comparison tools/clang/docs/Modules.rst @ 3:9ad51c7bc036

1st commit. remove git dir and add all files.
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Wed, 15 May 2013 06:43:32 +0900
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 3:9ad51c7bc036
1 =======
2 Modules
3 =======
4
5 .. contents::
6 :local:
7
8 .. warning::
9 The functionality described on this page is still experimental! Please
10 try it out and send us bug reports!
11
12 Introduction
13 ============
14 Most software is built using a number of software libraries, including libraries supplied by the platform, internal libraries built as part of the software itself to provide structure, and third-party libraries. For each library, one needs to access both its interface (API) and its implementation. In the C family of languages, the interface to a library is accessed by including the appropriate header files(s):
15
16 .. code-block:: c
17
18 #include <SomeLib.h>
19
20 The implementation is handled separately by linking against the appropriate library. For example, by passing ``-lSomeLib`` to the linker.
21
22 Modules provide an alternative, simpler way to use software libraries that provides better compile-time scalability and eliminates many of the problems inherent to using the C preprocessor to access the API of a library.
23
24 Problems with the current model
25 -------------------------------
26 The ``#include`` mechanism provided by the C preprocessor is a very poor way to access the API of a library, for a number of reasons:
27
28 * **Compile-time scalability**: Each time a header is included, the
29 compiler must preprocess and parse the text in that header and every
30 header it includes, transitively. This process must be repeated for
31 every translation unit in the application, which involves a huge
32 amount of redundant work. In a project with *N* translation units
33 and *M* headers included in each translation unit, the compiler is
34 performing *M x N* work even though most of the *M* headers are
35 shared among multiple translation units. C++ is particularly bad,
36 because the compilation model for templates forces a huge amount of
37 code into headers.
38
39 * **Fragility**: ``#include`` directives are treated as textual
40 inclusion by the preprocessor, and are therefore subject to any
41 active macro definitions at the time of inclusion. If any of the
42 active macro definitions happens to collide with a name in the
43 library, it can break the library API or cause compilation failures
44 in the library header itself. For an extreme example,
45 ``#define std "The C++ Standard"`` and then include a standard
46 library header: the result is a horrific cascade of failures in the
47 C++ Standard Library's implementation. More subtle real-world
48 problems occur when the headers for two different libraries interact
49 due to macro collisions, and users are forced to reorder
50 ``#include`` directives or introduce ``#undef`` directives to break
51 the (unintended) dependency.
52
53 * **Conventional workarounds**: C programmers have
54 adopted a number of conventions to work around the fragility of the
55 C preprocessor model. Include guards, for example, are required for
56 the vast majority of headers to ensure that multiple inclusion
57 doesn't break the compile. Macro names are written with
58 ``LONG_PREFIXED_UPPERCASE_IDENTIFIERS`` to avoid collisions, and some
59 library/framework developers even use ``__underscored`` names
60 in headers to avoid collisions with "normal" names that (by
61 convention) shouldn't even be macros. These conventions are a
62 barrier to entry for developers coming from non-C languages, are
63 boilerplate for more experienced developers, and make our headers
64 far uglier than they should be.
65
66 * **Tool confusion**: In a C-based language, it is hard to build tools
67 that work well with software libraries, because the boundaries of
68 the libraries are not clear. Which headers belong to a particular
69 library, and in what order should those headers be included to
70 guarantee that they compile correctly? Are the headers C, C++,
71 Objective-C++, or one of the variants of these languages? What
72 declarations in those headers are actually meant to be part of the
73 API, and what declarations are present only because they had to be
74 written as part of the header file?
75
76 Semantic import
77 ---------------
78 Modules improve access to the API of software libraries by replacing the textual preprocessor inclusion model with a more robust, more efficient semantic model. From the user's perspective, the code looks only slightly different, because one uses an ``import`` declaration rather than a ``#include`` preprocessor directive:
79
80 .. code-block:: c
81
82 import std.io; // pseudo-code; see below for syntax discussion
83
84 However, this module import behaves quite differently from the corresponding ``#include <stdio.h>``: when the compiler sees the module import above, it loads a binary representation of the ``std.io`` module and makes its API available to the application directly. Preprocessor definitions that precede the import declaration have no impact on the API provided by ``std.io``, because the module itself was compiled as a separate, standalone module. Additionally, any linker flags required to use the ``std.io`` module will automatically be provided when the module is imported [#]_
85 This semantic import model addresses many of the problems of the preprocessor inclusion model:
86
87 * **Compile-time scalability**: The ``std.io`` module is only compiled once, and importing the module into a translation unit is a constant-time operation (independent of module system). Thus, the API of each software library is only parsed once, reducing the *M x N* compilation problem to an *M + N* problem.
