Mercurial > hg > CbC > CbC_llvm
comparison utils/unittest/googletest/include/gtest/gtest-printers.h @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 803732b1fca8 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 // Copyright 2007, Google Inc. | |
2 // All rights reserved. | |
3 // | |
4 // Redistribution and use in source and binary forms, with or without | |
5 // modification, are permitted provided that the following conditions are | |
6 // met: | |
7 // | |
8 // * Redistributions of source code must retain the above copyright | |
9 // notice, this list of conditions and the following disclaimer. | |
10 // * Redistributions in binary form must reproduce the above | |
11 // copyright notice, this list of conditions and the following disclaimer | |
12 // in the documentation and/or other materials provided with the | |
13 // distribution. | |
14 // * Neither the name of Google Inc. nor the names of its | |
15 // contributors may be used to endorse or promote products derived from | |
16 // this software without specific prior written permission. | |
17 // | |
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 // | |
30 // Author: wan@google.com (Zhanyong Wan) | |
31 | |
32 // Google Test - The Google C++ Testing Framework | |
33 // | |
34 // This file implements a universal value printer that can print a | |
35 // value of any type T: | |
36 // | |
37 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); | |
38 // | |
39 // A user can teach this function how to print a class type T by | |
40 // defining either operator<<() or PrintTo() in the namespace that | |
41 // defines T. More specifically, the FIRST defined function in the | |
42 // following list will be used (assuming T is defined in namespace | |
43 // foo): | |
44 // | |
45 // 1. foo::PrintTo(const T&, ostream*) | |
46 // 2. operator<<(ostream&, const T&) defined in either foo or the | |
47 // global namespace. | |
48 // | |
49 // If none of the above is defined, it will print the debug string of | |
50 // the value if it is a protocol buffer, or print the raw bytes in the | |
51 // value otherwise. | |
52 // | |
53 // To aid debugging: when T is a reference type, the address of the | |
54 // value is also printed; when T is a (const) char pointer, both the | |
55 // pointer value and the NUL-terminated string it points to are | |
56 // printed. | |
57 // | |
58 // We also provide some convenient wrappers: | |
59 // | |
60 // // Prints a value to a string. For a (const or not) char | |
61 // // pointer, the NUL-terminated string (but not the pointer) is | |
62 // // printed. | |
63 // std::string ::testing::PrintToString(const T& value); | |
64 // | |
65 // // Prints a value tersely: for a reference type, the referenced | |
66 // // value (but not the address) is printed; for a (const or not) char | |
67 // // pointer, the NUL-terminated string (but not the pointer) is | |
68 // // printed. | |
69 // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); | |
70 // | |
71 // // Prints value using the type inferred by the compiler. The difference | |
72 // // from UniversalTersePrint() is that this function prints both the | |
73 // // pointer and the NUL-terminated string for a (const or not) char pointer. | |
74 // void ::testing::internal::UniversalPrint(const T& value, ostream*); | |
75 // | |
76 // // Prints the fields of a tuple tersely to a string vector, one | |
77 // // element for each field. Tuple support must be enabled in | |
78 // // gtest-port.h. | |
79 // std::vector<string> UniversalTersePrintTupleFieldsToStrings( | |
80 // const Tuple& value); | |
81 // | |
82 // Known limitation: | |
83 // | |
84 // The print primitives print the elements of an STL-style container | |
85 // using the compiler-inferred type of *iter where iter is a | |
86 // const_iterator of the container. When const_iterator is an input | |
87 // iterator but not a forward iterator, this inferred type may not | |
88 // match value_type, and the print output may be incorrect. In | |
89 // practice, this is rarely a problem as for most containers | |
90 // const_iterator is a forward iterator. We'll fix this if there's an | |
91 // actual need for it. Note that this fix cannot rely on value_type | |
