoc;
1094 SourceLocation ElseStmtLoc;
1095 StmtResult ElseStmt;
1096
1097 if (Tok.is(tok::kw_else)) {
1098 if (TrailingElseLoc)
1099 *TrailingElseLoc = Tok.getLocation();
1100
1101 ElseLoc = ConsumeToken();
1102 ElseStmtLoc = Tok.getLocation();
1103
1104 // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
1105 // there is no compound stmt. C90 does not have this clause. We only do
1106 // this if the body isn't a compound statement to avoid push/pop in common
1107 // cases.
1108 //
1109 // C++ 6.4p1:
1110 // The substatement in a selection-statement (each substatement, in the else
1111 // form of the if statement) implicitly defines a local scope.
1112 //
1113 ParseScope InnerScope(this, Scope::DeclScope,
1114 C99orCXX && Tok.isNot(tok::l_brace));
1115
1116 ElseStmt = ParseStatement();
1117
1118 // Pop the 'else' scope if needed.
1119 InnerScope.Exit();
1120 } else if (Tok.is(tok::code_completion)) {
1121 Actions.CodeCompleteAfterIf(getCurScope());
1122 cutOffParsing();
1123 return StmtError();
1124 } else if (InnerStatementTrailingElseLoc.isValid()) {
1125 Diag(InnerStatementTrailingElseLoc, diag::warn_dangling_else);
1126 }
1127
1128 IfScope.Exit();
1129
1130 // If the then or else stmt is invalid and the other is valid (and present),
1131 // make turn the invalid one into a null stmt to avoid dropping the other
1132 // part. If both are invalid, return error.
1133 if ((ThenStmt.isInvalid() && ElseStmt.isInvalid()) ||
1134 (ThenStmt.isInvalid() && ElseStmt.get() == 0) ||
1135 (ThenStmt.get() == 0 && ElseStmt.isInvalid())) {
1136 // Both invalid, or one is invalid and other is non-present: return error.
1137 return StmtError();
1138 }
1139
1140 // Now if either are invalid, replace with a ';'.
1141 if (ThenStmt.isInvalid())
1142 ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc);
1143 if (ElseStmt.isInvalid())
1144 ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc);
1145
1146 return Actions.ActOnIfStmt(IfLoc, FullCondExp, CondVar, ThenStmt.get(),
1147 ElseLoc, ElseStmt.get());
1148 }
1149
1150 /// ParseSwitchStatement
1151 /// switch-statement:
1152 /// 'switch' '(' expression ')' statement
1153 /// [C++] 'switch' '(' condition ')' statement
1154 StmtResult Parser::ParseSwitchStatement(SourceLocation *TrailingElseLoc) {
1155 assert(Tok.is(tok::kw_switch) && "Not a switch stmt!");
1156 SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'.
1157
1158 if (Tok.isNot(tok::l_paren)) {
1159 Diag(Tok, diag::err_expected_lparen_after) << "switch";
1160 SkipUntil(tok::semi);
1161 return StmtError();
1162 }
1163
1164 bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
1165
1166 // C99 6.8.4p3 - In C99, the switch statement is a block. This is
1167 // not the case for C90. Start the switch scope.
1168 //
1169 // C++ 6.4p3:
1170 // A name introduced by a declaration in a condition is in scope from its
1171 // point of declaration until the end of the substatements controlled by the
1172 // condition.
1173 // C++ 3.3.2p4:
1174 // Names declared in the for-init-statement, and in the condition of if,
1175 // while, for, and switch statements are local to the if, while, for, or
1176 // switch statement (including the controlled statement).
1177 //
1178 unsigned ScopeFlags = Scope::BreakScope | Scope::SwitchScope;
1179 if (C99orCXX)
1180 ScopeFlags |= Scope::DeclScope | Scope::ControlScope;
1181 ParseScope SwitchScope(this, ScopeFlags);
1182
1183 // Parse the condition.
1184 ExprResult Cond;
1185 Decl *CondVar = 0;
1186 if (ParseParenExprOrCondition(Cond, CondVar, SwitchLoc, false))
1187 return StmtError();
1188
1189 StmtResult Switch
1190 = Actions.ActOnStartOfSwitchStmt(SwitchLoc, Cond.get(), CondVar);
1191
1192 if (Switch.isInvalid()) {
1193 // Skip the switch body.
1194 // FIXME: This is not optimal recovery, but parsing the body is more
1195 // dangerous due to the presence of case and default statements, which
1196 // will have no place to connect back with the switch.
1197 if (Tok.is(tok::l_brace)) {
1198 ConsumeBrace();
1199 SkipUntil(tok::r_brace);
1200 } else
1201 SkipUntil(tok::semi);
1202 return Switch;
1203 }
1204
1205 // C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
1206 // there is no compound stmt. C90 does not have this clause. We only do this
1207 // if the body isn't a compound statement to avoid push/pop in common cases.
1208 //
1209 // C++ 6.4p1:
1210 // The substatement in a selection-statement (each substatement, in the else
1211 // form of the if statement) implicitly defines a local scope.
1212 //
1213 // See comments in ParseIfStatement for why we create a scope for the
1214 // condition and a new scope for substatement in C++.
1215 //
1216 ParseScope InnerScope(this, Scope::DeclScope,
1217 C99orCXX && Tok.isNot(tok::l_brace));
1218
1219 // Read the body statement.
1220 StmtResult Body(ParseStatement(TrailingElseLoc));
1221
1222 // Pop the scopes.
1223 InnerScope.Exit();
1224 SwitchScope.Exit();
1225
1226 if (Body.isInvalid()) {
1227 // FIXME: Remove the case statement list from the Switch statement.
1228
1229 // Put the synthesized null statement on the same line as the end of switch
1230 // condition.
1231 SourceLocation SynthesizedNullStmtLocation = Cond.get()->getLocEnd();
1232 Body = Actions.ActOnNullStmt(SynthesizedNullStmtLocation);
1233 }
1234
1235 return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.get(), Body.get());
1236 }
1237
1238 /// ParseWhileStatement
1239 /// while-statement: [C99 6.8.5.1]
1240 /// 'while' '(' expression ')' statement
1241 /// [C++] 'while' '(' condition ')' statement
1242 StmtResult Parser::ParseWhileStatement(SourceLocation *TrailingElseLoc) {
1243 assert(Tok.is(tok::kw_while) && "Not a while stmt!");
1244 SourceLocation WhileLoc = Tok.getLocation();
1245 ConsumeToken(); // eat the 'while'.
1246
1247 if (Tok.isNot(tok::l_paren)) {
1248 Diag(Tok, diag::err_expected_lparen_after) << "while";
1249 SkipUntil(tok::semi);
1250 return StmtError();
1251 }
1252
1253 bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
1254
1255 // C99 6.8.5p5 - In C99, the while statement is a block. This is not
1256 // the case for C90. Start the loop scope.
1257 //
1258 // C++ 6.4p3:
1259 // A name introduced by a declaration in a condition is in scope from its
1260 // point of declaration until the end of the substatements controlled by the
1261 // condition.
1262 // C++ 3.3.2p4:
1263 // Names declared in the for-init-statement, and in the condition of if,
1264 // while, for, and switch statements are local to the if, while, for, or
1265 // switch statement (including the controlled statement).
1266 //
1267 unsigned ScopeFlags;
1268 if (C99orCXX)
1269 ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
1270 Scope::DeclScope | Scope::ControlScope;
1271 else
1272 ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
1273 ParseScope WhileScope(this, ScopeFlags);
1274
1275 // Parse the condition.
1276 ExprResult Cond;
1277 Decl *CondVar = 0;
1278 if (ParseParenExprOrCondition(Cond, CondVar, WhileLoc, true))
1279 return StmtError();
1280
1281 FullExprArg FullCond(Actions.MakeFullExpr(Cond.get(), WhileLoc));
1282
1283 // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
1284 // there is no compound stmt. C90 does not have this clause. We only do this
1285 // if the body isn't a compound statement to avoid push/pop in common cases.
1286 //
1287 // C++ 6.5p2:
1288 // The substatement in an iteration-statement implicitly defines a local scope
1289 // which is entered and exited each time through the loop.
1290 //
1291 // See comments in ParseIfStatement for why we create a scope for the
1292 // condition and a new scope for substatement in C++.
1293 //
1294 ParseScope InnerScope(this, Scope::DeclScope,
1295 C99orCXX && Tok.isNot(tok::l_brace));
1296
1297 // Read the body statement.