88
89 * **Fragility**: Each module is parsed as a standalone entity, so it has a consistent preprocessor environment. This completely eliminates the need for ``__underscored`` names and similarly defensive tricks. Moreover, the current preprocessor definitions when an import declaration is encountered are ignored, so one software library can not affect how another software library is compiled, eliminating include-order dependencies.
90
91 * **Tool confusion**: Modules describe the API of software libraries, and tools can reason about and present a module as a representation of that API. Because modules can only be built standalone, tools can rely on the module definition to ensure that they get the complete API for the library. Moreover, modules can specify which languages they work with, so, e.g., one can not accidentally attempt to load a C++ module into a C program.
92
93 Problems modules do not solve
94 -----------------------------
95 Many programming languages have a module or package system, and because of the variety of features provided by these languages it is important to define what modules do *not* do. In particular, all of the following are considered out-of-scope for modules:
96
97 * **Rewrite the world's code**: It is not realistic to require applications or software libraries to make drastic or non-backward-compatible changes, nor is it feasible to completely eliminate headers. Modules must interoperate with existing software libraries and allow a gradual transition.
98
99 * **Versioning**: Modules have no notion of version information. Programmers must still rely on the existing versioning mechanisms of the underlying language (if any exist) to version software libraries.
100
101 * **Namespaces**: Unlike in some languages, modules do not imply any notion of namespaces. Thus, a struct declared in one module will still conflict with a struct of the same name declared in a different module, just as they would if declared in two different headers. This aspect is important for backward compatibility, because (for example) the mangled names of entities in software libraries must not change when introducing modules.
102
103 * **Binary distribution of modules**: Headers (particularly C++ headers) expose the full complexity of the language. Maintaining a stable binary module format across architectures, compiler versions, and compiler vendors is technically infeasible.
104
105 Using Modules
106 =============
107 To enable modules, pass the command-line flag ``-fmodules`` [#]_. This will make any modules-enabled software libraries available as modules as well as introducing any modules-specific syntax. Additional `command-line parameters`_ are described in a separate section later.
108
109 Import declaration
110 ------------------
111 The most direct way to import a module is with an *import declaration*, which imports the named module:
112
113 .. parsed-literal::
114
115 import std;
116
117 The import declaration above imports the entire contents of the ``std`` module (which would contain, e.g., the entire C or C++ standard library) and make its API available within the current translation unit. To import only part of a module, one may use dot syntax to specific a particular submodule, e.g.,
118
119 .. parsed-literal::
120
121 import std.io;
122
123 Redundant import declarations are ignored, and one is free to import modules at any point within the translation unit, so long as the import declaration is at global scope.
124
125 .. warning::
126 The import declaration syntax described here does not actually exist. Rather, it is a straw man proposal that may very well change when modules are discussed in the C and C++ committees. See the section `Includes as imports`_ to see how modules get imported today.
127
128 Includes as imports
129 -------------------
130 The primary user-level feature of modules is the import operation, which provides access to the API of software libraries. However, today's programs make extensive use of ``#include``, and it is unrealistic to assume that all of this code will change overnight. Instead, modules automatically translate ``#include`` directives into the corresponding module import. For example, the include directive
131
132 .. code-block:: c
133
134 #include <stdio.h>
135
136 will be automatically mapped to an import of the module ``std.io``. Even with specific ``import`` syntax in the language, this particular feature is important for both adoption and backward compatibility: automatic translation of ``#include`` to ``import`` allows an application to get the benefits of modules (for all modules-enabled libraries) without any changes to the application itself. Thus, users can easily use modules with one compiler while falling back to the preprocessor-inclusion mechanism with other compilers.
137
138 .. note::
139
140 The automatic mapping of ``#include`` to ``import`` also solves an implementation problem: importing a module with a definition of some entity (say, a ``struct Point``) and then parsing a header containing another definition of ``struct Point`` would cause a redefinition error, even if it is the same ``struct Point``. By mapping ``#include`` to ``import``, the compiler can guarantee that it always sees just the already-parsed definition from the module.