92 // being defined as many user-defined container types don't have | |
93 // value_type. | |
94 | |
95 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ | |
96 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ | |
97 | |
98 #include <ostream> // NOLINT | |
99 #include <sstream> | |
100 #include <string> | |
101 #include <utility> | |
102 #include <vector> | |
103 #include "gtest/internal/gtest-port.h" | |
104 #include "gtest/internal/gtest-internal.h" | |
105 | |
106 namespace testing { | |
107 | |
108 // Definitions in the 'internal' and 'internal2' name spaces are | |
109 // subject to change without notice. DO NOT USE THEM IN USER CODE! | |
110 namespace internal2 { | |
111 | |
112 // Prints the given number of bytes in the given object to the given | |
113 // ostream. | |
114 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, | |
115 size_t count, | |
116 ::std::ostream* os); | |
117 | |
118 // For selecting which printer to use when a given type has neither << | |
119 // nor PrintTo(). | |
120 enum TypeKind { | |
121 kProtobuf, // a protobuf type | |
122 kConvertibleToInteger, // a type implicitly convertible to BiggestInt | |
123 // (e.g. a named or unnamed enum type) | |
124 kOtherType // anything else | |
125 }; | |
126 | |
127 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called | |
128 // by the universal printer to print a value of type T when neither | |
129 // operator<< nor PrintTo() is defined for T, where kTypeKind is the | |
130 // "kind" of T as defined by enum TypeKind. | |
131 template <typename T, TypeKind kTypeKind> | |
132 class TypeWithoutFormatter { | |
133 public: | |
134 // This default version is called when kTypeKind is kOtherType. | |
135 static void PrintValue(const T& value, ::std::ostream* os) { | |
136 PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), | |
137 sizeof(value), os); | |
138 } | |
139 }; | |
140 | |
141 // We print a protobuf using its ShortDebugString() when the string | |
142 // doesn't exceed this many characters; otherwise we print it using | |
143 // DebugString() for better readability. | |
144 const size_t kProtobufOneLinerMaxLength = 50; | |
145 | |
146 template <typename T> | |
147 class TypeWithoutFormatter<T, kProtobuf> { | |
148 public: | |
149 static void PrintValue(const T& value, ::std::ostream* os) { | |
150 const ::testing::internal::string short_str = value.ShortDebugString(); | |
151 const ::testing::internal::string pretty_str = | |
152 short_str.length() <= kProtobufOneLinerMaxLength ? | |
153 short_str : ("\n" + value.DebugString()); | |
154 *os << ("<" + pretty_str + ">"); | |
155 } | |
156 }; | |
157 | |
158 template <typename T> | |
159 class TypeWithoutFormatter<T, kConvertibleToInteger> { | |
160 public: | |
161 // Since T has no << operator or PrintTo() but can be implicitly | |
162 // converted to BiggestInt, we print it as a BiggestInt. | |
163 // | |
164 // Most likely T is an enum type (either named or unnamed), in which | |
165 // case printing it as an integer is the desired behavior. In case | |
166 // T is not an enum, printing it as an integer is the best we can do | |
167 // given that it has no user-defined printer. | |
168 static void PrintValue(const T& value, ::std::ostream* os) { | |
169 const internal::BiggestInt kBigInt = value; | |
170 *os << kBigInt; | |
171 } | |
172 }; | |
173 | |
174 // Prints the given value to the given ostream. If the value is a | |
175 // protocol message, its debug string is printed; if it's an enum or | |
176 // of a type implicitly convertible to BiggestInt, it's printed as an | |
177 // integer; otherwise the bytes in the value are printed. This is | |
178 // what UniversalPrinter<T>::Print() does when it knows nothing about | |
179 // type T and T has neither << operator nor PrintTo(). | |
180 // | |
181 // A user can override this behavior for a class type Foo by defining | |
182 // a << operator in the namespace where Foo is defined. | |
183 // | |
184 // We put this operator in namespace 'internal2' instead of 'internal' | |
185 // to simplify the implementation, as much code in 'internal' needs to | |
186 // use << in STL, which would conflict with our own << were it defined | |