1298 StmtResult Body(ParseStatement(TrailingElseLoc));
1299
1300 // Pop the body scope if needed.
1301 InnerScope.Exit();
1302 WhileScope.Exit();
1303
1304 if ((Cond.isInvalid() && !CondVar) || Body.isInvalid())
1305 return StmtError();
1306
1307 return Actions.ActOnWhileStmt(WhileLoc, FullCond, CondVar, Body.get());
1308 }
1309
1310 /// ParseDoStatement
1311 /// do-statement: [C99 6.8.5.2]
1312 /// 'do' statement 'while' '(' expression ')' ';'
1313 /// Note: this lets the caller parse the end ';'.
1314 StmtResult Parser::ParseDoStatement() {
1315 assert(Tok.is(tok::kw_do) && "Not a do stmt!");
1316 SourceLocation DoLoc = ConsumeToken(); // eat the 'do'.
1317
1318 // C99 6.8.5p5 - In C99, the do statement is a block. This is not
1319 // the case for C90. Start the loop scope.
1320 unsigned ScopeFlags;
1321 if (getLangOpts().C99)
1322 ScopeFlags = Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope;
1323 else
1324 ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
1325
1326 ParseScope DoScope(this, ScopeFlags);
1327
1328 // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
1329 // there is no compound stmt. C90 does not have this clause. We only do this
1330 // if the body isn't a compound statement to avoid push/pop in common cases.
1331 //
1332 // C++ 6.5p2:
1333 // The substatement in an iteration-statement implicitly defines a local scope
1334 // which is entered and exited each time through the loop.
1335 //
1336 ParseScope InnerScope(this, Scope::DeclScope,
1337 (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
1338 Tok.isNot(tok::l_brace));
1339
1340 // Read the body statement.
1341 StmtResult Body(ParseStatement());
1342
1343 // Pop the body scope if needed.
1344 InnerScope.Exit();
1345
1346 if (Tok.isNot(tok::kw_while)) {
1347 if (!Body.isInvalid()) {
1348 Diag(Tok, diag::err_expected_while);
1349 Diag(DoLoc, diag::note_matching) << "do";
1350 SkipUntil(tok::semi, StopBeforeMatch);
1351 }
1352 return StmtError();
1353 }
1354 SourceLocation WhileLoc = ConsumeToken();
1355
1356 if (Tok.isNot(tok::l_paren)) {
1357 Diag(Tok, diag::err_expected_lparen_after) << "do/while";
1358 SkipUntil(tok::semi, StopBeforeMatch);
1359 return StmtError();
1360 }
1361
1362 // Parse the parenthesized expression.
1363 BalancedDelimiterTracker T(*this, tok::l_paren);
1364 T.consumeOpen();
1365
1366 // A do-while expression is not a condition, so can't have attributes.
1367 DiagnoseAndSkipCXX11Attributes();
1368
1369 ExprResult Cond = ParseExpression();
1370 T.consumeClose();
1371 DoScope.Exit();
1372
1373 if (Cond.isInvalid() || Body.isInvalid())
1374 return StmtError();
1375
1376 return Actions.ActOnDoStmt(DoLoc, Body.get(), WhileLoc, T.getOpenLocation(),
1377 Cond.get(), T.getCloseLocation());
1378 }
1379
1380 /// ParseForStatement
1381 /// for-statement: [C99 6.8.5.3]
1382 /// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
1383 /// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
1384 /// [C++] 'for' '(' for-init-statement condition[opt] ';' expression[opt] ')'
1385 /// [C++] statement
1386 /// [C++0x] 'for' '(' for-range-declaration : for-range-initializer ) statement
1387 /// [OBJC2] 'for' '(' declaration 'in' expr ')' statement
1388 /// [OBJC2] 'for' '(' expr 'in' expr ')' statement
1389 ///
1390 /// [C++] for-init-statement:
1391 /// [C++] expression-statement
1392 /// [C++] simple-declaration
1393 ///
1394 /// [C++0x] for-range-declaration:
1395 /// [C++0x] attribute-specifier-seq[opt] type-specifier-seq declarator
1396 /// [C++0x] for-range-initializer:
1397 /// [C++0x] expression
1398 /// [C++0x] braced-init-list [TODO]
1399 StmtResult Parser::ParseForStatement(SourceLocation *TrailingElseLoc) {
1400 assert(Tok.is(tok::kw_for) && "Not a for stmt!");
1401 SourceLocation ForLoc = ConsumeToken(); // eat the 'for'.
1402
1403 if (Tok.isNot(tok::l_paren)) {
1404 Diag(Tok, diag::err_expected_lparen_after) << "for";
1405 SkipUntil(tok::semi);
1406 return StmtError();
1407 }
1408
1409 bool C99orCXXorObjC = getLangOpts().C99 || getLangOpts().CPlusPlus ||
1410 getLangOpts().ObjC1;
1411
1412 // C99 6.8.5p5 - In C99, the for statement is a block. This is not
1413 // the case for C90. Start the loop scope.
1414 //
1415 // C++ 6.4p3:
1416 // A name introduced by a declaration in a condition is in scope from its
1417 // point of declaration until the end of the substatements controlled by the
1418 // condition.
1419 // C++ 3.3.2p4:
1420 // Names declared in the for-init-statement, and in the condition of if,
1421 // while, for, and switch statements are local to the if, while, for, or
1422 // switch statement (including the controlled statement).
1423 // C++ 6.5.3p1:
1424 // Names declared in the for-init-statement are in the same declarative-region
1425 // as those declared in the condition.
1426 //
1427 unsigned ScopeFlags;
1428 if (C99orCXXorObjC)
1429 ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
1430 Scope::DeclScope | Scope::ControlScope;
1431 else
1432 ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
1433
1434 ParseScope ForScope(this, ScopeFlags);
1435
1436 BalancedDelimiterTracker T(*this, tok::l_paren);
1437 T.consumeOpen();
1438
1439 ExprResult Value;
1440
1441 bool ForEach = false, ForRange = false;
1442 StmtResult FirstPart;
1443 bool SecondPartIsInvalid = false;
1444 FullExprArg SecondPart(Actions);
1445 ExprResult Collection;
1446 ForRangeInit ForRangeInit;
1447 FullExprArg ThirdPart(Actions);
1448 Decl *SecondVar = 0;
1449
1450 if (Tok.is(tok::code_completion)) {
1451 Actions.CodeCompleteOrdinaryName(getCurScope(),
1452 C99orCXXorObjC? Sema::PCC_ForInit
1453 : Sema::PCC_Expression);
1454 cutOffParsing();
1455 return StmtError();
1456 }
1457
1458 ParsedAttributesWithRange attrs(AttrFactory);
1459 MaybeParseCXX11Attributes(attrs);
1460
1461 // Parse the first part of the for specifier.
1462 if (Tok.is(tok::semi)) { // for (;
1463 ProhibitAttributes(attrs);
1464 // no first part, eat the ';'.
1465 ConsumeToken();
1466 } else if (isForInitDeclaration()) { // for (int X = 4;
1467 // Parse declaration, which eats the ';'.
1468 if (!C99orCXXorObjC) // Use of C99-style for loops in C90 mode?
1469 Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
1470
1471 // In C++0x, "for (T NS:a" might not be a typo for ::
1472 bool MightBeForRangeStmt = getLangOpts().CPlusPlus;
1473 ColonProtectionRAIIObject ColonProtection(*this, MightBeForRangeStmt);
1474
1475 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
1476 StmtVector Stmts;
1477 DeclGroupPtrTy DG = ParseSimpleDeclaration(Stmts, Declarator::ForContext,
1478 DeclEnd, attrs, false,
1479 MightBeForRangeStmt ?
1480 &ForRangeInit : 0);
1481 FirstPart = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
1482
1483 if (ForRangeInit.ParsedForRangeDecl()) {
1484 Diag(ForRangeInit.ColonLoc, getLangOpts().CPlusPlus11 ?
1485 diag::warn_cxx98_compat_for_range : diag::ext_for_range);
1486
1487 ForRange = true;
1488 } else if (Tok.is(tok::semi)) { // for (int x = 4;
1489 ConsumeToken();
1490 } else if ((ForEach = isTokIdentifier_in())) {
1491 Actions.ActOnForEachDeclStmt(DG);
1492 // ObjC: for (id x in expr)
1493 ConsumeToken(); // consume 'in'
1494
1495 if (Tok.is(tok::code_completion)) {
1496 Actions.CodeCompleteObjCForCollection(getCurScope(), DG);
1497 cutOffParsing();
1498 return StmtError();
1499 }
1500 Collection = ParseExpression();
1501 } else {
1502 Diag(Tok, diag::err_expected_semi_for);
1503 }
1504 } else {
1505 ProhibitAttributes(attrs);
1506 Value = ParseExpression();
1507
1508 ForEach = isTokIdentifier_in();
1509
1510 // Turn the expression into a stmt.