141
142 Module maps
143 -----------
144 The crucial link between modules and headers is described by a *module map*, which describes how a collection of existing headers maps on to the (logical) structure of a module. For example, one could imagine a module ``std`` covering the C standard library. Each of the C standard library headers (``<stdio.h>``, ``<stdlib.h>``, ``<math.h>``, etc.) would contribute to the ``std`` module, by placing their respective APIs into the corresponding submodule (``std.io``, ``std.lib``, ``std.math``, etc.). Having a list of the headers that are part of the ``std`` module allows the compiler to build the ``std`` module as a standalone entity, and having the mapping from header names to (sub)modules allows the automatic translation of ``#include`` directives to module imports.
145
146 Module maps are specified as separate files (each named ``module.map``) alongside the headers they describe, which allows them to be added to existing software libraries without having to change the library headers themselves (in most cases [#]_). The actual `Module map language`_ is described in a later section.
147
148 .. note::
149
150 To actually see any benefits from modules, one first has to introduce module maps for the underlying C standard library and the libraries and headers on which it depends. The section `Modularizing a Platform`_ describes the steps one must take to write these module maps.
151
152 Compilation model
153 -----------------
154 The binary representation of modules is automatically generated by the compiler on an as-needed basis. When a module is imported (e.g., by an ``#include`` of one of the module's headers), the compiler will spawn a second instance of itself [#]_, with a fresh preprocessing context [#]_, to parse just the headers in that module. The resulting Abstract Syntax Tree (AST) is then persisted into the binary representation of the module that is then loaded into translation unit where the module import was encountered.
155
156 The binary representation of modules is persisted in the *module cache*. Imports of a module will first query the module cache and, if a binary representation of the required module is already available, will load that representation directly. Thus, a module's headers will only be parsed once per language configuration, rather than once per translation unit that uses the module.
157
158 Modules maintain references to each of the headers that were part of the module build. If any of those headers changes, or if any of the modules on which a module depends change, then the module will be (automatically) recompiled. The process should never require any user intervention.
159
160 Command-line parameters
161 -----------------------
162 ``-fmodules``
163 Enable the modules feature (EXPERIMENTAL).
164
165 ``-fcxx-modules``
166 Enable the modules feature for C++ (EXPERIMENTAL and VERY BROKEN).
167
168 ``-fmodules-cache-path=<directory>``
169 Specify the path to the modules cache. If not provided, Clang will select a system-appropriate default.
170
171 ``-fno-autolink``
172 Disable automatic linking against the libraries associated with imported modules.
173
174 ``-fmodules-ignore-macro=macroname``
175 Instruct modules to ignore the named macro when selecting an appropriate module variant. Use this for macros defined on the command line that don't affect how modules are built, to improve sharing of compiled module files.
176
177 ``-fmodules-prune-interval=seconds``
178 Specify the minimum delay (in seconds) between attempts to prune the module cache. Module cache pruning attempts to clear out old, unused module files so that the module cache itself does not grow without bound. The default delay is large (604,800 seconds, or 7 days) because this is an expensive operation. Set this value to 0 to turn off pruning.
179
180 ``-fmodules-prune-after=seconds``
181 Specify the minimum time (in seconds) for which a file in the module cache must be unused (according to access time) before module pruning will remove it. The default delay is large (2,678,400 seconds, or 31 days) to avoid excessive module rebuilding.
182
183 ``-module-file-info <module file name>``
184 Debugging aid that prints information about a given module file (with a ``.pcm`` extension), including the language and preprocessor options that particular module variant was built with.
185
186 Module Map Language
187 ===================
188
189 The module map language describes the mapping from header files to the
190 logical structure of modules. To enable support for using a library as
191 a module, one must write a ``module.map`` file for that library. The
192 ``module.map`` file is placed alongside the header files themselves,
193 and is written in the module map language described below.
194
195 As an example, the module map file for the C standard library might look a bit like this:
196
197 .. parsed-literal::
198
199 module std [system] {
200 module complex {
201 header "complex.h"
202 export *
203 }
204
205 module ctype {
206 header "ctype.h"
207 export *
208 }
209
210 module errno {
211 header "errno.h"
212 header "sys/errno.h"
213 export *
214 }
215
216 module fenv {
217 header "fenv.h"
218 export *
219 }
220
221 // ...more headers follow...