187 // in 'internal'. | |
188 // | |
189 // Note that this operator<< takes a generic std::basic_ostream<Char, | |
190 // CharTraits> type instead of the more restricted std::ostream. If | |
191 // we define it to take an std::ostream instead, we'll get an | |
192 // "ambiguous overloads" compiler error when trying to print a type | |
193 // Foo that supports streaming to std::basic_ostream<Char, | |
194 // CharTraits>, as the compiler cannot tell whether | |
195 // operator<<(std::ostream&, const T&) or | |
196 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more | |
197 // specific. | |
198 template <typename Char, typename CharTraits, typename T> | |
199 ::std::basic_ostream<Char, CharTraits>& operator<<( | |
200 ::std::basic_ostream<Char, CharTraits>& os, const T& x) { | |
201 TypeWithoutFormatter<T, | |
202 (internal::IsAProtocolMessage<T>::value ? kProtobuf : | |
203 internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? | |
204 kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); | |
205 return os; | |
206 } | |
207 | |
208 } // namespace internal2 | |
209 } // namespace testing | |
210 | |
211 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up | |
212 // magic needed for implementing UniversalPrinter won't work. | |
213 namespace testing_internal { | |
214 | |
215 // Used to print a value that is not an STL-style container when the | |
216 // user doesn't define PrintTo() for it. | |
217 template <typename T> | |
218 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { | |
219 // With the following statement, during unqualified name lookup, | |
220 // testing::internal2::operator<< appears as if it was declared in | |
221 // the nearest enclosing namespace that contains both | |
222 // ::testing_internal and ::testing::internal2, i.e. the global | |
223 // namespace. For more details, refer to the C++ Standard section | |
224 // 7.3.4-1 [namespace.udir]. This allows us to fall back onto | |
225 // testing::internal2::operator<< in case T doesn't come with a << | |
226 // operator. | |
227 // | |
228 // We cannot write 'using ::testing::internal2::operator<<;', which | |
229 // gcc 3.3 fails to compile due to a compiler bug. | |
230 using namespace ::testing::internal2; // NOLINT | |
231 | |
232 // Assuming T is defined in namespace foo, in the next statement, | |
233 // the compiler will consider all of: | |
234 // | |
235 // 1. foo::operator<< (thanks to Koenig look-up), | |
236 // 2. ::operator<< (as the current namespace is enclosed in ::), | |
237 // 3. testing::internal2::operator<< (thanks to the using statement above). | |
238 // | |
239 // The operator<< whose type matches T best will be picked. | |
240 // | |
241 // We deliberately allow #2 to be a candidate, as sometimes it's | |
242 // impossible to define #1 (e.g. when foo is ::std, defining | |
243 // anything in it is undefined behavior unless you are a compiler | |
244 // vendor.). | |
245 *os << value; | |
246 } | |
247 | |
248 } // namespace testing_internal | |
249 | |
250 namespace testing { | |
251 namespace internal { | |
252 | |
253 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given | |
254 // value to the given ostream. The caller must ensure that | |
255 // 'ostream_ptr' is not NULL, or the behavior is undefined. | |
256 // | |
257 // We define UniversalPrinter as a class template (as opposed to a | |
258 // function template), as we need to partially specialize it for | |
259 // reference types, which cannot be done with function templates. | |
260 template <typename T> | |
261 class UniversalPrinter; | |
262 | |
263 template <typename T> | |
264 void UniversalPrint(const T& value, ::std::ostream* os); | |
265 | |
266 // Used to print an STL-style container when the user doesn't define | |
267 // a PrintTo() for it. | |
268 template <typename C> | |
269 void DefaultPrintTo(IsContainer /* dummy */, | |
270 false_type /* is not a pointer */, | |
271 const C& container, ::std::ostream* os) { | |
272 const size_t kMaxCount = 32; // The maximum number of elements to print. | |
273 *os << '{'; | |
274 size_t count = 0; | |
275 for (typename C::const_iterator it = container.begin(); | |
276 it != container.end(); ++it, ++count) { | |