1511 if (!Value.isInvalid()) {
1512 if (ForEach)
1513 FirstPart = Actions.ActOnForEachLValueExpr(Value.get());
1514 else
1515 FirstPart = Actions.ActOnExprStmt(Value);
1516 }
1517
1518 if (Tok.is(tok::semi)) {
1519 ConsumeToken();
1520 } else if (ForEach) {
1521 ConsumeToken(); // consume 'in'
1522
1523 if (Tok.is(tok::code_completion)) {
1524 Actions.CodeCompleteObjCForCollection(getCurScope(), DeclGroupPtrTy());
1525 cutOffParsing();
1526 return StmtError();
1527 }
1528 Collection = ParseExpression();
1529 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::colon) && FirstPart.get()) {
1530 // User tried to write the reasonable, but ill-formed, for-range-statement
1531 // for (expr : expr) { ... }
1532 Diag(Tok, diag::err_for_range_expected_decl)
1533 << FirstPart.get()->getSourceRange();
1534 SkipUntil(tok::r_paren, StopBeforeMatch);
1535 SecondPartIsInvalid = true;
1536 } else {
1537 if (!Value.isInvalid()) {
1538 Diag(Tok, diag::err_expected_semi_for);
1539 } else {
1540 // Skip until semicolon or rparen, don't consume it.
1541 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
1542 if (Tok.is(tok::semi))
1543 ConsumeToken();
1544 }
1545 }
1546 }
1547 if (!ForEach && !ForRange) {
1548 assert(!SecondPart.get() && "Shouldn't have a second expression yet.");
1549 // Parse the second part of the for specifier.
1550 if (Tok.is(tok::semi)) { // for (...;;
1551 // no second part.
1552 } else if (Tok.is(tok::r_paren)) {
1553 // missing both semicolons.
1554 } else {
1555 ExprResult Second;
1556 if (getLangOpts().CPlusPlus)
1557 ParseCXXCondition(Second, SecondVar, ForLoc, true);
1558 else {
1559 Second = ParseExpression();
1560 if (!Second.isInvalid())
1561 Second = Actions.ActOnBooleanCondition(getCurScope(), ForLoc,
1562 Second.get());
1563 }
1564 SecondPartIsInvalid = Second.isInvalid();
1565 SecondPart = Actions.MakeFullExpr(Second.get(), ForLoc);
1566 }
1567
1568 if (Tok.isNot(tok::semi)) {
1569 if (!SecondPartIsInvalid || SecondVar)
1570 Diag(Tok, diag::err_expected_semi_for);
1571 else
1572 // Skip until semicolon or rparen, don't consume it.
1573 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
1574 }
1575
1576 if (Tok.is(tok::semi)) {
1577 ConsumeToken();
1578 }
1579
1580 // Parse the third part of the for specifier.
1581 if (Tok.isNot(tok::r_paren)) { // for (...;...;)
1582 ExprResult Third = ParseExpression();
1583 // FIXME: The C++11 standard doesn't actually say that this is a
1584 // discarded-value expression, but it clearly should be.
1585 ThirdPart = Actions.MakeFullDiscardedValueExpr(Third.take());
1586 }
1587 }
1588 // Match the ')'.
1589 T.consumeClose();
1590
1591 // We need to perform most of the semantic analysis for a C++0x for-range
1592 // statememt before parsing the body, in order to be able to deduce the type
1593 // of an auto-typed loop variable.
1594 StmtResult ForRangeStmt;
1595 StmtResult ForEachStmt;
1596
1597 if (ForRange) {
1598 ForRangeStmt = Actions.ActOnCXXForRangeStmt(ForLoc, FirstPart.take(),
1599 ForRangeInit.ColonLoc,
1600 ForRangeInit.RangeExpr.get(),
1601 T.getCloseLocation(),
1602 Sema::BFRK_Build);
1603
1604
1605 // Similarly, we need to do the semantic analysis for a for-range
1606 // statement immediately in order to close over temporaries correctly.
1607 } else if (ForEach) {
1608 ForEachStmt = Actions.ActOnObjCForCollectionStmt(ForLoc,
1609 FirstPart.take(),
1610 Collection.take(),
1611 T.getCloseLocation());
1612 }
1613
1614 // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
1615 // there is no compound stmt. C90 does not have this clause. We only do this
1616 // if the body isn't a compound statement to avoid push/pop in common cases.
1617 //
1618 // C++ 6.5p2:
1619 // The substatement in an iteration-statement implicitly defines a local scope
1620 // which is entered and exited each time through the loop.
1621 //
1622 // See comments in ParseIfStatement for why we create a scope for
1623 // for-init-statement/condition and a new scope for substatement in C++.
1624 //
1625 ParseScope InnerScope(this, Scope::DeclScope,
1626 C99orCXXorObjC && Tok.isNot(tok::l_brace));
1627
1628 // Read the body statement.
1629 StmtResult Body(ParseStatement(TrailingElseLoc));
1630
1631 // Pop the body scope if needed.
1632 InnerScope.Exit();
1633
1634 // Leave the for-scope.
1635 ForScope.Exit();
1636
1637 if (Body.isInvalid())
1638 return StmtError();
1639
1640 if (ForEach)
1641 return Actions.FinishObjCForCollectionStmt(ForEachStmt.take(),
1642 Body.take());
1643
1644 if (ForRange)
1645 return Actions.FinishCXXForRangeStmt(ForRangeStmt.take(), Body.take());
1646
1647 return Actions.ActOnForStmt(ForLoc, T.getOpenLocation(), FirstPart.take(),
1648 SecondPart, SecondVar, ThirdPart,
1649 T.getCloseLocation(), Body.take());
1650 }
1651
1652 /// ParseGotoStatement
1653 /// jump-statement:
1654 /// 'goto' identifier ';'
1655 /// [GNU] 'goto' '*' expression ';'
1656 ///
1657 /// Note: this lets the caller parse the end ';'.
1658 ///
1659 StmtResult Parser::ParseGotoStatement() {
1660 assert(Tok.is(tok::kw_goto) && "Not a goto stmt!");
1661 SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'.
1662
1663 StmtResult Res;
1664 if (Tok.is(tok::identifier)) {
1665 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1666 Tok.getLocation());
1667 Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(), LD);
1668 ConsumeToken();
1669 } else if (Tok.is(tok::star)) {
1670 // GNU indirect goto extension.
1671 Diag(Tok, diag::ext_gnu_indirect_goto);
1672 SourceLocation StarLoc = ConsumeToken();
1673 ExprResult R(ParseExpression());
1674 if (R.isInvalid()) { // Skip to the semicolon, but don't consume it.
1675 SkipUntil(tok::semi, StopBeforeMatch);
1676 return StmtError();
1677 }
1678 Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.take());
1679 } else {
1680 Diag(Tok, diag::err_expected_ident);
1681 return StmtError();
1682 }
1683
1684 return Res;
1685 }
1686
1687 /// ParseContinueStatement
1688 /// jump-statement:
1689 /// 'continue' ';'
1690 ///
1691 /// Note: this lets the caller parse the end ';'.
1692 ///
1693 StmtResult Parser::ParseContinueStatement() {
1694 SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'.
1695 return Actions.ActOnContinueStmt(ContinueLoc, getCurScope());
1696 }
1697
1698 /// ParseBreakStatement
1699 /// jump-statement:
1700 /// 'break' ';'
1701 ///
1702 /// Note: this lets the caller parse the end ';'.
1703 ///
1704 StmtResult Parser::ParseBreakStatement() {
1705 SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'.
1706 return Actions.ActOnBreakStmt(BreakLoc, getCurScope());
1707 }
1708
1709 /// ParseReturnStatement
1710 /// jump-statement:
1711 /// 'return' expression[opt] ';'
1712 StmtResult Parser::ParseReturnStatement() {
1713 assert(Tok.is(tok::kw_return) && "Not a return stmt!");
1714 SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
1715
1716 ExprResult R;
1717 if (Tok.isNot(tok::semi)) {
1718 if (Tok.is(tok::code_completion)) {
1719 Actions.CodeCompleteReturn(getCurScope());
1720 cutOffParsing();
1721 return StmtError();
1722 }
1723
1724 if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus) {
1725 R = ParseInitializer();
1726 if (R.isUsable())
1727 Diag(R.get()->getLocStart(), getLangOpts().CPlusPlus11 ?
1728 diag::warn_cxx98_compat_generalized_initializer_lists :
1729 diag::ext_generalized_initializer_lists)
1730 << R.get()->getSourceRange();
1731 } else
1732 R = ParseExpression();
1733 if (R.isInvalid()) { // Skip to the semicolon, but don't consume it.