222 }
223
224 Here, the top-level module ``std`` encompasses the whole C standard library. It has a number of submodules containing different parts of the standard library: ``complex`` for complex numbers, ``ctype`` for character types, etc. Each submodule lists one of more headers that provide the contents for that submodule. Finally, the ``export *`` command specifies that anything included by that submodule will be automatically re-exported.
225
226 Lexical structure
227 -----------------
228 Module map files use a simplified form of the C99 lexer, with the same rules for identifiers, tokens, string literals, ``/* */`` and ``//`` comments. The module map language has the following reserved words; all other C identifiers are valid identifiers.
229
230 .. parsed-literal::
231
232 ``config_macros`` ``export`` ``module``
233 ``conflict`` ``framework`` ``requires``
234 ``exclude`` ``header`` ``umbrella``
235 ``explicit`` ``link``
236
237 Module map file
238 ---------------
239 A module map file consists of a series of module declarations:
240
241 .. parsed-literal::
242
243 *module-map-file*:
244 *module-declaration**
245
246 Within a module map file, modules are referred to by a *module-id*, which uses periods to separate each part of a module's name:
247
248 .. parsed-literal::
249
250 *module-id*:
251 *identifier* ('.' *identifier*)*
252
253 Module declaration
254 ------------------
255 A module declaration describes a module, including the headers that contribute to that module, its submodules, and other aspects of the module.
256
257 .. parsed-literal::
258
259 *module-declaration*:
260 ``explicit``:sub:`opt` ``framework``:sub:`opt` ``module`` *module-id* *attributes*:sub:`opt` '{' *module-member** '}'
261
262 The *module-id* should consist of only a single *identifier*, which provides the name of the module being defined. Each module shall have a single definition.
263
264 The ``explicit`` qualifier can only be applied to a submodule, i.e., a module that is nested within another module. The contents of explicit submodules are only made available when the submodule itself was explicitly named in an import declaration or was re-exported from an imported module.
265
266 The ``framework`` qualifier specifies that this module corresponds to a Darwin-style framework. A Darwin-style framework (used primarily on Mac OS X and iOS) is contained entirely in directory ``Name.framework``, where ``Name`` is the name of the framework (and, therefore, the name of the module). That directory has the following layout:
267
268 .. parsed-literal::
269
270 Name.framework/
271 module.map Module map for the framework
272 Headers/ Subdirectory containing framework headers
273 Frameworks/ Subdirectory containing embedded frameworks
274 Resources/ Subdirectory containing additional resources
275 Name Symbolic link to the shared library for the framework
276
277 The ``system`` attribute specifies that the module is a system module. When a system module is rebuilt, all of the module's header will be considered system headers, which suppresses warnings. This is equivalent to placing ``#pragma GCC system_header`` in each of the module's headers. The form of attributes is described in the section Attributes_, below.
278
279 Modules can have a number of different kinds of members, each of which is described below:
280
281 .. parsed-literal::
282
283 *module-member*:
284 *requires-declaration*
285 *header-declaration*
286 *umbrella-dir-declaration*
287 *submodule-declaration*
288 *export-declaration*
289 *link-declaration*
290 *config-macros-declaration*
291 *conflict-declaration*
292
293 Requires declaration
294 ~~~~~~~~~~~~~~~~~~~~
295 A *requires-declaration* specifies the requirements that an importing translation unit must satisfy to use the module.
296
297 .. parsed-literal::
298
299 *requires-declaration*:
300 ``requires`` *feature-list*
301
302 *feature-list*:
303 *identifier* (',' *identifier*)*
304
305 The requirements clause allows specific modules or submodules to specify that they are only accessible with certain language dialects or on certain platforms. The feature list is a set of identifiers, defined below. If any of the features is not available in a given translation unit, that translation unit shall not import the module.
306
307 The following features are defined:
308
309 altivec
310 The target supports AltiVec.
311
312 blocks
313 The "blocks" language feature is available.
314
315 cplusplus
316 C++ support is available.
317
318 cplusplus11
319 C++11 support is available.
320
321 objc
322 Objective-C support is available.
323
324 objc_arc
325 Objective-C Automatic Reference Counting (ARC) is available
326
327 opencl
328 OpenCL is available
329
330 tls
331 Thread local storage is available.
332
333 *target feature*
334 A specific target feature (e.g., ``sse4``, ``avx``, ``neon``) is available.
335
336
337 **Example**: The ``std`` module can be extended to also include C++ and C++11 headers using a *requires-declaration*:
338
339 .. parsed-literal::
340
341 module std {
342 // C standard library...