277 if (count > 0) { | |
278 *os << ','; | |
279 if (count == kMaxCount) { // Enough has been printed. | |
280 *os << " ..."; | |
281 break; | |
282 } | |
283 } | |
284 *os << ' '; | |
285 // We cannot call PrintTo(*it, os) here as PrintTo() doesn't | |
286 // handle *it being a native array. | |
287 internal::UniversalPrint(*it, os); | |
288 } | |
289 | |
290 if (count > 0) { | |
291 *os << ' '; | |
292 } | |
293 *os << '}'; | |
294 } | |
295 | |
296 // Used to print a pointer that is neither a char pointer nor a member | |
297 // pointer, when the user doesn't define PrintTo() for it. (A member | |
298 // variable pointer or member function pointer doesn't really point to | |
299 // a location in the address space. Their representation is | |
300 // implementation-defined. Therefore they will be printed as raw | |
301 // bytes.) | |
302 template <typename T> | |
303 void DefaultPrintTo(IsNotContainer /* dummy */, | |
304 true_type /* is a pointer */, | |
305 T* p, ::std::ostream* os) { | |
306 if (p == NULL) { | |
307 *os << "NULL"; | |
308 } else { | |
309 // C++ doesn't allow casting from a function pointer to any object | |
310 // pointer. | |
311 // | |
312 // IsTrue() silences warnings: "Condition is always true", | |
313 // "unreachable code". | |
314 if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { | |
315 // T is not a function type. We just call << to print p, | |
316 // relying on ADL to pick up user-defined << for their pointer | |
317 // types, if any. | |
318 *os << p; | |
319 } else { | |
320 // T is a function type, so '*os << p' doesn't do what we want | |
321 // (it just prints p as bool). We want to print p as a const | |
322 // void*. However, we cannot cast it to const void* directly, | |
323 // even using reinterpret_cast, as earlier versions of gcc | |
324 // (e.g. 3.4.5) cannot compile the cast when p is a function | |
325 // pointer. Casting to UInt64 first solves the problem. | |
326 *os << reinterpret_cast<const void*>( | |
327 reinterpret_cast<internal::UInt64>(p)); | |
328 } | |
329 } | |
330 } | |
331 | |
332 // Used to print a non-container, non-pointer value when the user | |
333 // doesn't define PrintTo() for it. | |
334 template <typename T> | |
335 void DefaultPrintTo(IsNotContainer /* dummy */, | |
336 false_type /* is not a pointer */, | |
337 const T& value, ::std::ostream* os) { | |
338 ::testing_internal::DefaultPrintNonContainerTo(value, os); | |
339 } | |
340 | |
341 // Prints the given value using the << operator if it has one; | |
342 // otherwise prints the bytes in it. This is what | |
343 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized | |
344 // or overloaded for type T. | |
345 // | |
346 // A user can override this behavior for a class type Foo by defining | |
347 // an overload of PrintTo() in the namespace where Foo is defined. We | |
348 // give the user this option as sometimes defining a << operator for | |
349 // Foo is not desirable (e.g. the coding style may prevent doing it, | |
350 // or there is already a << operator but it doesn't do what the user | |
351 // wants). | |
352 template <typename T> | |
353 void PrintTo(const T& value, ::std::ostream* os) { | |
354 // DefaultPrintTo() is overloaded. The type of its first two | |
355 // arguments determine which version will be picked. If T is an | |
356 // STL-style container, the version for container will be called; if | |
357 // T is a pointer, the pointer version will be called; otherwise the | |
358 // generic version will be called. | |
359 // | |
360 // Note that we check for container types here, prior to we check | |
361 // for protocol message types in our operator<<. The rationale is: | |
362 // | |
363 // For protocol messages, we want to give people a chance to | |
364 // override Google Mock's format by defining a PrintTo() or | |
365 // operator<<. For STL containers, other formats can be | |
366 // incompatible with Google Mock's format for the container | |
367 // elements; therefore we check for container types here to ensure | |
368 // that our format is used. | |
369 // | |
370 // The second argument of DefaultPrintTo() is needed to bypass a bug | |