1734 SkipUntil(tok::semi, StopBeforeMatch);
1735 return StmtError();
1736 }
1737 }
1738 return Actions.ActOnReturnStmt(ReturnLoc, R.take());
1739 }
1740
1741 namespace {
1742 class ClangAsmParserCallback : public llvm::MCAsmParserSemaCallback {
1743 Parser &TheParser;
1744 SourceLocation AsmLoc;
1745 StringRef AsmString;
1746
1747 /// The tokens we streamed into AsmString and handed off to MC.
1748 ArrayRef<Token> AsmToks;
1749
1750 /// The offset of each token in AsmToks within AsmString.
1751 ArrayRef<unsigned> AsmTokOffsets;
1752
1753 public:
1754 ClangAsmParserCallback(Parser &P, SourceLocation Loc,
1755 StringRef AsmString,
1756 ArrayRef<Token> Toks,
1757 ArrayRef<unsigned> Offsets)
1758 : TheParser(P), AsmLoc(Loc), AsmString(AsmString),
1759 AsmToks(Toks), AsmTokOffsets(Offsets) {
1760 assert(AsmToks.size() == AsmTokOffsets.size());
1761 }
1762
1763 void *LookupInlineAsmIdentifier(StringRef &LineBuf,
1764 InlineAsmIdentifierInfo &Info,
1765 bool IsUnevaluatedContext) {
1766 // Collect the desired tokens.
1767 SmallVector<Token, 16> LineToks;
1768 const Token *FirstOrigToken = 0;
1769 findTokensForString(LineBuf, LineToks, FirstOrigToken);
1770
1771 unsigned NumConsumedToks;
1772 ExprResult Result =
1773 TheParser.ParseMSAsmIdentifier(LineToks, NumConsumedToks, &Info,
1774 IsUnevaluatedContext);
1775
1776 // If we consumed the entire line, tell MC that.
1777 // Also do this if we consumed nothing as a way of reporting failure.
1778 if (NumConsumedToks == 0 || NumConsumedToks == LineToks.size()) {
1779 // By not modifying LineBuf, we're implicitly consuming it all.
1780
1781 // Otherwise, consume up to the original tokens.
1782 } else {
1783 assert(FirstOrigToken && "not using original tokens?");
1784
1785 // Since we're using original tokens, apply that offset.
1786 assert(FirstOrigToken[NumConsumedToks].getLocation()
1787 == LineToks[NumConsumedToks].getLocation());
1788 unsigned FirstIndex = FirstOrigToken - AsmToks.begin();
1789 unsigned LastIndex = FirstIndex + NumConsumedToks - 1;
1790
1791 // The total length we've consumed is the relative offset
1792 // of the last token we consumed plus its length.
1793 unsigned TotalOffset = (AsmTokOffsets[LastIndex]
1794 + AsmToks[LastIndex].getLength()
1795 - AsmTokOffsets[FirstIndex]);
1796 LineBuf = LineBuf.substr(0, TotalOffset);
1797 }
1798
1799 // Initialize the "decl" with the lookup result.
1800 Info.OpDecl = static_cast<void*>(Result.take());
1801 return Info.OpDecl;
1802 }
1803
1804 bool LookupInlineAsmField(StringRef Base, StringRef Member,
1805 unsigned &Offset) {
1806 return TheParser.getActions().LookupInlineAsmField(Base, Member,
1807 Offset, AsmLoc);
1808 }
1809
1810 static void DiagHandlerCallback(const llvm::SMDiagnostic &D,
1811 void *Context) {
1812 ((ClangAsmParserCallback*) Context)->handleDiagnostic(D);
1813 }
1814
1815 private:
1816 /// Collect the appropriate tokens for the given string.
1817 void findTokensForString(StringRef Str, SmallVectorImpl<Token> &TempToks,
1818 const Token *&FirstOrigToken) const {
1819 // For now, assert that the string we're working with is a substring
1820 // of what we gave to MC. This lets us use the original tokens.
1821 assert(!std::less<const char*>()(Str.begin(), AsmString.begin()) &&
1822 !std::less<const char*>()(AsmString.end(), Str.end()));
1823
1824 // Try to find a token whose offset matches the first token.
1825 unsigned FirstCharOffset = Str.begin() - AsmString.begin();
1826 const unsigned *FirstTokOffset
1827 = std::lower_bound(AsmTokOffsets.begin(), AsmTokOffsets.end(),
1828 FirstCharOffset);
1829
1830 // For now, assert that the start of the string exactly
1831 // corresponds to the start of a token.
1832 assert(*FirstTokOffset == FirstCharOffset);
1833
1834 // Use all the original tokens for this line. (We assume the
1835 // end of the line corresponds cleanly to a token break.)
1836 unsigned FirstTokIndex = FirstTokOffset - AsmTokOffsets.begin();
1837 FirstOrigToken = &AsmToks[FirstTokIndex];
1838 unsigned LastCharOffset = Str.end() - AsmString.begin();
1839 for (unsigned i = FirstTokIndex, e = AsmTokOffsets.size(); i != e; ++i) {
1840 if (AsmTokOffsets[i] >= LastCharOffset) break;
1841 TempToks.push_back(AsmToks[i]);
1842 }
1843 }
1844
1845 void handleDiagnostic(const llvm::SMDiagnostic &D) {
1846 // Compute an offset into the inline asm buffer.
1847 // FIXME: This isn't right if .macro is involved (but hopefully, no
1848 // real-world code does that).
1849 const llvm::SourceMgr &LSM = *D.getSourceMgr();
1850 const llvm::MemoryBuffer *LBuf =
1851 LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
1852 unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
1853
1854 // Figure out which token that offset points into.
1855 const unsigned *TokOffsetPtr =
1856 std::lower_bound(AsmTokOffsets.begin(), AsmTokOffsets.end(), Offset);
1857 unsigned TokIndex = TokOffsetPtr - AsmTokOffsets.begin();
1858 unsigned TokOffset = *TokOffsetPtr;
1859
1860 // If we come up with an answer which seems sane, use it; otherwise,
1861 // just point at the __asm keyword.
1862 // FIXME: Assert the answer is sane once we handle .macro correctly.
1863 SourceLocation Loc = AsmLoc;
1864 if (TokIndex < AsmToks.size()) {
1865 const Token &Tok = AsmToks[TokIndex];
1866 Loc = Tok.getLocation();
1867 Loc = Loc.getLocWithOffset(Offset - TokOffset);
1868 }
1869 TheParser.Diag(Loc, diag::err_inline_ms_asm_parsing)
1870 << D.getMessage();
1871 }
1872 };
1873 }
1874
1875 /// Parse an identifier in an MS-style inline assembly block.
1876 ///
1877 /// \param CastInfo - a void* so that we don't have to teach Parser.h
1878 /// about the actual type.
1879 ExprResult Parser::ParseMSAsmIdentifier(llvm::SmallVectorImpl<Token> &LineToks,
1880 unsigned &NumLineToksConsumed,
1881 void *CastInfo,
1882 bool IsUnevaluatedContext) {
1883 llvm::InlineAsmIdentifierInfo &Info =
1884 *(llvm::InlineAsmIdentifierInfo *) CastInfo;
1885
1886 // Push a fake token on the end so that we don't overrun the token
1887 // stream. We use ';' because it expression-parsing should never
1888 // overrun it.
1889 const tok::TokenKind EndOfStream = tok::semi;
1890 Token EndOfStreamTok;
1891 EndOfStreamTok.startToken();
1892 EndOfStreamTok.setKind(EndOfStream);
1893 LineToks.push_back(EndOfStreamTok);
1894
1895 // Also copy the current token over.
1896 LineToks.push_back(Tok);
1897
1898 PP.EnterTokenStream(LineToks.begin(),
1899 LineToks.size(),
1900 /*disable macros*/ true,
1901 /*owns tokens*/ false);
1902
1903 // Clear the current token and advance to the first token in LineToks.
1904 ConsumeAnyToken();
1905
1906 // Parse an optional scope-specifier if we're in C++.