343
344 module vector {
345 requires cplusplus
346 header "vector"
347 }
348
349 module type_traits {
350 requires cplusplus11
351 header "type_traits"
352 }
353 }
354
355 Header declaration
356 ~~~~~~~~~~~~~~~~~~
357 A header declaration specifies that a particular header is associated with the enclosing module.
358
359 .. parsed-literal::
360
361 *header-declaration*:
362 ``umbrella``:sub:`opt` ``header`` *string-literal*
363 ``exclude`` ``header`` *string-literal*
364
365 A header declaration that does not contain ``exclude`` specifies a header that contributes to the enclosing module. Specifically, when the module is built, the named header will be parsed and its declarations will be (logically) placed into the enclosing submodule.
366
367 A header with the ``umbrella`` specifier is called an umbrella header. An umbrella header includes all of the headers within its directory (and any subdirectories), and is typically used (in the ``#include`` world) to easily access the full API provided by a particular library. With modules, an umbrella header is a convenient shortcut that eliminates the need to write out ``header`` declarations for every library header. A given directory can only contain a single umbrella header.
368
369 .. note::
370 Any headers not included by the umbrella header should have
371 explicit ``header`` declarations. Use the
372 ``-Wincomplete-umbrella`` warning option to ask Clang to complain
373 about headers not covered by the umbrella header or the module map.
374
375 A header with the ``exclude`` specifier is excluded from the module. It will not be included when the module is built, nor will it be considered to be part of the module.
376
377 **Example**: The C header ``assert.h`` is an excellent candidate for an excluded header, because it is meant to be included multiple times (possibly with different ``NDEBUG`` settings).
378
379 .. parsed-literal::
380
381 module std [system] {
382 exclude header "assert.h"
383 }
384
385 A given header shall not be referenced by more than one *header-declaration*.
386
387 Umbrella directory declaration
388 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
389 An umbrella directory declaration specifies that all of the headers in the specified directory should be included within the module.
390
391 .. parsed-literal::
392
393 *umbrella-dir-declaration*:
394 ``umbrella`` *string-literal*
395
396 The *string-literal* refers to a directory. When the module is built, all of the header files in that directory (and its subdirectories) are included in the module.
397
398 An *umbrella-dir-declaration* shall not refer to the same directory as the location of an umbrella *header-declaration*. In other words, only a single kind of umbrella can be specified for a given directory.
399
400 .. note::
401
402 Umbrella directories are useful for libraries that have a large number of headers but do not have an umbrella header.
403
404
405 Submodule declaration
406 ~~~~~~~~~~~~~~~~~~~~~
407 Submodule declarations describe modules that are nested within their enclosing module.
408
409 .. parsed-literal::
410
411 *submodule-declaration*:
412 *module-declaration*
413 *inferred-submodule-declaration*
414
415 A *submodule-declaration* that is a *module-declaration* is a nested module. If the *module-declaration* has a ``framework`` specifier, the enclosing module shall have a ``framework`` specifier; the submodule's contents shall be contained within the subdirectory ``Frameworks/SubName.framework``, where ``SubName`` is the name of the submodule.
416
417 A *submodule-declaration* that is an *inferred-submodule-declaration* describes a set of submodules that correspond to any headers that are part of the module but are not explicitly described by a *header-declaration*.
418
419 .. parsed-literal::
420
421 *inferred-submodule-declaration*:
422 ``explicit``:sub:`opt` ``framework``:sub:`opt` ``module`` '*' *attributes*:sub:`opt` '{' *inferred-submodule-member** '}'
423
424 *inferred-submodule-member*:
425 ``export`` '*'
426
427 A module containing an *inferred-submodule-declaration* shall have either an umbrella header or an umbrella directory. The headers to which the *inferred-submodule-declaration* applies are exactly those headers included by the umbrella header (transitively) or included in the module because they reside within the umbrella directory (or its subdirectories).
