Mercurial > hg > CbC > CbC_llvm
comparison utils/TableGen/DAGISelMatcherOpt.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file implements the DAG Matcher optimizer. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #define DEBUG_TYPE "isel-opt" | |
15 #include "DAGISelMatcher.h" | |
16 #include "CodeGenDAGPatterns.h" | |
17 #include "llvm/ADT/DenseSet.h" | |
18 #include "llvm/ADT/StringSet.h" | |
19 #include "llvm/Support/Debug.h" | |
20 #include "llvm/Support/raw_ostream.h" | |
21 using namespace llvm; | |
22 | |
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' | |
24 /// into single compound nodes like RecordChild. | |
25 static void ContractNodes(OwningPtr<Matcher> &MatcherPtr, | |
26 const CodeGenDAGPatterns &CGP) { | |
27 // If we reached the end of the chain, we're done. | |
28 Matcher *N = MatcherPtr.get(); | |
29 if (N == 0) return; | |
30 | |
31 // If we have a scope node, walk down all of the children. | |
32 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { | |
33 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | |
34 OwningPtr<Matcher> Child(Scope->takeChild(i)); | |
35 ContractNodes(Child, CGP); | |
36 Scope->resetChild(i, Child.take()); | |
37 } | |
38 return; | |
39 } | |
40 | |
41 // If we found a movechild node with a node that comes in a 'foochild' form, | |
42 // transform it. | |
43 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { | |
44 Matcher *New = 0; | |
45 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) | |
46 if (MC->getChildNo() < 8) // Only have RecordChild0...7 | |
47 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), | |
48 RM->getResultNo()); | |
49 | |
50 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) | |
51 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 | |
52 CT->getResNo() == 0) // CheckChildType checks res #0 | |
53 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); | |
54 | |
55 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext())) | |
56 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 | |
57 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); | |
58 | |
59 if (New) { | |
60 // Insert the new node. | |
61 New->setNext(MatcherPtr.take()); | |
62 MatcherPtr.reset(New); | |
63 // Remove the old one. | |
64 MC->setNext(MC->getNext()->takeNext()); | |
65 return ContractNodes(MatcherPtr, CGP); | |
66 } | |
67 } | |
68 | |
69 // Zap movechild -> moveparent. | |
70 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) | |
71 if (MoveParentMatcher *MP = | |
72 dyn_cast<MoveParentMatcher>(MC->getNext())) { | |
73 MatcherPtr.reset(MP->takeNext()); | |
74 return ContractNodes(MatcherPtr, CGP); | |
75 } | |
76 | |
77 // Turn EmitNode->MarkFlagResults->CompleteMatch into | |
78 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage | |
79 // MorphNodeTo formation. This is safe because MarkFlagResults never refers | |
80 // to the root of the pattern. | |
81 if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) && | |
82 isa<CompleteMatchMatcher>(N->getNext()->getNext())) { | |
83 // Unlink the two nodes from the list. | |
84 Matcher *EmitNode = MatcherPtr.take(); | |
85 Matcher *MFR = EmitNode->takeNext(); | |
86 Matcher *Tail = MFR->takeNext(); | |
87 | |
88 // Relink them. | |
89 MatcherPtr.reset(MFR); | |
90 MFR->setNext(EmitNode); | |
91 EmitNode->setNext(Tail); | |
92 return ContractNodes(MatcherPtr, CGP); | |
93 } | |
94 | |
95 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. | |
96 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) | |
97 if (CompleteMatchMatcher *CM = | |
98 dyn_cast<CompleteMatchMatcher>(EN->getNext())) { | |
99 // We can only use MorphNodeTo if the result values match up. | |
100 unsigned RootResultFirst = EN->getFirstResultSlot(); | |
101 bool ResultsMatch = true; | |
102 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) | |
103 if (CM->getResult(i) != RootResultFirst+i) | |
104 ResultsMatch = false; | |
105 | |
106 // If the selected node defines a subset of the glue/chain results, we | |