1907 CXXScopeSpec SS;
1908 if (getLangOpts().CPlusPlus) {
1909 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
1910 }
1911
1912 // Require an identifier here.
1913 SourceLocation TemplateKWLoc;
1914 UnqualifiedId Id;
1915 bool Invalid = ParseUnqualifiedId(SS,
1916 /*EnteringContext=*/false,
1917 /*AllowDestructorName=*/false,
1918 /*AllowConstructorName=*/false,
1919 /*ObjectType=*/ ParsedType(),
1920 TemplateKWLoc,
1921 Id);
1922
1923 // If we've run into the poison token we inserted before, or there
1924 // was a parsing error, then claim the entire line.
1925 if (Invalid || Tok.is(EndOfStream)) {
1926 NumLineToksConsumed = LineToks.size() - 2;
1927
1928 // Otherwise, claim up to the start of the next token.
1929 } else {
1930 // Figure out how many tokens we are into LineToks.
1931 unsigned LineIndex = 0;
1932 while (LineToks[LineIndex].getLocation() != Tok.getLocation()) {
1933 LineIndex++;
1934 assert(LineIndex < LineToks.size() - 2); // we added two extra tokens
1935 }
1936
1937 NumLineToksConsumed = LineIndex;
1938 }
1939
1940 // Finally, restore the old parsing state by consuming all the
1941 // tokens we staged before, implicitly killing off the
1942 // token-lexer we pushed.
1943 for (unsigned n = LineToks.size() - 2 - NumLineToksConsumed; n != 0; --n) {
1944 ConsumeAnyToken();
1945 }
1946 ConsumeToken(EndOfStream);
1947
1948 // Leave LineToks in its original state.
1949 LineToks.pop_back();
1950 LineToks.pop_back();
1951
1952 // Perform the lookup.
1953 return Actions.LookupInlineAsmIdentifier(SS, TemplateKWLoc, Id, Info,
1954 IsUnevaluatedContext);
1955 }
1956
1957 /// Turn a sequence of our tokens back into a string that we can hand
1958 /// to the MC asm parser.
1959 static bool buildMSAsmString(Preprocessor &PP,
1960 SourceLocation AsmLoc,
1961 ArrayRef<Token> AsmToks,
1962 SmallVectorImpl<unsigned> &TokOffsets,
1963 SmallString<512> &Asm) {
1964 assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
1965
1966 // Is this the start of a new assembly statement?
1967 bool isNewStatement = true;
1968
1969 for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
1970 const Token &Tok = AsmToks[i];
1971
1972 // Start each new statement with a newline and a tab.
1973 if (!isNewStatement &&
1974 (Tok.is(tok::kw_asm) || Tok.isAtStartOfLine())) {
1975 Asm += "\n\t";
1976 isNewStatement = true;
1977 }
1978
1979 // Preserve the existence of leading whitespace except at the
1980 // start of a statement.
1981 if (!isNewStatement && Tok.hasLeadingSpace())
1982 Asm += ' ';
1983
1984 // Remember the offset of this token.
1985 TokOffsets.push_back(Asm.size());
1986
1987 // Don't actually write '__asm' into the assembly stream.
1988 if (Tok.is(tok::kw_asm)) {
1989 // Complain about __asm at the end of the stream.
1990 if (i + 1 == e) {
1991 PP.Diag(AsmLoc, diag::err_asm_empty);
1992 return true;
1993 }
1994
1995 continue;
1996 }
1997
1998 // Append the spelling of the token.
1999 SmallString<32> SpellingBuffer;
2000 bool SpellingInvalid = false;
2001 Asm += PP.getSpelling(Tok, SpellingBuffer, &SpellingInvalid);
2002 assert(!SpellingInvalid && "spelling was invalid after correct parse?");
2003
2004 // We are no longer at the start of a statement.
2005 isNewStatement = false;
2006 }
2007
2008 // Ensure that the buffer is null-terminated.
2009 Asm.push_back('\0');
2010 Asm.pop_back();
2011
2012 assert(TokOffsets.size() == AsmToks.size());
2013 return false;
2014 }
2015
2016 /// ParseMicrosoftAsmStatement. When -fms-extensions/-fasm-blocks is enabled,
2017 /// this routine is called to collect the tokens for an MS asm statement.
2018 ///
2019 /// [MS] ms-asm-statement:
2020 /// ms-asm-block
2021 /// ms-asm-block ms-asm-statement
2022 ///
2023 /// [MS] ms-asm-block:
2024 /// '__asm' ms-asm-line '\n'
2025 /// '__asm' '{' ms-asm-instruction-block[opt] '}' ';'[opt]
2026 ///
2027 /// [MS] ms-asm-instruction-block
2028 /// ms-asm-line
2029 /// ms-asm-line '\n' ms-asm-instruction-block
2030 ///
2031 StmtResult Parser::ParseMicrosoftAsmStatement(SourceLocation AsmLoc) {
2032 SourceManager &SrcMgr = PP.getSourceManager();
2033 SourceLocation EndLoc = AsmLoc;
2034 SmallVector<Token, 4> AsmToks;
2035
2036 bool InBraces = false;
2037 unsigned short savedBraceCount = 0;
2038 bool InAsmComment = false;
2039 FileID FID;
2040 unsigned LineNo = 0;
2041 unsigned NumTokensRead = 0;
2042 SourceLocation LBraceLoc;
2043
2044 if (Tok.is(tok::l_brace)) {
2045 // Braced inline asm: consume the opening brace.
2046 InBraces = true;
2047 savedBraceCount = BraceCount;
2048 EndLoc = LBraceLoc = ConsumeBrace();
2049 ++NumTokensRead;
2050 } else {
2051 // Single-line inline asm; compute which line it is on.
2052 std::pair<FileID, unsigned> ExpAsmLoc =
2053 SrcMgr.getDecomposedExpansionLoc(EndLoc);
2054 FID = ExpAsmLoc.first;
2055 LineNo = SrcMgr.getLineNumber(FID, ExpAsmLoc.second);
2056 }
2057
2058 SourceLocation TokLoc = Tok.getLocation();
2059 do {
2060 // If we hit EOF, we're done, period.
2061 if (Tok.is(tok::eof))
2062 break;
2063
2064 if (!InAsmComment && Tok.is(tok::semi)) {
2065 // A semicolon in an asm is the start of a comment.
2066 InAsmComment = true;
2067 if (InBraces) {
2068 // Compute which line the comment is on.
2069 std::pair<FileID, unsigned> ExpSemiLoc =
2070 SrcMgr.getDecomposedExpansionLoc(TokLoc);
2071 FID = ExpSemiLoc.first;
2072 LineNo = SrcMgr.getLineNumber(FID, ExpSemiLoc.second);
2073 }
2074 } else if (!InBraces || InAsmComment) {
2075 // If end-of-line is significant, check whether this token is on a
2076 // new line.
2077 std::pair<FileID, unsigned> ExpLoc =
2078 SrcMgr.getDecomposedExpansionLoc(TokLoc);
2079 if (ExpLoc.first != FID ||
2080 SrcMgr.getLineNumber(ExpLoc.first, ExpLoc.second) != LineNo) {
2081 // If this is a single-line __asm, we're done.
2082 if (!InBraces)
2083 break;
2084 // We're no longer in a comment.
2085 InAsmComment = false;
2086 } else if (!InAsmComment && Tok.is(tok::r_brace)) {
2087 // Single-line asm always ends when a closing brace is seen.
2088 // FIXME: This is compatible with Apple gcc's -fasm-blocks; what
2089 // does MSVC do here?
2090 break;
2091 }
2092 }
2093 if (!InAsmComment && InBraces && Tok.is(tok::r_brace) &&
2094 BraceCount == (savedBraceCount + 1)) {
2095 // Consume the closing brace, and finish
2096 EndLoc = ConsumeBrace();
2097 break;
2098 }
2099
2100 // Consume the next token; make sure we don't modify the brace count etc.
2101 // if we are in a comment.
2102 EndLoc = TokLoc;
2103 if (InAsmComment)
2104 PP.Lex(Tok);
2105 else {
2106 AsmToks.push_back(Tok);
2107 ConsumeAnyToken();
2108 }
2109 TokLoc = Tok.getLocation();
2110 ++NumTokensRead;
2111 } while (1);
2112
2113 if (InBraces && BraceCount != savedBraceCount) {
2114 // __asm without closing brace (this can happen at EOF).