428
429 For each header included by the umbrella header or in the umbrella directory that is not named by a *header-declaration*, a module declaration is implicitly generated from the *inferred-submodule-declaration*. The module will:
430
431 * Have the same name as the header (without the file extension)
432 * Have the ``explicit`` specifier, if the *inferred-submodule-declaration* has the ``explicit`` specifier
433 * Have the ``framework`` specifier, if the
434 *inferred-submodule-declaration* has the ``framework`` specifier
435 * Have the attributes specified by the \ *inferred-submodule-declaration*
436 * Contain a single *header-declaration* naming that header
437 * Contain a single *export-declaration* ``export *``, if the \ *inferred-submodule-declaration* contains the \ *inferred-submodule-member* ``export *``
438
439 **Example**: If the subdirectory "MyLib" contains the headers ``A.h`` and ``B.h``, then the following module map:
440
441 .. parsed-literal::
442
443 module MyLib {
444 umbrella "MyLib"
445 explicit module * {
446 export *
447 }
448 }
449
450 is equivalent to the (more verbose) module map:
451
452 .. parsed-literal::
453
454 module MyLib {
455 explicit module A {
456 header "A.h"
457 export *
458 }
459
460 explicit module B {
461 header "B.h"
462 export *
463 }
464 }
465
466 Export declaration
467 ~~~~~~~~~~~~~~~~~~
468 An *export-declaration* specifies which imported modules will automatically be re-exported as part of a given module's API.
469
470 .. parsed-literal::
471
472 *export-declaration*:
473 ``export`` *wildcard-module-id*
474
475 *wildcard-module-id*:
476 *identifier*
477 '*'
478 *identifier* '.' *wildcard-module-id*
479
480 The *export-declaration* names a module or a set of modules that will be re-exported to any translation unit that imports the enclosing module. Each imported module that matches the *wildcard-module-id* up to, but not including, the first ``*`` will be re-exported.
481
482 **Example**:: In the following example, importing ``MyLib.Derived`` also provides the API for ``MyLib.Base``:
483
484 .. parsed-literal::
485
486 module MyLib {
487 module Base {
488 header "Base.h"
489 }
490
491 module Derived {
492 header "Derived.h"
493 export Base
494 }
495 }
496
497 Note that, if ``Derived.h`` includes ``Base.h``, one can simply use a wildcard export to re-export everything ``Derived.h`` includes:
498
499 .. parsed-literal::
500
501 module MyLib {
502 module Base {
503 header "Base.h"
504 }
505
506 module Derived {
507 header "Derived.h"
508 export *
509 }
510 }
511
512 .. note::
513
514 The wildcard export syntax ``export *`` re-exports all of the
515 modules that were imported in the actual header file. Because
516 ``#include`` directives are automatically mapped to module imports,
517 ``export *`` provides the same transitive-inclusion behavior
518 provided by the C preprocessor, e.g., importing a given module
519 implicitly imports all of the modules on which it depends.
520 Therefore, liberal use of ``export *`` provides excellent backward
521 compatibility for programs that rely on transitive inclusion (i.e.,
522 all of them).
523
524 Link declaration
525 ~~~~~~~~~~~~~~~~
526 A *link-declaration* specifies a library or framework against which a program should be linked if the enclosing module is imported in any translation unit in that program.
527
528 .. parsed-literal::
529
530 *link-declaration*:
531 ``link`` ``framework``:sub:`opt` *string-literal*
532
533 The *string-literal* specifies the name of the library or framework against which the program should be linked. For example, specifying "clangBasic" would instruct the linker to link with ``-lclangBasic`` for a Unix-style linker.
534
535 A *link-declaration* with the ``framework`` specifies that the linker should link against the named framework, e.g., with ``-framework MyFramework``.
536
537 .. note::
538
539 Automatic linking with the ``link`` directive is not yet widely
540 implemented, because it requires support from both the object file
541 format and the linker. The notion is similar to Microsoft Visual
542 Studio's ``#pragma comment(lib...)``.
543
544 Configuration macros declaration
545 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
546 The *config-macros-declaration* specifies the set of configuration macros that have an effect on the the API of the enclosing module.
547
548 .. parsed-literal::
549
550 *config-macros-declaration*:
551 ``config_macros`` *attributes*:sub:`opt` *config-macro-list*:sub:`opt`
552
553 *config-macro-list*:
554 *identifier* (',' *identifier*)*
555
556 Each *identifier* in the *config-macro-list* specifies the name of a macro. The compiler is required to maintain different variants of the given module for differing definitions of any of the named macros.
557
558 A *config-macros-declaration* shall only be present on a top-level module, i.e., a module that is not nested within an enclosing module.