371 // in Symbian's C++ compiler that prevents it from picking the right | |
372 // overload between: | |
373 // | |
374 // PrintTo(const T& x, ...); | |
375 // PrintTo(T* x, ...); | |
376 DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); | |
377 } | |
378 | |
379 // The following list of PrintTo() overloads tells | |
380 // UniversalPrinter<T>::Print() how to print standard types (built-in | |
381 // types, strings, plain arrays, and pointers). | |
382 | |
383 // Overloads for various char types. | |
384 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); | |
385 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); | |
386 inline void PrintTo(char c, ::std::ostream* os) { | |
387 // When printing a plain char, we always treat it as unsigned. This | |
388 // way, the output won't be affected by whether the compiler thinks | |
389 // char is signed or not. | |
390 PrintTo(static_cast<unsigned char>(c), os); | |
391 } | |
392 | |
393 // Overloads for other simple built-in types. | |
394 inline void PrintTo(bool x, ::std::ostream* os) { | |
395 *os << (x ? "true" : "false"); | |
396 } | |
397 | |
398 // Overload for wchar_t type. | |
399 // Prints a wchar_t as a symbol if it is printable or as its internal | |
400 // code otherwise and also as its decimal code (except for L'\0'). | |
401 // The L'\0' char is printed as "L'\\0'". The decimal code is printed | |
402 // as signed integer when wchar_t is implemented by the compiler | |
403 // as a signed type and is printed as an unsigned integer when wchar_t | |
404 // is implemented as an unsigned type. | |
405 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); | |
406 | |
407 // Overloads for C strings. | |
408 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); | |
409 inline void PrintTo(char* s, ::std::ostream* os) { | |
410 PrintTo(ImplicitCast_<const char*>(s), os); | |
411 } | |
412 | |
413 // signed/unsigned char is often used for representing binary data, so | |
414 // we print pointers to it as void* to be safe. | |
415 inline void PrintTo(const signed char* s, ::std::ostream* os) { | |
416 PrintTo(ImplicitCast_<const void*>(s), os); | |
417 } | |
418 inline void PrintTo(signed char* s, ::std::ostream* os) { | |
419 PrintTo(ImplicitCast_<const void*>(s), os); | |
420 } | |
421 inline void PrintTo(const unsigned char* s, ::std::ostream* os) { | |
422 PrintTo(ImplicitCast_<const void*>(s), os); | |
423 } | |
424 inline void PrintTo(unsigned char* s, ::std::ostream* os) { | |
425 PrintTo(ImplicitCast_<const void*>(s), os); | |
426 } | |
427 | |
428 // MSVC can be configured to define wchar_t as a typedef of unsigned | |
429 // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native | |
430 // type. When wchar_t is a typedef, defining an overload for const | |
431 // wchar_t* would cause unsigned short* be printed as a wide string, | |
432 // possibly causing invalid memory accesses. | |
433 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) | |
434 // Overloads for wide C strings | |
435 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); | |
436 inline void PrintTo(wchar_t* s, ::std::ostream* os) { | |
437 PrintTo(ImplicitCast_<const wchar_t*>(s), os); | |
438 } | |
439 #endif | |
440 | |
441 // Overload for C arrays. Multi-dimensional arrays are printed | |
442 // properly. | |
443 | |
444 // Prints the given number of elements in an array, without printing | |
445 // the curly braces. | |
446 template <typename T> | |
447 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { | |
448 UniversalPrint(a[0], os); | |
449 for (size_t i = 1; i != count; i++) { | |
450 *os << ", "; | |
451 UniversalPrint(a[i], os); | |
452 } | |
453 } | |
454 | |
455 // Overloads for ::string and ::std::string. | |
456 #if GTEST_HAS_GLOBAL_STRING | |
457 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); | |
458 inline void PrintTo(const ::string& s, ::std::ostream* os) { | |
459 PrintStringTo(s, os); | |
460 } | |
461 #endif // GTEST_HAS_GLOBAL_STRING | |
462 | |
463 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); | |
464 inline void PrintTo(const ::std::string& s, ::std::ostream* os) { | |
465 PrintStringTo(s, os); | |
466 } | |
467 | |
468 // Overloads for ::wstring and ::std::wstring. | |