2115 Diag(Tok, diag::err_expected_rbrace);
2116 Diag(LBraceLoc, diag::note_matching) << "{";
2117 return StmtError();
2118 } else if (NumTokensRead == 0) {
2119 // Empty __asm.
2120 Diag(Tok, diag::err_expected_lbrace);
2121 return StmtError();
2122 }
2123
2124 // Okay, prepare to use MC to parse the assembly.
2125 SmallVector<StringRef, 4> ConstraintRefs;
2126 SmallVector<Expr*, 4> Exprs;
2127 SmallVector<StringRef, 4> ClobberRefs;
2128
2129 // We need an actual supported target.
2130 llvm::Triple TheTriple = Actions.Context.getTargetInfo().getTriple();
2131 llvm::Triple::ArchType ArchTy = TheTriple.getArch();
2132 const std::string &TT = TheTriple.getTriple();
2133 const llvm::Target *TheTarget = 0;
2134 bool UnsupportedArch = (ArchTy != llvm::Triple::x86 &&
2135 ArchTy != llvm::Triple::x86_64);
2136 if (UnsupportedArch) {
2137 Diag(AsmLoc, diag::err_msasm_unsupported_arch) << TheTriple.getArchName();
2138 } else {
2139 std::string Error;
2140 TheTarget = llvm::TargetRegistry::lookupTarget(TT, Error);
2141 if (!TheTarget)
2142 Diag(AsmLoc, diag::err_msasm_unable_to_create_target) << Error;
2143 }
2144
2145 // If we don't support assembly, or the assembly is empty, we don't
2146 // need to instantiate the AsmParser, etc.
2147 if (!TheTarget || AsmToks.empty()) {
2148 return Actions.ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, StringRef(),
2149 /*NumOutputs*/ 0, /*NumInputs*/ 0,
2150 ConstraintRefs, ClobberRefs, Exprs, EndLoc);
2151 }
2152
2153 // Expand the tokens into a string buffer.
2154 SmallString<512> AsmString;
2155 SmallVector<unsigned, 8> TokOffsets;
2156 if (buildMSAsmString(PP, AsmLoc, AsmToks, TokOffsets, AsmString))
2157 return StmtError();
2158
2159 OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
2160 OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TT));
2161 // Get the instruction descriptor.
2162 const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
2163 OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
2164 OwningPtr<llvm::MCSubtargetInfo>
2165 STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
2166
2167 llvm::SourceMgr TempSrcMgr;
2168 llvm::MCContext Ctx(MAI.get(), MRI.get(), MOFI.get(), &TempSrcMgr);
2169 llvm::MemoryBuffer *Buffer =
2170 llvm::MemoryBuffer::getMemBuffer(AsmString, "<MS inline asm>");
2171
2172 // Tell SrcMgr about this buffer, which is what the parser will pick up.
2173 TempSrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
2174
2175 OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
2176 OwningPtr<llvm::MCAsmParser>
2177 Parser(createMCAsmParser(TempSrcMgr, Ctx, *Str.get(), *MAI));
2178 OwningPtr<llvm::MCTargetAsmParser>
2179 TargetParser(TheTarget->createMCAsmParser(*STI, *Parser, *MII));
2180
2181 llvm::MCInstPrinter *IP =
2182 TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
2183
2184 // Change to the Intel dialect.
2185 Parser->setAssemblerDialect(1);
2186 Parser->setTargetParser(*TargetParser.get());
2187 Parser->setParsingInlineAsm(true);
2188 TargetParser->setParsingInlineAsm(true);
2189
2190 ClangAsmParserCallback Callback(*this, AsmLoc, AsmString,
2191 AsmToks, TokOffsets);
2192 TargetParser->setSemaCallback(&Callback);
2193 TempSrcMgr.setDiagHandler(ClangAsmParserCallback::DiagHandlerCallback,
2194 &Callback);
2195
2196 unsigned NumOutputs;
2197 unsigned NumInputs;
2198 std::string AsmStringIR;
2199 SmallVector<std::pair<void *, bool>, 4> OpExprs;
2200 SmallVector<std::string, 4> Constraints;
2201 SmallVector<std::string, 4> Clobbers;
2202 if (Parser->parseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR,
2203 NumOutputs, NumInputs, OpExprs, Constraints,
2204 Clobbers, MII, IP, Callback))
2205 return StmtError();
2206
2207 // Build the vector of clobber StringRefs.
2208 unsigned NumClobbers = Clobbers.size();
2209 ClobberRefs.resize(NumClobbers);
2210 for (unsigned i = 0; i != NumClobbers; ++i)
2211 ClobberRefs[i] = StringRef(Clobbers[i]);
2212
2213 // Recast the void pointers and build the vector of constraint StringRefs.
2214 unsigned NumExprs = NumOutputs + NumInputs;
2215 ConstraintRefs.resize(NumExprs);
2216 Exprs.resize(NumExprs);
2217 for (unsigned i = 0, e = NumExprs; i != e; ++i) {
2218 Expr *OpExpr = static_cast<Expr *>(OpExprs[i].first);
2219 if (!OpExpr)
2220 return StmtError();
2221
2222 // Need address of variable.
2223 if (OpExprs[i].second)
2224 OpExpr = Actions.BuildUnaryOp(getCurScope(), AsmLoc, UO_AddrOf, OpExpr)
2225 .take();
2226
2227 ConstraintRefs[i] = StringRef(Constraints[i]);
2228 Exprs[i] = OpExpr;
2229 }
2230
2231 // FIXME: We should be passing source locations for better diagnostics.
2232 return Actions.ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmStringIR,
2233 NumOutputs, NumInputs,
2234 ConstraintRefs, ClobberRefs, Exprs, EndLoc);
2235 }
2236
2237 /// ParseAsmStatement - Parse a GNU extended asm statement.
2238 /// asm-statement:
2239 /// gnu-asm-statement
2240 /// ms-asm-statement
2241 ///
2242 /// [GNU] gnu-asm-statement:
2243 /// 'asm' type-qualifier[opt] '(' asm-argument ')' ';'
2244 ///
2245 /// [GNU] asm-argument:
2246 /// asm-string-literal
2247 /// asm-string-literal ':' asm-operands[opt]
2248 /// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
2249 /// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
2250 /// ':' asm-clobbers
2251 ///
2252 /// [GNU] asm-clobbers:
2253 /// asm-string-literal
2254 /// asm-clobbers ',' asm-string-literal
2255 ///
2256 StmtResult Parser::ParseAsmStatement(bool &msAsm) {
2257 assert(Tok.is(tok::kw_asm) && "Not an asm stmt");
2258 SourceLocation AsmLoc = ConsumeToken();
2259
2260 if (getLangOpts().AsmBlocks && Tok.isNot(tok::l_paren) &&
2261 !isTypeQualifier()) {
2262 msAsm = true;
2263 return ParseMicrosoftAsmStatement(AsmLoc);
2264 }
2265 DeclSpec DS(AttrFactory);
2266 SourceLocation Loc = Tok.getLocation();
2267 ParseTypeQualifierListOpt(DS, true, false);
2268
2269 // GNU asms accept, but warn, about type-qualifiers other than volatile.
2270 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2271 Diag(Loc, diag::w_asm_qualifier_ignored) << "const";
2272 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2273 Diag(Loc, diag::w_asm_qualifier_ignored) << "restrict";
2274 // FIXME: Once GCC supports _Atomic, check whether it permits it here.
2275 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
2276 Diag(Loc, diag::w_asm_qualifier_ignored) << "_Atomic";
2277
2278 // Remember if this was a volatile asm.
2279 bool isVolatile = DS.getTypeQualifiers() & DeclSpec::TQ_volatile;
2280 if (Tok.isNot(tok::l_paren)) {
2281 Diag(Tok, diag::err_expected_lparen_after) << "asm";
2282 SkipUntil(tok::r_paren, StopAtSemi);
2283 return StmtError();
2284 }
2285 BalancedDelimiterTracker T(*this, tok::l_paren);
2286 T.consumeOpen();
2287
2288 ExprResult AsmString(ParseAsmStringLiteral());
2289 if (AsmString.isInvalid()) {
2290 // Consume up to and including the closing paren.
2291 T.skipToEnd();
2292 return StmtError();
2293 }
2294
2295 SmallVector<IdentifierInfo *, 4> Names;
2296 ExprVector Constraints;
2297 ExprVector Exprs;
2298 ExprVector Clobbers;
2299
2300 if (Tok.is(tok::r_paren)) {
2301 // We have a simple asm expression like 'asm("foo")'.