107 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the | |
108 // matched pattern has a chain but the root node doesn't. | |
109 const PatternToMatch &Pattern = CM->getPattern(); | |
110 | |
111 if (!EN->hasChain() && | |
112 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) | |
113 ResultsMatch = false; | |
114 | |
115 // If the matched node has glue and the output root doesn't, we can't | |
116 // use MorphNodeTo. | |
117 // | |
118 // NOTE: Strictly speaking, we don't have to check for glue here | |
119 // because the code in the pattern generator doesn't handle it right. We | |
120 // do it anyway for thoroughness. | |
121 if (!EN->hasOutFlag() && | |
122 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) | |
123 ResultsMatch = false; | |
124 | |
125 | |
126 // If the root result node defines more results than the source root node | |
127 // *and* has a chain or glue input, then we can't match it because it | |
128 // would end up replacing the extra result with the chain/glue. | |
129 #if 0 | |
130 if ((EN->hasGlue() || EN->hasChain()) && | |
131 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) | |
132 ResultMatch = false; | |
133 #endif | |
134 | |
135 if (ResultsMatch) { | |
136 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); | |
137 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); | |
138 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), | |
139 VTs.data(), VTs.size(), | |
140 Operands.data(),Operands.size(), | |
141 EN->hasChain(), EN->hasInFlag(), | |
142 EN->hasOutFlag(), | |
143 EN->hasMemRefs(), | |
144 EN->getNumFixedArityOperands(), | |
145 Pattern)); | |
146 return; | |
147 } | |
148 | |
149 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode | |
150 // variants. | |
151 } | |
152 | |
153 ContractNodes(N->getNextPtr(), CGP); | |
154 | |
155 | |
156 // If we have a CheckType/CheckChildType/Record node followed by a | |
157 // CheckOpcode, invert the two nodes. We prefer to do structural checks | |
158 // before type checks, as this opens opportunities for factoring on targets | |
159 // like X86 where many operations are valid on multiple types. | |
160 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || | |
161 isa<RecordMatcher>(N)) && | |
162 isa<CheckOpcodeMatcher>(N->getNext())) { | |
163 // Unlink the two nodes from the list. | |
164 Matcher *CheckType = MatcherPtr.take(); | |
165 Matcher *CheckOpcode = CheckType->takeNext(); | |
166 Matcher *Tail = CheckOpcode->takeNext(); | |
167 | |
168 // Relink them. | |
169 MatcherPtr.reset(CheckOpcode); | |
170 CheckOpcode->setNext(CheckType); | |
171 CheckType->setNext(Tail); | |
172 return ContractNodes(MatcherPtr, CGP); | |
173 } | |
174 } | |
175 | |
176 /// SinkPatternPredicates - Pattern predicates can be checked at any level of | |
177 /// the matching tree. The generator dumps them at the top level of the pattern | |
178 /// though, which prevents factoring from being able to see past them. This | |
179 /// optimization sinks them as far down into the pattern as possible. | |
180 /// | |
181 /// Conceptually, we'd like to sink these predicates all the way to the last | |
182 /// matcher predicate in the series. However, it turns out that some | |
183 /// ComplexPatterns have side effects on the graph, so we really don't want to | |
184 /// run a the complex pattern if the pattern predicate will fail. For this | |
185 /// reason, we refuse to sink the pattern predicate past a ComplexPattern. | |
186 /// | |
187 static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) { | |
188 // Recursively scan for a PatternPredicate. | |
189 // If we reached the end of the chain, we're done. | |
190 Matcher *N = MatcherPtr.get(); | |
191 if (N == 0) return; | |
192 | |
193 // Walk down all members of a scope node. | |
194 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { | |
195 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | |
196 OwningPtr<Matcher> Child(Scope->takeChild(i)); | |