469 #if GTEST_HAS_GLOBAL_WSTRING | |
470 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); | |
471 inline void PrintTo(const ::wstring& s, ::std::ostream* os) { | |
472 PrintWideStringTo(s, os); | |
473 } | |
474 #endif // GTEST_HAS_GLOBAL_WSTRING | |
475 | |
476 #if GTEST_HAS_STD_WSTRING | |
477 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); | |
478 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { | |
479 PrintWideStringTo(s, os); | |
480 } | |
481 #endif // GTEST_HAS_STD_WSTRING | |
482 | |
483 #if GTEST_HAS_TR1_TUPLE | |
484 // Overload for ::std::tr1::tuple. Needed for printing function arguments, | |
485 // which are packed as tuples. | |
486 | |
487 // Helper function for printing a tuple. T must be instantiated with | |
488 // a tuple type. | |
489 template <typename T> | |
490 void PrintTupleTo(const T& t, ::std::ostream* os); | |
491 | |
492 // Overloaded PrintTo() for tuples of various arities. We support | |
493 // tuples of up-to 10 fields. The following implementation works | |
494 // regardless of whether tr1::tuple is implemented using the | |
495 // non-standard variadic template feature or not. | |
496 | |
497 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { | |
498 PrintTupleTo(t, os); | |
499 } | |
500 | |
501 template <typename T1> | |
502 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { | |
503 PrintTupleTo(t, os); | |
504 } | |
505 | |
506 template <typename T1, typename T2> | |
507 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { | |
508 PrintTupleTo(t, os); | |
509 } | |
510 | |
511 template <typename T1, typename T2, typename T3> | |
512 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { | |
513 PrintTupleTo(t, os); | |
514 } | |
515 | |
516 template <typename T1, typename T2, typename T3, typename T4> | |
517 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { | |
518 PrintTupleTo(t, os); | |
519 } | |
520 | |
521 template <typename T1, typename T2, typename T3, typename T4, typename T5> | |
522 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, | |
523 ::std::ostream* os) { | |
524 PrintTupleTo(t, os); | |
525 } | |
526 | |
527 template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
528 typename T6> | |
529 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, | |
530 ::std::ostream* os) { | |
531 PrintTupleTo(t, os); | |
532 } | |
533 | |
534 template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
535 typename T6, typename T7> | |
536 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, | |
537 ::std::ostream* os) { | |
538 PrintTupleTo(t, os); | |
539 } | |
540 | |
541 template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
542 typename T6, typename T7, typename T8> | |
543 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, | |
544 ::std::ostream* os) { | |
545 PrintTupleTo(t, os); | |
546 } | |
547 | |
548 template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
549 typename T6, typename T7, typename T8, typename T9> | |
550 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, | |
551 ::std::ostream* os) { | |
552 PrintTupleTo(t, os); | |
553 } | |
554 | |
555 template <typename T1, typename T2, typename T3, typename T4, typename T5, | |
556 typename T6, typename T7, typename T8, typename T9, typename T10> | |
557 void PrintTo( | |
558 const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, | |
559 ::std::ostream* os) { | |
560 PrintTupleTo(t, os); | |
561 } | |
562 #endif // GTEST_HAS_TR1_TUPLE | |
563 | |
564 // Overload for std::pair. | |
565 template <typename T1, typename T2> | |
566 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { | |
567 *os << '('; | |
568 // We cannot use UniversalPrint(value.first, os) here, as T1 may be | |
569 // a reference type. The same for printing value.second. | |
570 UniversalPrinter<T1>::Print(value.first, os); | |
571 *os << ", "; | |
572 UniversalPrinter<T2>::Print(value.second, os); | |
573 *os << ')'; | |
574 } | |
575 | |
576 // Implements printing a non-reference type T by letting the compiler | |
577 // pick the right overload of PrintTo() for T. | |
578 template <typename T> | |
579 class UniversalPrinter { | |
580 public: | |
581 // MSVC warns about adding const to a function type, so we want to | |