2302 T.consumeClose();
2303 return Actions.ActOnGCCAsmStmt(AsmLoc, /*isSimple*/ true, isVolatile,
2304 /*NumOutputs*/ 0, /*NumInputs*/ 0, 0,
2305 Constraints, Exprs, AsmString.take(),
2306 Clobbers, T.getCloseLocation());
2307 }
2308
2309 // Parse Outputs, if present.
2310 bool AteExtraColon = false;
2311 if (Tok.is(tok::colon) || Tok.is(tok::coloncolon)) {
2312 // In C++ mode, parse "::" like ": :".
2313 AteExtraColon = Tok.is(tok::coloncolon);
2314 ConsumeToken();
2315
2316 if (!AteExtraColon &&
2317 ParseAsmOperandsOpt(Names, Constraints, Exprs))
2318 return StmtError();
2319 }
2320
2321 unsigned NumOutputs = Names.size();
2322
2323 // Parse Inputs, if present.
2324 if (AteExtraColon ||
2325 Tok.is(tok::colon) || Tok.is(tok::coloncolon)) {
2326 // In C++ mode, parse "::" like ": :".
2327 if (AteExtraColon)
2328 AteExtraColon = false;
2329 else {
2330 AteExtraColon = Tok.is(tok::coloncolon);
2331 ConsumeToken();
2332 }
2333
2334 if (!AteExtraColon &&
2335 ParseAsmOperandsOpt(Names, Constraints, Exprs))
2336 return StmtError();
2337 }
2338
2339 assert(Names.size() == Constraints.size() &&
2340 Constraints.size() == Exprs.size() &&
2341 "Input operand size mismatch!");
2342
2343 unsigned NumInputs = Names.size() - NumOutputs;
2344
2345 // Parse the clobbers, if present.
2346 if (AteExtraColon || Tok.is(tok::colon)) {
2347 if (!AteExtraColon)
2348 ConsumeToken();
2349
2350 // Parse the asm-string list for clobbers if present.
2351 if (Tok.isNot(tok::r_paren)) {
2352 while (1) {
2353 ExprResult Clobber(ParseAsmStringLiteral());
2354
2355 if (Clobber.isInvalid())
2356 break;
2357
2358 Clobbers.push_back(Clobber.release());
2359
2360 if (Tok.isNot(tok::comma)) break;
2361 ConsumeToken();
2362 }
2363 }
2364 }
2365
2366 T.consumeClose();
2367 return Actions.ActOnGCCAsmStmt(AsmLoc, false, isVolatile, NumOutputs,
2368 NumInputs, Names.data(), Constraints, Exprs,
2369 AsmString.take(), Clobbers,
2370 T.getCloseLocation());
2371 }
2372
2373 /// ParseAsmOperands - Parse the asm-operands production as used by
2374 /// asm-statement, assuming the leading ':' token was eaten.
2375 ///
2376 /// [GNU] asm-operands:
2377 /// asm-operand
2378 /// asm-operands ',' asm-operand
2379 ///
2380 /// [GNU] asm-operand:
2381 /// asm-string-literal '(' expression ')'
2382 /// '[' identifier ']' asm-string-literal '(' expression ')'
2383 ///
2384 //
2385 // FIXME: Avoid unnecessary std::string trashing.
2386 bool Parser::ParseAsmOperandsOpt(SmallVectorImpl<IdentifierInfo *> &Names,
2387 SmallVectorImpl<Expr *> &Constraints,
2388 SmallVectorImpl<Expr *> &Exprs) {
2389 // 'asm-operands' isn't present?
2390 if (!isTokenStringLiteral() && Tok.isNot(tok::l_square))
2391 return false;
2392
2393 while (1) {
2394 // Read the [id] if present.
2395 if (Tok.is(tok::l_square)) {
2396 BalancedDelimiterTracker T(*this, tok::l_square);
2397 T.consumeOpen();
2398
2399 if (Tok.isNot(tok::identifier)) {
2400 Diag(Tok, diag::err_expected_ident);
2401 SkipUntil(tok::r_paren, StopAtSemi);
2402 return true;
2403 }
2404
2405 IdentifierInfo *II = Tok.getIdentifierInfo();
2406 ConsumeToken();
2407
2408 Names.push_back(II);
2409 T.consumeClose();
2410 } else
2411 Names.push_back(0);
2412
2413 ExprResult Constraint(ParseAsmStringLiteral());
2414 if (Constraint.isInvalid()) {
2415 SkipUntil(tok::r_paren, StopAtSemi);
2416 return true;
2417 }
2418 Constraints.push_back(Constraint.release());
2419
2420 if (Tok.isNot(tok::l_paren)) {
2421 Diag(Tok, diag::err_expected_lparen_after) << "asm operand";
2422 SkipUntil(tok::r_paren, StopAtSemi);
2423 return true;
2424 }
2425
2426 // Read the parenthesized expression.
2427 BalancedDelimiterTracker T(*this, tok::l_paren);
2428 T.consumeOpen();
2429 ExprResult Res(ParseExpression());
2430 T.consumeClose();
2431 if (Res.isInvalid()) {
2432 SkipUntil(tok::r_paren, StopAtSemi);
2433 return true;
2434 }
2435 Exprs.push_back(Res.release());
2436 // Eat the comma and continue parsing if it exists.
2437 if (Tok.isNot(tok::comma)) return false;
2438 ConsumeToken();
2439 }
2440 }
2441
2442 Decl *Parser::ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope) {
2443 assert(Tok.is(tok::l_brace));
2444 SourceLocation LBraceLoc = Tok.getLocation();
2445
2446 if (SkipFunctionBodies && (!Decl || Actions.canSkipFunctionBody(Decl)) &&
2447 trySkippingFunctionBody()) {
2448 BodyScope.Exit();
2449 return Actions.ActOnSkippedFunctionBody(Decl);
2450 }
2451
2452 PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, LBraceLoc,
2453 "parsing function body");
2454
2455 // Do not enter a scope for the brace, as the arguments are in the same scope
2456 // (the function body) as the body itself. Instead, just read the statement
2457 // list and put it into a CompoundStmt for safe keeping.
2458 StmtResult FnBody(ParseCompoundStatementBody());
2459
2460 // If the function body could not be parsed, make a bogus compoundstmt.
2461 if (FnBody.isInvalid()) {
2462 Sema::CompoundScopeRAII CompoundScope(Actions);
2463 FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
2464 }
2465
2466 BodyScope.Exit();
2467 return Actions.ActOnFinishFunctionBody(Decl, FnBody.take());
2468 }
2469
2470 /// ParseFunctionTryBlock - Parse a C++ function-try-block.
2471 ///
2472 /// function-try-block:
2473 /// 'try' ctor-initializer[opt] compound-statement handler-seq
2474 ///
2475 Decl *Parser::ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope) {
2476 assert(Tok.is(tok::kw_try) && "Expected 'try'");
2477 SourceLocation TryLoc = ConsumeToken();
2478
2479 PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, TryLoc,
2480 "parsing function try block");
2481
2482 // Constructor initializer list?
2483 if (Tok.is(tok::colon))
2484 ParseConstructorInitializer(Decl);
2485 else
2486 Actions.ActOnDefaultCtorInitializers(Decl);
2487
2488 if (SkipFunctionBodies && Actions.canSkipFunctionBody(Decl) &&
2489 trySkippingFunctionBody()) {
2490 BodyScope.Exit();
2491 return Actions.ActOnSkippedFunctionBody(Decl);
2492 }
2493
2494 SourceLocation LBraceLoc = Tok.getLocation();
2495 StmtResult FnBody(ParseCXXTryBlockCommon(TryLoc, /*FnTry*/true));
2496 // If we failed to parse the try-catch, we just give the function an empty
2497 // compound statement as the body.
2498 if (FnBody.isInvalid()) {
2499 Sema::CompoundScopeRAII CompoundScope(Actions);
2500 FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
2501 }
2502
2503 BodyScope.Exit();
2504 return Actions.ActOnFinishFunctionBody(Decl, FnBody.take());
2505 }
2506
2507 bool Parser::trySkippingFunctionBody() {
2508 assert(Tok.is(tok::l_brace));
2509 assert(SkipFunctionBodies &&
2510 "Should only be called when SkipFunctionBodies is enabled");
2511
2512 if (!PP.isCodeCompletionEnabled()) {
2513 ConsumeBrace();
2514 SkipUntil(tok::r_brace);
2515 return true;
2516 }
2517
2518 // We're in code-completion mode. Skip parsing for all function bodies unless
2519 // the body contains the code-completion point.