559
560 The ``exhaustive`` attribute specifies that the list of macros in the *config-macros-declaration* is exhaustive, meaning that no other macro definition is intended to have an effect on the API of that module.
561
562 .. note::
563
564 The ``exhaustive`` attribute implies that any macro definitions
565 for macros not listed as configuration macros should be ignored
566 completely when building the module. As an optimization, the
567 compiler could reduce the number of unique module variants by not
568 considering these non-configuration macros. This optimization is not
569 yet implemented in Clang.
570
571 A translation unit shall not import the same module under different definitions of the configuration macros.
572
573 .. note::
574
575 Clang implements a weak form of this requirement: the definitions
576 used for configuration macros are fixed based on the definitions
577 provided by the command line. If an import occurs and the definition
578 of any configuration macro has changed, the compiler will produce a
579 warning (under the control of ``-Wconfig-macros``).
580
581 **Example:** A logging library might provide different API (e.g., in the form of different definitions for a logging macro) based on the ``NDEBUG`` macro setting:
582
583 .. parsed-literal::
584
585 module MyLogger {
586 umbrella header "MyLogger.h"
587 config_macros [exhaustive] NDEBUG
588 }
589
590 Conflict declarations
591 ~~~~~~~~~~~~~~~~~~~~~
592 A *conflict-declaration* describes a case where the presence of two different modules in the same translation unit is likely to cause a problem. For example, two modules may provide similar-but-incompatible functionality.
593
594 .. parsed-literal::
595
596 *conflict-declaration*:
597 ``conflict`` *module-id* ',' *string-literal*
598
599 The *module-id* of the *conflict-declaration* specifies the module with which the enclosing module conflicts. The specified module shall not have been imported in the translation unit when the enclosing module is imported.
600
601 The *string-literal* provides a message to be provided as part of the compiler diagnostic when two modules conflict.
602
603 .. note::
604
605 Clang emits a warning (under the control of ``-Wmodule-conflict``)
606 when a module conflict is discovered.
607
608 **Example:**
609
610 .. parsed-literal::
611
612 module Conflicts {
613 explicit module A {
614 header "conflict_a.h"
615 conflict B, "we just don't like B"
616 }
617
618 module B {
619 header "conflict_b.h"
620 }
621 }
622
623
624 Attributes
625 ----------
626 Attributes are used in a number of places in the grammar to describe specific behavior of other declarations. The format of attributes is fairly simple.
627
628 .. parsed-literal::
629
630 *attributes*:
631 *attribute* *attributes*:sub:`opt`
632
633 *attribute*:
634 '[' *identifier* ']'
635
636 Any *identifier* can be used as an attribute, and each declaration specifies what attributes can be applied to it.
637
638 Modularizing a Platform
639 =======================
640 To get any benefit out of modules, one needs to introduce module maps for software libraries starting at the bottom of the stack. This typically means introducing a module map covering the operating system's headers and the C standard library headers (in ``/usr/include``, for a Unix system).
641
642 The module maps will be written using the `module map language`_, which provides the tools necessary to describe the mapping between headers and modules. Because the set of headers differs from one system to the next, the module map will likely have to be somewhat customized for, e.g., a particular distribution and version of the operating system. Moreover, the system headers themselves may require some modification, if they exhibit any anti-patterns that break modules. Such common patterns are described below.
643
644 **Macro-guarded copy-and-pasted definitions**
645 System headers vend core types such as ``size_t`` for users. These types are often needed in a number of system headers, and are almost trivial to write. Hence, it is fairly common to see a definition such as the following copy-and-pasted throughout the headers:
646
647 .. parsed-literal::
648
649 #ifndef _SIZE_T
650 #define _SIZE_T
651 typedef __SIZE_TYPE__ size_t;
652 #endif
653
654 Unfortunately, when modules compiles all of the C library headers together into a single module, only the first actual type definition of ``size_t`` will be visible, and then only in the submodule corresponding to the lucky first header. Any other headers that have copy-and-pasted versions of this pattern will *not* have a definition of ``size_t``. Importing the submodule corresponding to one of those headers will therefore not yield ``size_t`` as part of the API, because it wasn't there when the header was parsed. The fix for this problem is either to pull the copied declarations into a common header that gets included everywhere ``size_t`` is part of the API, or to eliminate the ``#ifndef`` and redefine the ``size_t`` type. The latter works for C++ headers and C11, but will cause an error for non-modules C90/C99, where redefinition of ``typedefs`` is not permitted.
655
656 **Conflicting definitions**
657 Different system headers may provide conflicting definitions for various macros, functions, or types. These conflicting definitions don't tend to cause problems in a pre-modules world unless someone happens to include both headers in one translation unit. Since the fix is often simply "don't do that", such problems persist. Modules requires that the conflicting definitions be eliminated or that they be placed in separate modules (the former is generally the better answer).
658
659 **Missing includes**
660 Headers are often missing ``#include`` directives for headers that they actually depend on. As with the problem of conflicting definitions, this only affects unlucky users who don't happen to include headers in the right order. With modules, the headers of a particular module will be parsed in isolation, so the module may fail to build if there are missing includes.
661
662 **Headers that vend multiple APIs at different times**
663 Some systems have headers that contain a number of different kinds of API definitions, only some of which are made available with a given include. For example, the header may vend ``size_t`` only when the macro ``__need_size_t`` is defined before that header is included, and also vend ``wchar_t`` only when the macro ``__need_wchar_t`` is defined. Such headers are often included many times in a single translation unit, and will have no include guards. There is no sane way to map this header to a submodule. One can either eliminate the header (e.g., by splitting it into separate headers, one per actual API) or simply ``exclude`` it in the module map.
664
665 To detect and help address some of these problems, the ``clang-tools-extra`` repository contains a ``modularize`` tool that parses a set of given headers and attempts to detect these problems and produce a report. See the tool's in-source documentation for information on how to check your system or library headers.
666
667 Future Directions
668 =================
669 Modules is an experimental feature, and there is much work left to do to make it both real and useful. Here are a few ideas:
670
671 **Detect unused module imports**
672 Unlike with ``#include`` directives, it should be fairly simple to track whether a directly-imported module has ever been used. By doing so, Clang can emit ``unused import`` or ``unused #include`` diagnostics, including Fix-Its to remove the useless imports/includes.
673
674 **Fix-Its for missing imports**
675 It's fairly common for one to make use of some API while writing code, only to get a compiler error about "unknown type" or "no function named" because the corresponding header has not been included. Clang should detect such cases and auto-import the required module (with a Fix-It!).
676
677 **Improve modularize**
678 The modularize tool is both extremely important (for deployment) and extremely crude. It needs better UI, better detection of problems (especially for C++), and perhaps an assistant mode to help write module maps for you.
679
680 **C++ Support**
681 Modules clearly has to work for C++, or we'll never get to use it for the Clang code base.
682
683 Where To Learn More About Modules
684 =================================
685 The Clang source code provides additional information about modules:
686
687 ``clang/lib/Headers/module.map``
688 Module map for Clang's compiler-specific header files.
689
690 ``clang/test/Modules/``
691 Tests specifically related to modules functionality.
692
693 ``clang/include/clang/Basic/Module.h``
694 The ``Module`` class in this header describes a module, and is used throughout the compiler to implement modules.
695
696 ``clang/include/clang/Lex/ModuleMap.h``
697 The ``ModuleMap`` class in this header describes the full module map, consisting of all of the module map files that have been parsed, and providing facilities for looking up module maps and mapping between modules and headers (in both directions).
698
699 PCHInternals_
700 Information about the serialized AST format used for precompiled headers and modules. The actual implementation is in the ``clangSerialization`` library.
701
702 .. [#] Automatic linking against the libraries of modules requires specific linker support, which is not widely available.
703
704 .. [#] Modules are only available in C and Objective-C; a separate flag ``-fcxx-modules`` enables modules support for C++, which is even more experimental and broken.
705
706 .. [#] There are certain anti-patterns that occur in headers, particularly system headers, that cause problems for modules. The section `Modularizing a Platform`_ describes some of them.
707
708 .. [#] The second instance is actually a new thread within the current process, not a separate process. However, the original compiler instance is blocked on the execution of this thread.
709
710 .. [#] The preprocessing context in which the modules are parsed is actually dependent on the command-line options provided to the compiler, including the language dialect and any ``-D`` options. However, the compiled modules for different command-line options are kept distinct, and any preprocessor directives that occur within the translation unit are ignored. See the section on the `Configuration macros declaration`_ for more information.
711
712 .. _PCHInternals: PCHInternals.html
713