582 // disable the warning. | |
583 #ifdef _MSC_VER | |
584 # pragma warning(push) // Saves the current warning state. | |
585 # pragma warning(disable:4180) // Temporarily disables warning 4180. | |
586 #endif // _MSC_VER | |
587 | |
588 // Note: we deliberately don't call this PrintTo(), as that name | |
589 // conflicts with ::testing::internal::PrintTo in the body of the | |
590 // function. | |
591 static void Print(const T& value, ::std::ostream* os) { | |
592 // By default, ::testing::internal::PrintTo() is used for printing | |
593 // the value. | |
594 // | |
595 // Thanks to Koenig look-up, if T is a class and has its own | |
596 // PrintTo() function defined in its namespace, that function will | |
597 // be visible here. Since it is more specific than the generic ones | |
598 // in ::testing::internal, it will be picked by the compiler in the | |
599 // following statement - exactly what we want. | |
600 PrintTo(value, os); | |
601 } | |
602 | |
603 #ifdef _MSC_VER | |
604 # pragma warning(pop) // Restores the warning state. | |
605 #endif // _MSC_VER | |
606 }; | |
607 | |
608 // UniversalPrintArray(begin, len, os) prints an array of 'len' | |
609 // elements, starting at address 'begin'. | |
610 template <typename T> | |
611 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { | |
612 if (len == 0) { | |
613 *os << "{}"; | |
614 } else { | |
615 *os << "{ "; | |
616 const size_t kThreshold = 18; | |
617 const size_t kChunkSize = 8; | |
618 // If the array has more than kThreshold elements, we'll have to | |
619 // omit some details by printing only the first and the last | |
620 // kChunkSize elements. | |
621 // TODO(wan@google.com): let the user control the threshold using a flag. | |
622 if (len <= kThreshold) { | |
623 PrintRawArrayTo(begin, len, os); | |
624 } else { | |
625 PrintRawArrayTo(begin, kChunkSize, os); | |
626 *os << ", ..., "; | |
627 PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); | |
628 } | |
629 *os << " }"; | |
630 } | |
631 } | |
632 // This overload prints a (const) char array compactly. | |
633 GTEST_API_ void UniversalPrintArray(const char* begin, | |
634 size_t len, | |
635 ::std::ostream* os); | |
636 | |
637 // Implements printing an array type T[N]. | |
638 template <typename T, size_t N> | |
639 class UniversalPrinter<T[N]> { | |
640 public: | |
641 // Prints the given array, omitting some elements when there are too | |
642 // many. | |
643 static void Print(const T (&a)[N], ::std::ostream* os) { | |
644 UniversalPrintArray(a, N, os); | |
645 } | |
646 }; | |
647 | |
648 // Implements printing a reference type T&. | |
649 template <typename T> | |
650 class UniversalPrinter<T&> { | |
651 public: | |
652 // MSVC warns about adding const to a function type, so we want to | |
653 // disable the warning. | |
654 #ifdef _MSC_VER | |
655 # pragma warning(push) // Saves the current warning state. | |
656 # pragma warning(disable:4180) // Temporarily disables warning 4180. | |
657 #endif // _MSC_VER | |
658 | |
659 static void Print(const T& value, ::std::ostream* os) { | |
660 // Prints the address of the value. We use reinterpret_cast here | |
661 // as static_cast doesn't compile when T is a function type. | |
662 *os << "@" << reinterpret_cast<const void*>(&value) << " "; | |
663 | |
664 // Then prints the value itself. | |
665 UniversalPrint(value, os); | |
666 } | |
667 | |
668 #ifdef _MSC_VER | |
669 # pragma warning(pop) // Restores the warning state. | |
670 #endif // _MSC_VER | |
671 }; | |
672 | |
673 // Prints a value tersely: for a reference type, the referenced value | |
674 // (but not the address) is printed; for a (const) char pointer, the | |
675 // NUL-terminated string (but not the pointer) is printed. | |
676 template <typename T> | |
677 void UniversalTersePrint(const T& value, ::std::ostream* os) { | |
678 UniversalPrint(value, os); | |
679 } | |
680 inline void UniversalTersePrint(const char* str, ::std::ostream* os) { | |
681 if (str == NULL) { | |
682 *os << "NULL"; | |
683 } else { | |
684 UniversalPrint(string(str), os); | |
685 } | |
686 } | |
687 inline void UniversalTersePrint(char* str, ::std::ostream* os) { | |