2520 TentativeParsingAction PA(*this);
2521 ConsumeBrace();
2522 if (SkipUntil(tok::r_brace, StopAtCodeCompletion)) {
2523 PA.Commit();
2524 return true;
2525 }
2526
2527 PA.Revert();
2528 return false;
2529 }
2530
2531 /// ParseCXXTryBlock - Parse a C++ try-block.
2532 ///
2533 /// try-block:
2534 /// 'try' compound-statement handler-seq
2535 ///
2536 StmtResult Parser::ParseCXXTryBlock() {
2537 assert(Tok.is(tok::kw_try) && "Expected 'try'");
2538
2539 SourceLocation TryLoc = ConsumeToken();
2540 return ParseCXXTryBlockCommon(TryLoc);
2541 }
2542
2543 /// ParseCXXTryBlockCommon - Parse the common part of try-block and
2544 /// function-try-block.
2545 ///
2546 /// try-block:
2547 /// 'try' compound-statement handler-seq
2548 ///
2549 /// function-try-block:
2550 /// 'try' ctor-initializer[opt] compound-statement handler-seq
2551 ///
2552 /// handler-seq:
2553 /// handler handler-seq[opt]
2554 ///
2555 /// [Borland] try-block:
2556 /// 'try' compound-statement seh-except-block
2557 /// 'try' compound-statment seh-finally-block
2558 ///
2559 StmtResult Parser::ParseCXXTryBlockCommon(SourceLocation TryLoc, bool FnTry) {
2560 if (Tok.isNot(tok::l_brace))
2561 return StmtError(Diag(Tok, diag::err_expected_lbrace));
2562 // FIXME: Possible draft standard bug: attribute-specifier should be allowed?
2563
2564 StmtResult TryBlock(ParseCompoundStatement(/*isStmtExpr=*/false,
2565 Scope::DeclScope | Scope::TryScope |
2566 (FnTry ? Scope::FnTryCatchScope : 0)));
2567 if (TryBlock.isInvalid())
2568 return TryBlock;
2569
2570 // Borland allows SEH-handlers with 'try'
2571
2572 if ((Tok.is(tok::identifier) &&
2573 Tok.getIdentifierInfo() == getSEHExceptKeyword()) ||
2574 Tok.is(tok::kw___finally)) {
2575 // TODO: Factor into common return ParseSEHHandlerCommon(...)
2576 StmtResult Handler;
2577 if(Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
2578 SourceLocation Loc = ConsumeToken();
2579 Handler = ParseSEHExceptBlock(Loc);
2580 }
2581 else {
2582 SourceLocation Loc = ConsumeToken();
2583 Handler = ParseSEHFinallyBlock(Loc);
2584 }
2585 if(Handler.isInvalid())
2586 return Handler;
2587
2588 return Actions.ActOnSEHTryBlock(true /* IsCXXTry */,
2589 TryLoc,
2590 TryBlock.take(),
2591 Handler.take());
2592 }
2593 else {
2594 StmtVector Handlers;
2595
2596 // C++11 attributes can't appear here, despite this context seeming
2597 // statement-like.
2598 DiagnoseAndSkipCXX11Attributes();
2599
2600 if (Tok.isNot(tok::kw_catch))
2601 return StmtError(Diag(Tok, diag::err_expected_catch));
2602 while (Tok.is(tok::kw_catch)) {
2603 StmtResult Handler(ParseCXXCatchBlock(FnTry));
2604 if (!Handler.isInvalid())
2605 Handlers.push_back(Handler.release());
2606 }
2607 // Don't bother creating the full statement if we don't have any usable
2608 // handlers.
2609 if (Handlers.empty())
2610 return StmtError();
2611
2612 return Actions.ActOnCXXTryBlock(TryLoc, TryBlock.take(), Handlers);
2613 }
2614 }
2615
2616 /// ParseCXXCatchBlock - Parse a C++ catch block, called handler in the standard
2617 ///
2618 /// handler:
2619 /// 'catch' '(' exception-declaration ')' compound-statement
2620 ///
2621 /// exception-declaration:
2622 /// attribute-specifier-seq[opt] type-specifier-seq declarator
2623 /// attribute-specifier-seq[opt] type-specifier-seq abstract-declarator[opt]
2624 /// '...'
2625 ///
2626 StmtResult Parser::ParseCXXCatchBlock(bool FnCatch) {
2627 assert(Tok.is(tok::kw_catch) && "Expected 'catch'");
2628
2629 SourceLocation CatchLoc = ConsumeToken();
2630
2631 BalancedDelimiterTracker T(*this, tok::l_paren);
2632 if (T.expectAndConsume(diag::err_expected_lparen))
2633 return StmtError();
2634
2635 // C++ 3.3.2p3:
2636 // The name in a catch exception-declaration is local to the handler and
2637 // shall not be redeclared in the outermost block of the handler.
2638 ParseScope CatchScope(this, Scope::DeclScope | Scope::ControlScope |
2639 (FnCatch ? Scope::FnTryCatchScope : 0));
2640
2641 // exception-declaration is equivalent to '...' or a parameter-declaration
2642 // without default arguments.
2643 Decl *ExceptionDecl = 0;
2644 if (Tok.isNot(tok::ellipsis)) {
2645 ParsedAttributesWithRange Attributes(AttrFactory);
2646 MaybeParseCXX11Attributes(Attributes);
2647
2648 DeclSpec DS(AttrFactory);
2649 DS.takeAttributesFrom(Attributes);
2650
2651 if (ParseCXXTypeSpecifierSeq(DS))
2652 return StmtError();
2653
2654 Declarator ExDecl(DS, Declarator::CXXCatchContext);
2655 ParseDeclarator(ExDecl);
2656 ExceptionDecl = Actions.ActOnExceptionDeclarator(getCurScope(), ExDecl);
2657 } else
2658 ConsumeToken();
2659
2660 T.consumeClose();
2661 if (T.getCloseLocation().isInvalid())
2662 return StmtError();
2663
2664 if (Tok.isNot(tok::l_brace))
2665 return StmtError(Diag(Tok, diag::err_expected_lbrace));
2666
2667 // FIXME: Possible draft standard bug: attribute-specifier should be allowed?
2668 StmtResult Block(ParseCompoundStatement());
2669 if (Block.isInvalid())
2670 return Block;
2671
2672 return Actions.ActOnCXXCatchBlock(CatchLoc, ExceptionDecl, Block.take());
2673 }
2674
2675 void Parser::ParseMicrosoftIfExistsStatement(StmtVector &Stmts) {
2676 IfExistsCondition Result;
2677 if (ParseMicrosoftIfExistsCondition(Result))
2678 return;
2679
2680 // Handle dependent statements by parsing the braces as a compound statement.
2681 // This is not the same behavior as Visual C++, which don't treat this as a
2682 // compound statement, but for Clang's type checking we can't have anything
2683 // inside these braces escaping to the surrounding code.
2684 if (Result.Behavior == IEB_Dependent) {
2685 if (!Tok.is(tok::l_brace)) {
2686 Diag(Tok, diag::err_expected_lbrace);
2687 return;
2688 }
2689
2690 StmtResult Compound = ParseCompoundStatement();
2691 if (Compound.isInvalid())
2692 return;
2693
2694 StmtResult DepResult = Actions.ActOnMSDependentExistsStmt(Result.KeywordLoc,
2695 Result.IsIfExists,
2696 Result.SS,
2697 Result.Name,
2698 Compound.get());
2699 if (DepResult.isUsable())
2700 Stmts.push_back(DepResult.get());
2701 return;
2702 }
2703
2704 BalancedDelimiterTracker Braces(*this, tok::l_brace);
2705 if (Braces.consumeOpen()) {
2706 Diag(Tok, diag::err_expected_lbrace);
2707 return;
2708 }
2709
2710 switch (Result.Behavior) {
2711 case IEB_Parse:
2712 // Parse the statements below.
2713 break;
2714
2715 case IEB_Dependent:
2716 llvm_unreachable("Dependent case handled above");
2717
2718 case IEB_Skip:
2719 Braces.skipToEnd();
2720 return;
2721 }
2722
2723 // Condition is true, parse the statements.
2724 while (Tok.isNot(tok::r_brace)) {
2725 StmtResult R = ParseStatementOrDeclaration(Stmts, false);
2726 if (R.isUsable())
2727 Stmts.push_back(R.release());
2728 }
2729 Braces.consumeClose();
2730 }