197 SinkPatternPredicates(Child); | |
198 Scope->resetChild(i, Child.take()); | |
199 } | |
200 return; | |
201 } | |
202 | |
203 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until | |
204 // we find one. | |
205 CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N); | |
206 if (CPPM == 0) | |
207 return SinkPatternPredicates(N->getNextPtr()); | |
208 | |
209 // Ok, we found one, lets try to sink it. Check if we can sink it past the | |
210 // next node in the chain. If not, we won't be able to change anything and | |
211 // might as well bail. | |
212 if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) | |
213 return; | |
214 | |
215 // Okay, we know we can sink it past at least one node. Unlink it from the | |
216 // chain and scan for the new insertion point. | |
217 MatcherPtr.take(); // Don't delete CPPM. | |
218 MatcherPtr.reset(CPPM->takeNext()); | |
219 | |
220 N = MatcherPtr.get(); | |
221 while (N->getNext()->isSafeToReorderWithPatternPredicate()) | |
222 N = N->getNext(); | |
223 | |
224 // At this point, we want to insert CPPM after N. | |
225 CPPM->setNext(N->takeNext()); | |
226 N->setNext(CPPM); | |
227 } | |
228 | |
229 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a | |
230 /// specified kind. Return null if we didn't find one otherwise return the | |
231 /// matcher. | |
232 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { | |
233 for (; M; M = M->getNext()) | |
234 if (M->getKind() == Kind) | |
235 return M; | |
236 return 0; | |
237 } | |
238 | |
239 | |
240 /// FactorNodes - Turn matches like this: | |
241 /// Scope | |
242 /// OPC_CheckType i32 | |
243 /// ABC | |
244 /// OPC_CheckType i32 | |
245 /// XYZ | |
246 /// into: | |
247 /// OPC_CheckType i32 | |
248 /// Scope | |
249 /// ABC | |
250 /// XYZ | |
251 /// | |
252 static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) { | |
253 // If we reached the end of the chain, we're done. | |
254 Matcher *N = MatcherPtr.get(); | |
255 if (N == 0) return; | |
256 | |
257 // If this is not a push node, just scan for one. | |
258 ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N); | |
259 if (Scope == 0) | |
260 return FactorNodes(N->getNextPtr()); | |
261 | |
262 // Okay, pull together the children of the scope node into a vector so we can | |
263 // inspect it more easily. While we're at it, bucket them up by the hash | |
264 // code of their first predicate. | |
265 SmallVector<Matcher*, 32> OptionsToMatch; | |
266 | |
267 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { | |
268 // Factor the subexpression. | |
269 OwningPtr<Matcher> Child(Scope->takeChild(i)); | |
270 FactorNodes(Child); | |
271 | |
272 if (Matcher *N = Child.take()) | |
273 OptionsToMatch.push_back(N); | |
274 } | |
275 | |
276 SmallVector<Matcher*, 32> NewOptionsToMatch; | |
277 | |
278 // Loop over options to match, merging neighboring patterns with identical | |
279 // starting nodes into a shared matcher. | |
280 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { | |
281 // Find the set of matchers that start with this node. | |
282 Matcher *Optn = OptionsToMatch[OptionIdx++]; | |
283 | |
284 if (OptionIdx == e) { | |
285 NewOptionsToMatch.push_back(Optn); | |
286 continue; | |
287 } | |
288 | |
289 // See if the next option starts with the same matcher. If the two | |
290 // neighbors *do* start with the same matcher, we can factor the matcher out | |
291 // of at least these two patterns. See what the maximal set we can merge | |
292 // together is. | |
293 SmallVector<Matcher*, 8> EqualMatchers; | |
294 EqualMatchers.push_back(Optn); | |
295 | |
296 // Factor all of the known-equal matchers after this one into the same | |
297 // group. | |
298 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) | |
299 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); | |
300 | |
301 // If we found a non-equal matcher, see if it is contradictory with the | |
302 // current node. If so, we know that the ordering relation between the | |
303 // current sets of nodes and this node don't matter. Look past it to see if | |
304 // we can merge anything else into this matching group. | |
305 unsigned Scan = OptionIdx; | |
306 while (1) { | |
307 // If we ran out of stuff to scan, we're done. | |
308 if (Scan == e) break; | |
309 | |
310 Matcher *ScanMatcher = OptionsToMatch[Scan]; | |
311 | |
312 // If we found an entry that matches out matcher, merge it into the set to | |
313 // handle. | |
314 if (Optn->isEqual(ScanMatcher)) { | |
315 // If is equal after all, add the option to EqualMatchers and remove it | |
316 // from OptionsToMatch. | |
317 EqualMatchers.push_back(ScanMatcher); | |
318 OptionsToMatch.erase(OptionsToMatch.begin()+Scan); | |
319 --e; | |
320 continue; | |
321 } | |
322 | |
323 // If the option we're checking for contradicts the start of the list, | |
324 // skip over it. | |
325 if (Optn->isContradictory(ScanMatcher)) { | |
326 ++Scan; | |
327 continue; | |
328 } | |
329 | |
330 // If we're scanning for a simple node, see if it occurs later in the | |
331 // sequence. If so, and if we can move it up, it might be contradictory | |
332 // or the same as what we're looking for. If so, reorder it. | |
333 if (Optn->isSimplePredicateOrRecordNode()) { | |
334 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); | |
335 if (M2 != 0 && M2 != ScanMatcher && | |
336 M2->canMoveBefore(ScanMatcher) && | |
337 (M2->isEqual(Optn) || M2->isContradictory(Optn))) { | |
338 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); | |
339 M2->setNext(MatcherWithoutM2); | |
340 OptionsToMatch[Scan] = M2; | |
341 continue; | |
342 } | |
343 } | |
344 | |
345 // Otherwise, we don't know how to handle this entry, we have to bail. | |
346 break; | |
347 } | |
348 | |
349 if (Scan != e && | |
350 // Don't print it's obvious nothing extra could be merged anyway. | |
351 Scan+1 != e) { | |
352 DEBUG(errs() << "Couldn't merge this:\n"; | |
353 Optn->print(errs(), 4); | |
354 errs() << "into this:\n"; | |
355 OptionsToMatch[Scan]->print(errs(), 4); | |
356 if (Scan+1 != e) | |
357 OptionsToMatch[Scan+1]->printOne(errs()); | |
358 if (Scan+2 < e) | |
359 OptionsToMatch[Scan+2]->printOne(errs()); | |
360 errs() << "\n"); | |
361 } | |
362 | |
363 // If we only found one option starting with this matcher, no factoring is | |
364 // possible. | |
365 if (EqualMatchers.size() == 1) { | |
366 NewOptionsToMatch.push_back(EqualMatchers[0]); | |
367 continue; | |
368 } | |
369 | |
370 // Factor these checks by pulling the first node off each entry and | |
371 // discarding it. Take the first one off the first entry to reuse. | |
372 Matcher *Shared = Optn; | |
373 Optn = Optn->takeNext(); | |
374 EqualMatchers[0] = Optn; | |
375 | |
376 // Remove and delete the first node from the other matchers we're factoring. | |
377 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { | |
378 Matcher *Tmp = EqualMatchers[i]->takeNext(); | |
379 delete EqualMatchers[i]; | |
380 EqualMatchers[i] = Tmp; | |
381 } | |
382 | |
383 Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size())); | |
384 | |
385 // Recursively factor the newly created node. | |
386 FactorNodes(Shared->getNextPtr()); | |
387 | |
388 NewOptionsToMatch.push_back(Shared); | |
389 } | |
390 | |
391 // If we're down to a single pattern to match, then we don't need this scope | |
392 // anymore. | |
393 if (NewOptionsToMatch.size() == 1) { | |
394 MatcherPtr.reset(NewOptionsToMatch[0]); | |
395 return; | |
396 } | |
397 | |
398 if (NewOptionsToMatch.empty()) { | |
399 MatcherPtr.reset(0); | |
400 return; | |
401 } | |
402 | |
403 // If our factoring failed (didn't achieve anything) see if we can simplify in | |
404 // other ways. | |
405 | |
406 // Check to see if all of the leading entries are now opcode checks. If so, | |
407 // we can convert this Scope to be a OpcodeSwitch instead. | |
408 bool AllOpcodeChecks = true, AllTypeChecks = true; | |
409 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | |
410 // Check to see if this breaks a series of CheckOpcodeMatchers. | |
411 if (AllOpcodeChecks && | |
412 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) { | |
413 #if 0 | |
414 if (i > 3) { | |
415 errs() << "FAILING OPC #" << i << "\n"; | |
416 NewOptionsToMatch[i]->dump(); | |
417 } | |
418 #endif | |
419 AllOpcodeChecks = false; | |
420 } | |
421 | |
422 // Check to see if this breaks a series of CheckTypeMatcher's. | |
423 if (AllTypeChecks) { | |
424 CheckTypeMatcher *CTM = | |
425 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], | |
426 Matcher::CheckType)); | |
427 if (CTM == 0 || | |
428 // iPTR checks could alias any other case without us knowing, don't | |
429 // bother with them. | |
430 CTM->getType() == MVT::iPTR || | |
431 // SwitchType only works for result #0. | |
432 CTM->getResNo() != 0 || | |
433 // If the CheckType isn't at the start of the list, see if we can move | |
434 // it there. | |
435 !CTM->canMoveBefore(NewOptionsToMatch[i])) { | |
436 #if 0 | |
437 if (i > 3 && AllTypeChecks) { | |
438 errs() << "FAILING TYPE #" << i << "\n"; | |
439 NewOptionsToMatch[i]->dump(); | |
440 } | |
441 #endif | |
442 AllTypeChecks = false; | |
443 } | |
444 } | |
445 } | |
446 | |
447 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. | |
448 if (AllOpcodeChecks) { | |
449 StringSet<> Opcodes; | |
450 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; | |
451 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | |
452 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]); | |
453 assert(Opcodes.insert(COM->getOpcode().getEnumName()) && | |
454 "Duplicate opcodes not factored?"); | |
455 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); | |
456 } | |
457 | |
458 MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size())); | |
459 return; | |
460 } | |
461 | |
462 // If all the options are CheckType's, we can form the SwitchType, woot. | |
463 if (AllTypeChecks) { | |
464 DenseMap<unsigned, unsigned> TypeEntry; | |
465 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; | |
466 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { | |
467 CheckTypeMatcher *CTM = | |
468 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], | |
469 Matcher::CheckType)); | |
470 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); | |
471 MVT::SimpleValueType CTMTy = CTM->getType(); | |
472 delete CTM; | |
473 | |
474 unsigned &Entry = TypeEntry[CTMTy]; | |
475 if (Entry != 0) { | |
476 // If we have unfactored duplicate types, then we should factor them. | |
477 Matcher *PrevMatcher = Cases[Entry-1].second; | |
478 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { | |
479 SM->setNumChildren(SM->getNumChildren()+1); | |
480 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); | |
481 continue; | |
482 } | |
483 | |
484 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; | |
485 Cases[Entry-1].second = new ScopeMatcher(Entries, 2); | |
486 continue; | |
487 } | |
488 | |
489 Entry = Cases.size()+1; | |
490 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); | |
491 } | |
492 | |
493 if (Cases.size() != 1) { | |
494 MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size())); | |
495 } else { | |
496 // If we factored and ended up with one case, create it now. | |
497 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); | |
498 MatcherPtr->setNext(Cases[0].second); | |
499 } | |
500 return; | |
501 } | |
502 | |
503 | |
504 // Reassemble the Scope node with the adjusted children. | |
505 Scope->setNumChildren(NewOptionsToMatch.size()); | |
506 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) | |
507 Scope->resetChild(i, NewOptionsToMatch[i]); | |
508 } | |
509 | |
510 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, | |
511 const CodeGenDAGPatterns &CGP) { | |
512 OwningPtr<Matcher> MatcherPtr(TheMatcher); | |
513 ContractNodes(MatcherPtr, CGP); | |
514 SinkPatternPredicates(MatcherPtr); | |
515 FactorNodes(MatcherPtr); | |
516 return MatcherPtr.take(); | |
517 } |