688 UniversalTersePrint(static_cast<const char*>(str), os); | |
689 } | |
690 | |
691 // Prints a value using the type inferred by the compiler. The | |
692 // difference between this and UniversalTersePrint() is that for a | |
693 // (const) char pointer, this prints both the pointer and the | |
694 // NUL-terminated string. | |
695 template <typename T> | |
696 void UniversalPrint(const T& value, ::std::ostream* os) { | |
697 UniversalPrinter<T>::Print(value, os); | |
698 } | |
699 | |
700 #if GTEST_HAS_TR1_TUPLE | |
701 typedef ::std::vector<string> Strings; | |
702 | |
703 // This helper template allows PrintTo() for tuples and | |
704 // UniversalTersePrintTupleFieldsToStrings() to be defined by | |
705 // induction on the number of tuple fields. The idea is that | |
706 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N | |
707 // fields in tuple t, and can be defined in terms of | |
708 // TuplePrefixPrinter<N - 1>. | |
709 | |
710 // The inductive case. | |
711 template <size_t N> | |
712 struct TuplePrefixPrinter { | |
713 // Prints the first N fields of a tuple. | |
714 template <typename Tuple> | |
715 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { | |
716 TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); | |
717 *os << ", "; | |
718 UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> | |
719 ::Print(::std::tr1::get<N - 1>(t), os); | |
720 } | |
721 | |
722 // Tersely prints the first N fields of a tuple to a string vector, | |
723 // one element for each field. | |
724 template <typename Tuple> | |
725 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { | |
726 TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); | |
727 ::std::stringstream ss; | |
728 UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); | |
729 strings->push_back(ss.str()); | |
730 } | |
731 }; | |
732 | |
733 // Base cases. | |
734 template <> | |
735 struct TuplePrefixPrinter<0> { | |
736 template <typename Tuple> | |
737 static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} | |
738 | |
739 template <typename Tuple> | |
740 static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} | |
741 }; | |
742 // We have to specialize the entire TuplePrefixPrinter<> class | |
743 // template here, even though the definition of | |
744 // TersePrintPrefixToStrings() is the same as the generic version, as | |
745 // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't | |
746 // support specializing a method template of a class template. | |
747 template <> | |
748 struct TuplePrefixPrinter<1> { | |
749 template <typename Tuple> | |
750 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { | |
751 UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: | |
752 Print(::std::tr1::get<0>(t), os); | |
753 } | |
754 | |
755 template <typename Tuple> | |
756 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { | |
757 ::std::stringstream ss; | |
758 UniversalTersePrint(::std::tr1::get<0>(t), &ss); | |
759 strings->push_back(ss.str()); | |
760 } | |
761 }; | |
762 | |
763 // Helper function for printing a tuple. T must be instantiated with | |
764 // a tuple type. | |
765 template <typename T> | |
766 void PrintTupleTo(const T& t, ::std::ostream* os) { | |
767 *os << "("; | |
768 TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: | |
769 PrintPrefixTo(t, os); | |
770 *os << ")"; | |
771 } | |
772 | |
773 // Prints the fields of a tuple tersely to a string vector, one | |
774 // element for each field. See the comment before | |
775 // UniversalTersePrint() for how we define "tersely". | |
776 template <typename Tuple> | |
777 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { | |
778 Strings result; | |
779 TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: | |
780 TersePrintPrefixToStrings(value, &result); | |
781 return result; | |
782 } | |
783 #endif // GTEST_HAS_TR1_TUPLE | |
784 | |
785 } // namespace internal | |
786 | |
787 template <typename T> | |
788 ::std::string PrintToString(const T& value) { | |
789 ::std::stringstream ss; | |
790 internal::UniversalTersePrint(value, &ss); | |
791 return ss.str(); | |
792 } | |
793 | |
794 } // namespace testing | |
795 | |
796 #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |