Mercurial > hg > CbC > CbC_llvm
comparison lib/Analysis/InlineCost.cpp @ 95:afa8332a0e37 LLVM3.8
LLVM 3.8
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Oct 2015 17:48:58 +0900 |
parents | |
children | 7d135dc70f03 |
comparison
equal
deleted
inserted
replaced
84:f3e34b893a5f | 95:afa8332a0e37 |
---|---|
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file implements inline cost analysis. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "llvm/Analysis/InlineCost.h" | |
15 #include "llvm/ADT/STLExtras.h" | |
16 #include "llvm/ADT/SetVector.h" | |
17 #include "llvm/ADT/SmallPtrSet.h" | |
18 #include "llvm/ADT/SmallVector.h" | |
19 #include "llvm/ADT/Statistic.h" | |
20 #include "llvm/Analysis/AssumptionCache.h" | |
21 #include "llvm/Analysis/CodeMetrics.h" | |
22 #include "llvm/Analysis/ConstantFolding.h" | |
23 #include "llvm/Analysis/InstructionSimplify.h" | |
24 #include "llvm/Analysis/TargetTransformInfo.h" | |
25 #include "llvm/IR/CallSite.h" | |
26 #include "llvm/IR/CallingConv.h" | |
27 #include "llvm/IR/DataLayout.h" | |
28 #include "llvm/IR/GetElementPtrTypeIterator.h" | |
29 #include "llvm/IR/GlobalAlias.h" | |
30 #include "llvm/IR/InstVisitor.h" | |
31 #include "llvm/IR/IntrinsicInst.h" | |
32 #include "llvm/IR/Operator.h" | |
33 #include "llvm/Support/Debug.h" | |
34 #include "llvm/Support/raw_ostream.h" | |
35 | |
36 using namespace llvm; | |
37 | |
38 #define DEBUG_TYPE "inline-cost" | |
39 | |
40 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); | |
41 | |
42 namespace { | |
43 | |
44 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { | |
45 typedef InstVisitor<CallAnalyzer, bool> Base; | |
46 friend class InstVisitor<CallAnalyzer, bool>; | |
47 | |
48 /// The TargetTransformInfo available for this compilation. | |
49 const TargetTransformInfo &TTI; | |
50 | |
51 /// The cache of @llvm.assume intrinsics. | |
52 AssumptionCacheTracker *ACT; | |
53 | |
54 // The called function. | |
55 Function &F; | |
56 | |
57 // The candidate callsite being analyzed. Please do not use this to do | |
58 // analysis in the caller function; we want the inline cost query to be | |
59 // easily cacheable. Instead, use the cover function paramHasAttr. | |
60 CallSite CandidateCS; | |
61 | |
62 int Threshold; | |
63 int Cost; | |
64 | |
65 bool IsCallerRecursive; | |
66 bool IsRecursiveCall; | |
67 bool ExposesReturnsTwice; | |
68 bool HasDynamicAlloca; | |
69 bool ContainsNoDuplicateCall; | |
70 bool HasReturn; | |
71 bool HasIndirectBr; | |
72 bool HasFrameEscape; | |
73 | |
74 /// Number of bytes allocated statically by the callee. | |
75 uint64_t AllocatedSize; | |
76 unsigned NumInstructions, NumVectorInstructions; | |
77 int FiftyPercentVectorBonus, TenPercentVectorBonus; | |
78 int VectorBonus; | |
79 | |
80 // While we walk the potentially-inlined instructions, we build up and | |
81 // maintain a mapping of simplified values specific to this callsite. The | |
82 // idea is to propagate any special information we have about arguments to | |
83 // this call through the inlinable section of the function, and account for | |
84 // likely simplifications post-inlining. The most important aspect we track | |
85 // is CFG altering simplifications -- when we prove a basic block dead, that | |
86 // can cause dramatic shifts in the cost of inlining a function. | |
87 DenseMap<Value *, Constant *> SimplifiedValues; | |
88 | |
89 // Keep track of the values which map back (through function arguments) to | |
90 // allocas on the caller stack which could be simplified through SROA. | |
91 DenseMap<Value *, Value *> SROAArgValues; | |
92 | |
93 // The mapping of caller Alloca values to their accumulated cost savings. If | |
94 // we have to disable SROA for one of the allocas, this tells us how much | |
95 // cost must be added. | |
96 DenseMap<Value *, int> SROAArgCosts; | |
97 | |
98 // Keep track of values which map to a pointer base and constant offset. | |
99 DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; | |
100 | |
101 // Custom simplification helper routines. | |
102 bool isAllocaDerivedArg(Value *V); | |
103 bool lookupSROAArgAndCost(Value *V, Value *&Arg, | |
104 DenseMap<Value *, int>::iterator &CostIt); | |
105 void disableSROA(DenseMap<Value *, int>::iterator CostIt); | |
106 void disableSROA(Value *V); | |
107 void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | |
108 int InstructionCost); | |
109 bool isGEPOffsetConstant(GetElementPtrInst &GEP); | |
110 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); | |
111 bool simplifyCallSite(Function *F, CallSite CS); | |
112 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); | |
113 | |
114 /// Return true if the given argument to the function being considered for | |
115 /// inlining has the given attribute set either at the call site or the | |
116 /// function declaration. Primarily used to inspect call site specific | |
117 /// attributes since these can be more precise than the ones on the callee | |
118 /// itself. | |
119 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); | |
120 | |
121 /// Return true if the given value is known non null within the callee if | |
122 /// inlined through this particular callsite. | |
123 bool isKnownNonNullInCallee(Value *V); | |
124 | |
125 // Custom analysis routines. | |
126 bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues); | |
127 | |
128 // Disable several entry points to the visitor so we don't accidentally use | |
129 // them by declaring but not defining them here. | |
130 void visit(Module *); void visit(Module &); | |
131 void visit(Function *); void visit(Function &); | |
132 void visit(BasicBlock *); void visit(BasicBlock &); | |
133 | |
134 // Provide base case for our instruction visit. | |
135 bool visitInstruction(Instruction &I); | |
136 | |
137 // Our visit overrides. | |
138 bool visitAlloca(AllocaInst &I); | |
139 bool visitPHI(PHINode &I); | |
140 bool visitGetElementPtr(GetElementPtrInst &I); | |
141 bool visitBitCast(BitCastInst &I); | |
142 bool visitPtrToInt(PtrToIntInst &I); | |
143 bool visitIntToPtr(IntToPtrInst &I); | |
144 bool visitCastInst(CastInst &I); | |
145 bool visitUnaryInstruction(UnaryInstruction &I); | |
146 bool visitCmpInst(CmpInst &I); | |
147 bool visitSub(BinaryOperator &I); | |
148 bool visitBinaryOperator(BinaryOperator &I); | |
149 bool visitLoad(LoadInst &I); | |
150 bool visitStore(StoreInst &I); | |
151 bool visitExtractValue(ExtractValueInst &I); | |
152 bool visitInsertValue(InsertValueInst &I); | |
153 bool visitCallSite(CallSite CS); | |
154 bool visitReturnInst(ReturnInst &RI); | |
155 bool visitBranchInst(BranchInst &BI); | |
156 bool visitSwitchInst(SwitchInst &SI); | |
157 bool visitIndirectBrInst(IndirectBrInst &IBI); | |
158 bool visitResumeInst(ResumeInst &RI); | |
159 bool visitCleanupReturnInst(CleanupReturnInst &RI); | |
160 bool visitCatchReturnInst(CatchReturnInst &RI); | |
161 bool visitUnreachableInst(UnreachableInst &I); | |
162 | |
163 public: | |
164 CallAnalyzer(const TargetTransformInfo &TTI, AssumptionCacheTracker *ACT, | |
165 Function &Callee, int Threshold, CallSite CSArg) | |
166 : TTI(TTI), ACT(ACT), F(Callee), CandidateCS(CSArg), Threshold(Threshold), | |
167 Cost(0), IsCallerRecursive(false), IsRecursiveCall(false), | |
168 ExposesReturnsTwice(false), HasDynamicAlloca(false), | |
169 ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), | |
170 HasFrameEscape(false), AllocatedSize(0), NumInstructions(0), | |
171 NumVectorInstructions(0), FiftyPercentVectorBonus(0), | |
172 TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0), | |
173 NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0), | |
174 NumConstantPtrDiffs(0), NumInstructionsSimplified(0), | |
175 SROACostSavings(0), SROACostSavingsLost(0) {} | |
176 | |
177 bool analyzeCall(CallSite CS); | |
178 | |
179 int getThreshold() { return Threshold; } | |
180 int getCost() { return Cost; } | |
181 | |
182 // Keep a bunch of stats about the cost savings found so we can print them | |
183 // out when debugging. | |
184 unsigned NumConstantArgs; | |
185 unsigned NumConstantOffsetPtrArgs; | |
186 unsigned NumAllocaArgs; | |
187 unsigned NumConstantPtrCmps; | |
188 unsigned NumConstantPtrDiffs; | |
189 unsigned NumInstructionsSimplified; | |
190 unsigned SROACostSavings; | |
191 unsigned SROACostSavingsLost; | |
192 | |
193 void dump(); | |
194 }; | |
195 | |
196 } // namespace | |
197 | |
198 /// \brief Test whether the given value is an Alloca-derived function argument. | |
199 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { | |
200 return SROAArgValues.count(V); | |
201 } | |
202 | |
203 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. | |
204 /// Returns false if V does not map to a SROA-candidate. | |
205 bool CallAnalyzer::lookupSROAArgAndCost( | |
206 Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { | |
207 if (SROAArgValues.empty() || SROAArgCosts.empty()) | |
208 return false; | |
209 | |
210 DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); | |
211 if (ArgIt == SROAArgValues.end()) | |
212 return false; | |
213 | |
214 Arg = ArgIt->second; | |
215 CostIt = SROAArgCosts.find(Arg); | |
216 return CostIt != SROAArgCosts.end(); | |
217 } | |
218 | |
219 /// \brief Disable SROA for the candidate marked by this cost iterator. | |
220 /// | |
221 /// This marks the candidate as no longer viable for SROA, and adds the cost | |
222 /// savings associated with it back into the inline cost measurement. | |
223 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { | |
224 // If we're no longer able to perform SROA we need to undo its cost savings | |
225 // and prevent subsequent analysis. | |
226 Cost += CostIt->second; | |
227 SROACostSavings -= CostIt->second; | |
228 SROACostSavingsLost += CostIt->second; | |
229 SROAArgCosts.erase(CostIt); | |
230 } | |
231 | |
232 /// \brief If 'V' maps to a SROA candidate, disable SROA for it. | |
233 void CallAnalyzer::disableSROA(Value *V) { | |
234 Value *SROAArg; | |
235 DenseMap<Value *, int>::iterator CostIt; | |
236 if (lookupSROAArgAndCost(V, SROAArg, CostIt)) | |
237 disableSROA(CostIt); | |
238 } | |
239 | |
240 /// \brief Accumulate the given cost for a particular SROA candidate. | |
241 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | |
242 int InstructionCost) { | |
243 CostIt->second += InstructionCost; | |
244 SROACostSavings += InstructionCost; | |
245 } | |
246 | |
247 /// \brief Check whether a GEP's indices are all constant. | |
248 /// | |
249 /// Respects any simplified values known during the analysis of this callsite. | |
250 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { | |
251 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) | |
252 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) | |
253 return false; | |
254 | |
255 return true; | |
256 } | |
257 | |
258 /// \brief Accumulate a constant GEP offset into an APInt if possible. | |
259 /// | |
260 /// Returns false if unable to compute the offset for any reason. Respects any | |
261 /// simplified values known during the analysis of this callsite. | |
262 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { | |
263 const DataLayout &DL = F.getParent()->getDataLayout(); | |
264 unsigned IntPtrWidth = DL.getPointerSizeInBits(); | |
265 assert(IntPtrWidth == Offset.getBitWidth()); | |
266 | |
267 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | |
268 GTI != GTE; ++GTI) { | |
269 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); | |
270 if (!OpC) | |
271 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) | |
272 OpC = dyn_cast<ConstantInt>(SimpleOp); | |
273 if (!OpC) | |
274 return false; | |
275 if (OpC->isZero()) continue; | |
276 | |
277 // Handle a struct index, which adds its field offset to the pointer. | |
278 if (StructType *STy = dyn_cast<StructType>(*GTI)) { | |
279 unsigned ElementIdx = OpC->getZExtValue(); | |
280 const StructLayout *SL = DL.getStructLayout(STy); | |
281 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); | |
282 continue; | |
283 } | |
284 | |
285 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); | |
286 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; | |
287 } | |
288 return true; | |
289 } | |
290 | |
291 bool CallAnalyzer::visitAlloca(AllocaInst &I) { | |
292 // Check whether inlining will turn a dynamic alloca into a static | |
293 // alloca, and handle that case. | |
294 if (I.isArrayAllocation()) { | |
295 if (Constant *Size = SimplifiedValues.lookup(I.getArraySize())) { | |
296 ConstantInt *AllocSize = dyn_cast<ConstantInt>(Size); | |
297 assert(AllocSize && "Allocation size not a constant int?"); | |
298 Type *Ty = I.getAllocatedType(); | |
299 AllocatedSize += Ty->getPrimitiveSizeInBits() * AllocSize->getZExtValue(); | |
300 return Base::visitAlloca(I); | |
301 } | |
302 } | |
303 | |
304 // Accumulate the allocated size. | |
305 if (I.isStaticAlloca()) { | |
306 const DataLayout &DL = F.getParent()->getDataLayout(); | |
307 Type *Ty = I.getAllocatedType(); | |
308 AllocatedSize += DL.getTypeAllocSize(Ty); | |
309 } | |
310 | |
311 // We will happily inline static alloca instructions. | |
312 if (I.isStaticAlloca()) | |
313 return Base::visitAlloca(I); | |
314 | |
315 // FIXME: This is overly conservative. Dynamic allocas are inefficient for | |
316 // a variety of reasons, and so we would like to not inline them into | |
317 // functions which don't currently have a dynamic alloca. This simply | |
318 // disables inlining altogether in the presence of a dynamic alloca. | |
319 HasDynamicAlloca = true; | |
320 return false; | |
321 } | |
322 | |
323 bool CallAnalyzer::visitPHI(PHINode &I) { | |
324 // FIXME: We should potentially be tracking values through phi nodes, | |
325 // especially when they collapse to a single value due to deleted CFG edges | |
326 // during inlining. | |
327 | |
328 // FIXME: We need to propagate SROA *disabling* through phi nodes, even | |
329 // though we don't want to propagate it's bonuses. The idea is to disable | |
330 // SROA if it *might* be used in an inappropriate manner. | |
331 | |
332 // Phi nodes are always zero-cost. | |
333 return true; | |
334 } | |
335 | |
336 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { | |
337 Value *SROAArg; | |
338 DenseMap<Value *, int>::iterator CostIt; | |
339 bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), | |
340 SROAArg, CostIt); | |
341 | |
342 // Try to fold GEPs of constant-offset call site argument pointers. This | |
343 // requires target data and inbounds GEPs. | |
344 if (I.isInBounds()) { | |
345 // Check if we have a base + offset for the pointer. | |
346 Value *Ptr = I.getPointerOperand(); | |
347 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); | |
348 if (BaseAndOffset.first) { | |
349 // Check if the offset of this GEP is constant, and if so accumulate it | |
350 // into Offset. | |
351 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { | |
352 // Non-constant GEPs aren't folded, and disable SROA. | |
353 if (SROACandidate) | |
354 disableSROA(CostIt); | |
355 return false; | |
356 } | |
357 | |
358 // Add the result as a new mapping to Base + Offset. | |
359 ConstantOffsetPtrs[&I] = BaseAndOffset; | |
360 | |
361 // Also handle SROA candidates here, we already know that the GEP is | |
362 // all-constant indexed. | |
363 if (SROACandidate) | |
364 SROAArgValues[&I] = SROAArg; | |
365 | |
366 return true; | |
367 } | |
368 } | |
369 | |
370 if (isGEPOffsetConstant(I)) { | |
371 if (SROACandidate) | |
372 SROAArgValues[&I] = SROAArg; | |
373 | |
374 // Constant GEPs are modeled as free. | |
375 return true; | |
376 } | |
377 | |
378 // Variable GEPs will require math and will disable SROA. | |
379 if (SROACandidate) | |
380 disableSROA(CostIt); | |
381 return false; | |
382 } | |
383 | |
384 bool CallAnalyzer::visitBitCast(BitCastInst &I) { | |
385 // Propagate constants through bitcasts. | |
386 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | |
387 if (!COp) | |
388 COp = SimplifiedValues.lookup(I.getOperand(0)); | |
389 if (COp) | |
390 if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { | |
391 SimplifiedValues[&I] = C; | |
392 return true; | |
393 } | |
394 | |
395 // Track base/offsets through casts | |
396 std::pair<Value *, APInt> BaseAndOffset | |
397 = ConstantOffsetPtrs.lookup(I.getOperand(0)); | |
398 // Casts don't change the offset, just wrap it up. | |
399 if (BaseAndOffset.first) | |
400 ConstantOffsetPtrs[&I] = BaseAndOffset; | |
401 | |
402 // Also look for SROA candidates here. | |
403 Value *SROAArg; | |
404 DenseMap<Value *, int>::iterator CostIt; | |
405 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | |
406 SROAArgValues[&I] = SROAArg; | |
407 | |
408 // Bitcasts are always zero cost. | |
409 return true; | |
410 } | |
411 | |
412 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { | |
413 // Propagate constants through ptrtoint. | |
414 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | |
415 if (!COp) | |
416 COp = SimplifiedValues.lookup(I.getOperand(0)); | |
417 if (COp) | |
418 if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { | |
419 SimplifiedValues[&I] = C; | |
420 return true; | |
421 } | |
422 | |
423 // Track base/offset pairs when converted to a plain integer provided the | |
424 // integer is large enough to represent the pointer. | |
425 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); | |
426 const DataLayout &DL = F.getParent()->getDataLayout(); | |
427 if (IntegerSize >= DL.getPointerSizeInBits()) { | |
428 std::pair<Value *, APInt> BaseAndOffset | |
429 = ConstantOffsetPtrs.lookup(I.getOperand(0)); | |
430 if (BaseAndOffset.first) | |
431 ConstantOffsetPtrs[&I] = BaseAndOffset; | |
432 } | |
433 | |
434 // This is really weird. Technically, ptrtoint will disable SROA. However, | |
435 // unless that ptrtoint is *used* somewhere in the live basic blocks after | |
436 // inlining, it will be nuked, and SROA should proceed. All of the uses which | |
437 // would block SROA would also block SROA if applied directly to a pointer, | |
438 // and so we can just add the integer in here. The only places where SROA is | |
439 // preserved either cannot fire on an integer, or won't in-and-of themselves | |
440 // disable SROA (ext) w/o some later use that we would see and disable. | |
441 Value *SROAArg; | |
442 DenseMap<Value *, int>::iterator CostIt; | |
443 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | |
444 SROAArgValues[&I] = SROAArg; | |
445 | |
446 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | |
447 } | |
448 | |
449 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { | |
450 // Propagate constants through ptrtoint. | |
451 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | |
452 if (!COp) | |
453 COp = SimplifiedValues.lookup(I.getOperand(0)); | |
454 if (COp) | |
455 if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { | |
456 SimplifiedValues[&I] = C; | |
457 return true; | |
458 } | |
459 | |
460 // Track base/offset pairs when round-tripped through a pointer without | |
461 // modifications provided the integer is not too large. | |
462 Value *Op = I.getOperand(0); | |
463 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); | |
464 const DataLayout &DL = F.getParent()->getDataLayout(); | |
465 if (IntegerSize <= DL.getPointerSizeInBits()) { | |
466 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); | |
467 if (BaseAndOffset.first) | |
468 ConstantOffsetPtrs[&I] = BaseAndOffset; | |
469 } | |
470 | |
471 // "Propagate" SROA here in the same manner as we do for ptrtoint above. | |
472 Value *SROAArg; | |
473 DenseMap<Value *, int>::iterator CostIt; | |
474 if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) | |
475 SROAArgValues[&I] = SROAArg; | |
476 | |
477 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | |
478 } | |
479 | |
480 bool CallAnalyzer::visitCastInst(CastInst &I) { | |
481 // Propagate constants through ptrtoint. | |
482 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | |
483 if (!COp) | |
484 COp = SimplifiedValues.lookup(I.getOperand(0)); | |
485 if (COp) | |
486 if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { | |
487 SimplifiedValues[&I] = C; | |
488 return true; | |
489 } | |
490 | |
491 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. | |
492 disableSROA(I.getOperand(0)); | |
493 | |
494 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | |
495 } | |
496 | |
497 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { | |
498 Value *Operand = I.getOperand(0); | |
499 Constant *COp = dyn_cast<Constant>(Operand); | |
500 if (!COp) | |
501 COp = SimplifiedValues.lookup(Operand); | |
502 if (COp) { | |
503 const DataLayout &DL = F.getParent()->getDataLayout(); | |
504 if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), | |
505 COp, DL)) { | |
506 SimplifiedValues[&I] = C; | |
507 return true; | |
508 } | |
509 } | |
510 | |
511 // Disable any SROA on the argument to arbitrary unary operators. | |
512 disableSROA(Operand); | |
513 | |
514 return false; | |
515 } | |
516 | |
517 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { | |
518 unsigned ArgNo = A->getArgNo(); | |
519 return CandidateCS.paramHasAttr(ArgNo+1, Attr); | |
520 } | |
521 | |
522 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { | |
523 // Does the *call site* have the NonNull attribute set on an argument? We | |
524 // use the attribute on the call site to memoize any analysis done in the | |
525 // caller. This will also trip if the callee function has a non-null | |
526 // parameter attribute, but that's a less interesting case because hopefully | |
527 // the callee would already have been simplified based on that. | |
528 if (Argument *A = dyn_cast<Argument>(V)) | |
529 if (paramHasAttr(A, Attribute::NonNull)) | |
530 return true; | |
531 | |
532 // Is this an alloca in the caller? This is distinct from the attribute case | |
533 // above because attributes aren't updated within the inliner itself and we | |
534 // always want to catch the alloca derived case. | |
535 if (isAllocaDerivedArg(V)) | |
536 // We can actually predict the result of comparisons between an | |
537 // alloca-derived value and null. Note that this fires regardless of | |
538 // SROA firing. | |
539 return true; | |
540 | |
541 return false; | |
542 } | |
543 | |
544 bool CallAnalyzer::visitCmpInst(CmpInst &I) { | |
545 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | |
546 // First try to handle simplified comparisons. | |
547 if (!isa<Constant>(LHS)) | |
548 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | |
549 LHS = SimpleLHS; | |
550 if (!isa<Constant>(RHS)) | |
551 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | |
552 RHS = SimpleRHS; | |
553 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | |
554 if (Constant *CRHS = dyn_cast<Constant>(RHS)) | |
555 if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { | |
556 SimplifiedValues[&I] = C; | |
557 return true; | |
558 } | |
559 } | |
560 | |
561 if (I.getOpcode() == Instruction::FCmp) | |
562 return false; | |
563 | |
564 // Otherwise look for a comparison between constant offset pointers with | |
565 // a common base. | |
566 Value *LHSBase, *RHSBase; | |
567 APInt LHSOffset, RHSOffset; | |
568 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | |
569 if (LHSBase) { | |
570 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | |
571 if (RHSBase && LHSBase == RHSBase) { | |
572 // We have common bases, fold the icmp to a constant based on the | |
573 // offsets. | |
574 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | |
575 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | |
576 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { | |
577 SimplifiedValues[&I] = C; | |
578 ++NumConstantPtrCmps; | |
579 return true; | |
580 } | |
581 } | |
582 } | |
583 | |
584 // If the comparison is an equality comparison with null, we can simplify it | |
585 // if we know the value (argument) can't be null | |
586 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && | |
587 isKnownNonNullInCallee(I.getOperand(0))) { | |
588 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; | |
589 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) | |
590 : ConstantInt::getFalse(I.getType()); | |
591 return true; | |
592 } | |
593 // Finally check for SROA candidates in comparisons. | |
594 Value *SROAArg; | |
595 DenseMap<Value *, int>::iterator CostIt; | |
596 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | |
597 if (isa<ConstantPointerNull>(I.getOperand(1))) { | |
598 accumulateSROACost(CostIt, InlineConstants::InstrCost); | |
599 return true; | |
600 } | |
601 | |
602 disableSROA(CostIt); | |
603 } | |
604 | |
605 return false; | |
606 } | |
607 | |
608 bool CallAnalyzer::visitSub(BinaryOperator &I) { | |
609 // Try to handle a special case: we can fold computing the difference of two | |
610 // constant-related pointers. | |
611 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | |
612 Value *LHSBase, *RHSBase; | |
613 APInt LHSOffset, RHSOffset; | |
614 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | |
615 if (LHSBase) { | |
616 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | |
617 if (RHSBase && LHSBase == RHSBase) { | |
618 // We have common bases, fold the subtract to a constant based on the | |
619 // offsets. | |
620 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | |
621 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | |
622 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { | |
623 SimplifiedValues[&I] = C; | |
624 ++NumConstantPtrDiffs; | |
625 return true; | |
626 } | |
627 } | |
628 } | |
629 | |
630 // Otherwise, fall back to the generic logic for simplifying and handling | |
631 // instructions. | |
632 return Base::visitSub(I); | |
633 } | |
634 | |
635 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { | |
636 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | |
637 const DataLayout &DL = F.getParent()->getDataLayout(); | |
638 if (!isa<Constant>(LHS)) | |
639 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | |
640 LHS = SimpleLHS; | |
641 if (!isa<Constant>(RHS)) | |
642 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | |
643 RHS = SimpleRHS; | |
644 Value *SimpleV = nullptr; | |
645 if (auto FI = dyn_cast<FPMathOperator>(&I)) | |
646 SimpleV = | |
647 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); | |
648 else | |
649 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); | |
650 | |
651 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { | |
652 SimplifiedValues[&I] = C; | |
653 return true; | |
654 } | |
655 | |
656 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. | |
657 disableSROA(LHS); | |
658 disableSROA(RHS); | |
659 | |
660 return false; | |
661 } | |
662 | |
663 bool CallAnalyzer::visitLoad(LoadInst &I) { | |
664 Value *SROAArg; | |
665 DenseMap<Value *, int>::iterator CostIt; | |
666 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | |
667 if (I.isSimple()) { | |
668 accumulateSROACost(CostIt, InlineConstants::InstrCost); | |
669 return true; | |
670 } | |
671 | |
672 disableSROA(CostIt); | |
673 } | |
674 | |
675 return false; | |
676 } | |
677 | |
678 bool CallAnalyzer::visitStore(StoreInst &I) { | |
679 Value *SROAArg; | |
680 DenseMap<Value *, int>::iterator CostIt; | |
681 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | |
682 if (I.isSimple()) { | |
683 accumulateSROACost(CostIt, InlineConstants::InstrCost); | |
684 return true; | |
685 } | |
686 | |
687 disableSROA(CostIt); | |
688 } | |
689 | |
690 return false; | |
691 } | |
692 | |
693 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { | |
694 // Constant folding for extract value is trivial. | |
695 Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); | |
696 if (!C) | |
697 C = SimplifiedValues.lookup(I.getAggregateOperand()); | |
698 if (C) { | |
699 SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); | |
700 return true; | |
701 } | |
702 | |
703 // SROA can look through these but give them a cost. | |
704 return false; | |
705 } | |
706 | |
707 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { | |
708 // Constant folding for insert value is trivial. | |
709 Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); | |
710 if (!AggC) | |
711 AggC = SimplifiedValues.lookup(I.getAggregateOperand()); | |
712 Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); | |
713 if (!InsertedC) | |
714 InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); | |
715 if (AggC && InsertedC) { | |
716 SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, | |
717 I.getIndices()); | |
718 return true; | |
719 } | |
720 | |
721 // SROA can look through these but give them a cost. | |
722 return false; | |
723 } | |
724 | |
725 /// \brief Try to simplify a call site. | |
726 /// | |
727 /// Takes a concrete function and callsite and tries to actually simplify it by | |
728 /// analyzing the arguments and call itself with instsimplify. Returns true if | |
729 /// it has simplified the callsite to some other entity (a constant), making it | |
730 /// free. | |
731 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { | |
732 // FIXME: Using the instsimplify logic directly for this is inefficient | |
733 // because we have to continually rebuild the argument list even when no | |
734 // simplifications can be performed. Until that is fixed with remapping | |
735 // inside of instsimplify, directly constant fold calls here. | |
736 if (!canConstantFoldCallTo(F)) | |
737 return false; | |
738 | |
739 // Try to re-map the arguments to constants. | |
740 SmallVector<Constant *, 4> ConstantArgs; | |
741 ConstantArgs.reserve(CS.arg_size()); | |
742 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | |
743 I != E; ++I) { | |
744 Constant *C = dyn_cast<Constant>(*I); | |
745 if (!C) | |
746 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); | |
747 if (!C) | |
748 return false; // This argument doesn't map to a constant. | |
749 | |
750 ConstantArgs.push_back(C); | |
751 } | |
752 if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { | |
753 SimplifiedValues[CS.getInstruction()] = C; | |
754 return true; | |
755 } | |
756 | |
757 return false; | |
758 } | |
759 | |
760 bool CallAnalyzer::visitCallSite(CallSite CS) { | |
761 if (CS.hasFnAttr(Attribute::ReturnsTwice) && | |
762 !F.hasFnAttribute(Attribute::ReturnsTwice)) { | |
763 // This aborts the entire analysis. | |
764 ExposesReturnsTwice = true; | |
765 return false; | |
766 } | |
767 if (CS.isCall() && | |
768 cast<CallInst>(CS.getInstruction())->cannotDuplicate()) | |
769 ContainsNoDuplicateCall = true; | |
770 | |
771 if (Function *F = CS.getCalledFunction()) { | |
772 // When we have a concrete function, first try to simplify it directly. | |
773 if (simplifyCallSite(F, CS)) | |
774 return true; | |
775 | |
776 // Next check if it is an intrinsic we know about. | |
777 // FIXME: Lift this into part of the InstVisitor. | |
778 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { | |
779 switch (II->getIntrinsicID()) { | |
780 default: | |
781 return Base::visitCallSite(CS); | |
782 | |
783 case Intrinsic::memset: | |
784 case Intrinsic::memcpy: | |
785 case Intrinsic::memmove: | |
786 // SROA can usually chew through these intrinsics, but they aren't free. | |
787 return false; | |
788 case Intrinsic::localescape: | |
789 HasFrameEscape = true; | |
790 return false; | |
791 } | |
792 } | |
793 | |
794 if (F == CS.getInstruction()->getParent()->getParent()) { | |
795 // This flag will fully abort the analysis, so don't bother with anything | |
796 // else. | |
797 IsRecursiveCall = true; | |
798 return false; | |
799 } | |
800 | |
801 if (TTI.isLoweredToCall(F)) { | |
802 // We account for the average 1 instruction per call argument setup | |
803 // here. | |
804 Cost += CS.arg_size() * InlineConstants::InstrCost; | |
805 | |
806 // Everything other than inline ASM will also have a significant cost | |
807 // merely from making the call. | |
808 if (!isa<InlineAsm>(CS.getCalledValue())) | |
809 Cost += InlineConstants::CallPenalty; | |
810 } | |
811 | |
812 return Base::visitCallSite(CS); | |
813 } | |
814 | |
815 // Otherwise we're in a very special case -- an indirect function call. See | |
816 // if we can be particularly clever about this. | |
817 Value *Callee = CS.getCalledValue(); | |
818 | |
819 // First, pay the price of the argument setup. We account for the average | |
820 // 1 instruction per call argument setup here. | |
821 Cost += CS.arg_size() * InlineConstants::InstrCost; | |
822 | |
823 // Next, check if this happens to be an indirect function call to a known | |
824 // function in this inline context. If not, we've done all we can. | |
825 Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); | |
826 if (!F) | |
827 return Base::visitCallSite(CS); | |
828 | |
829 // If we have a constant that we are calling as a function, we can peer | |
830 // through it and see the function target. This happens not infrequently | |
831 // during devirtualization and so we want to give it a hefty bonus for | |
832 // inlining, but cap that bonus in the event that inlining wouldn't pan | |
833 // out. Pretend to inline the function, with a custom threshold. | |
834 CallAnalyzer CA(TTI, ACT, *F, InlineConstants::IndirectCallThreshold, CS); | |
835 if (CA.analyzeCall(CS)) { | |
836 // We were able to inline the indirect call! Subtract the cost from the | |
837 // bonus we want to apply, but don't go below zero. | |
838 Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); | |
839 } | |
840 | |
841 return Base::visitCallSite(CS); | |
842 } | |
843 | |
844 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { | |
845 // At least one return instruction will be free after inlining. | |
846 bool Free = !HasReturn; | |
847 HasReturn = true; | |
848 return Free; | |
849 } | |
850 | |
851 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { | |
852 // We model unconditional branches as essentially free -- they really | |
853 // shouldn't exist at all, but handling them makes the behavior of the | |
854 // inliner more regular and predictable. Interestingly, conditional branches | |
855 // which will fold away are also free. | |
856 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || | |
857 dyn_cast_or_null<ConstantInt>( | |
858 SimplifiedValues.lookup(BI.getCondition())); | |
859 } | |
860 | |
861 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { | |
862 // We model unconditional switches as free, see the comments on handling | |
863 // branches. | |
864 if (isa<ConstantInt>(SI.getCondition())) | |
865 return true; | |
866 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) | |
867 if (isa<ConstantInt>(V)) | |
868 return true; | |
869 | |
870 // Otherwise, we need to accumulate a cost proportional to the number of | |
871 // distinct successor blocks. This fan-out in the CFG cannot be represented | |
872 // for free even if we can represent the core switch as a jumptable that | |
873 // takes a single instruction. | |
874 // | |
875 // NB: We convert large switches which are just used to initialize large phi | |
876 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent | |
877 // inlining those. It will prevent inlining in cases where the optimization | |
878 // does not (yet) fire. | |
879 SmallPtrSet<BasicBlock *, 8> SuccessorBlocks; | |
880 SuccessorBlocks.insert(SI.getDefaultDest()); | |
881 for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I) | |
882 SuccessorBlocks.insert(I.getCaseSuccessor()); | |
883 // Add cost corresponding to the number of distinct destinations. The first | |
884 // we model as free because of fallthrough. | |
885 Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost; | |
886 return false; | |
887 } | |
888 | |
889 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { | |
890 // We never want to inline functions that contain an indirectbr. This is | |
891 // incorrect because all the blockaddress's (in static global initializers | |
892 // for example) would be referring to the original function, and this | |
893 // indirect jump would jump from the inlined copy of the function into the | |
894 // original function which is extremely undefined behavior. | |
895 // FIXME: This logic isn't really right; we can safely inline functions with | |
896 // indirectbr's as long as no other function or global references the | |
897 // blockaddress of a block within the current function. | |
898 HasIndirectBr = true; | |
899 return false; | |
900 } | |
901 | |
902 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { | |
903 // FIXME: It's not clear that a single instruction is an accurate model for | |
904 // the inline cost of a resume instruction. | |
905 return false; | |
906 } | |
907 | |
908 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { | |
909 // FIXME: It's not clear that a single instruction is an accurate model for | |
910 // the inline cost of a cleanupret instruction. | |
911 return false; | |
912 } | |
913 | |
914 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { | |
915 // FIXME: It's not clear that a single instruction is an accurate model for | |
916 // the inline cost of a catchret instruction. | |
917 return false; | |
918 } | |
919 | |
920 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { | |
921 // FIXME: It might be reasonably to discount the cost of instructions leading | |
922 // to unreachable as they have the lowest possible impact on both runtime and | |
923 // code size. | |
924 return true; // No actual code is needed for unreachable. | |
925 } | |
926 | |
927 bool CallAnalyzer::visitInstruction(Instruction &I) { | |
928 // Some instructions are free. All of the free intrinsics can also be | |
929 // handled by SROA, etc. | |
930 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) | |
931 return true; | |
932 | |
933 // We found something we don't understand or can't handle. Mark any SROA-able | |
934 // values in the operand list as no longer viable. | |
935 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) | |
936 disableSROA(*OI); | |
937 | |
938 return false; | |
939 } | |
940 | |
941 | |
942 /// \brief Analyze a basic block for its contribution to the inline cost. | |
943 /// | |
944 /// This method walks the analyzer over every instruction in the given basic | |
945 /// block and accounts for their cost during inlining at this callsite. It | |
946 /// aborts early if the threshold has been exceeded or an impossible to inline | |
947 /// construct has been detected. It returns false if inlining is no longer | |
948 /// viable, and true if inlining remains viable. | |
949 bool CallAnalyzer::analyzeBlock(BasicBlock *BB, | |
950 SmallPtrSetImpl<const Value *> &EphValues) { | |
951 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | |
952 // FIXME: Currently, the number of instructions in a function regardless of | |
953 // our ability to simplify them during inline to constants or dead code, | |
954 // are actually used by the vector bonus heuristic. As long as that's true, | |
955 // we have to special case debug intrinsics here to prevent differences in | |
956 // inlining due to debug symbols. Eventually, the number of unsimplified | |
957 // instructions shouldn't factor into the cost computation, but until then, | |
958 // hack around it here. | |
959 if (isa<DbgInfoIntrinsic>(I)) | |
960 continue; | |
961 | |
962 // Skip ephemeral values. | |
963 if (EphValues.count(&*I)) | |
964 continue; | |
965 | |
966 ++NumInstructions; | |
967 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) | |
968 ++NumVectorInstructions; | |
969 | |
970 // If the instruction is floating point, and the target says this operation | |
971 // is expensive or the function has the "use-soft-float" attribute, this may | |
972 // eventually become a library call. Treat the cost as such. | |
973 if (I->getType()->isFloatingPointTy()) { | |
974 bool hasSoftFloatAttr = false; | |
975 | |
976 // If the function has the "use-soft-float" attribute, mark it as | |
977 // expensive. | |
978 if (F.hasFnAttribute("use-soft-float")) { | |
979 Attribute Attr = F.getFnAttribute("use-soft-float"); | |
980 StringRef Val = Attr.getValueAsString(); | |
981 if (Val == "true") | |
982 hasSoftFloatAttr = true; | |
983 } | |
984 | |
985 if (TTI.getFPOpCost(I->getType()) == TargetTransformInfo::TCC_Expensive || | |
986 hasSoftFloatAttr) | |
987 Cost += InlineConstants::CallPenalty; | |
988 } | |
989 | |
990 // If the instruction simplified to a constant, there is no cost to this | |
991 // instruction. Visit the instructions using our InstVisitor to account for | |
992 // all of the per-instruction logic. The visit tree returns true if we | |
993 // consumed the instruction in any way, and false if the instruction's base | |
994 // cost should count against inlining. | |
995 if (Base::visit(&*I)) | |
996 ++NumInstructionsSimplified; | |
997 else | |
998 Cost += InlineConstants::InstrCost; | |
999 | |
1000 // If the visit this instruction detected an uninlinable pattern, abort. | |
1001 if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | |
1002 HasIndirectBr || HasFrameEscape) | |
1003 return false; | |
1004 | |
1005 // If the caller is a recursive function then we don't want to inline | |
1006 // functions which allocate a lot of stack space because it would increase | |
1007 // the caller stack usage dramatically. | |
1008 if (IsCallerRecursive && | |
1009 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | |
1010 return false; | |
1011 | |
1012 // Check if we've past the maximum possible threshold so we don't spin in | |
1013 // huge basic blocks that will never inline. | |
1014 if (Cost > Threshold) | |
1015 return false; | |
1016 } | |
1017 | |
1018 return true; | |
1019 } | |
1020 | |
1021 /// \brief Compute the base pointer and cumulative constant offsets for V. | |
1022 /// | |
1023 /// This strips all constant offsets off of V, leaving it the base pointer, and | |
1024 /// accumulates the total constant offset applied in the returned constant. It | |
1025 /// returns 0 if V is not a pointer, and returns the constant '0' if there are | |
1026 /// no constant offsets applied. | |
1027 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { | |
1028 if (!V->getType()->isPointerTy()) | |
1029 return nullptr; | |
1030 | |
1031 const DataLayout &DL = F.getParent()->getDataLayout(); | |
1032 unsigned IntPtrWidth = DL.getPointerSizeInBits(); | |
1033 APInt Offset = APInt::getNullValue(IntPtrWidth); | |
1034 | |
1035 // Even though we don't look through PHI nodes, we could be called on an | |
1036 // instruction in an unreachable block, which may be on a cycle. | |
1037 SmallPtrSet<Value *, 4> Visited; | |
1038 Visited.insert(V); | |
1039 do { | |
1040 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | |
1041 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) | |
1042 return nullptr; | |
1043 V = GEP->getPointerOperand(); | |
1044 } else if (Operator::getOpcode(V) == Instruction::BitCast) { | |
1045 V = cast<Operator>(V)->getOperand(0); | |
1046 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | |
1047 if (GA->mayBeOverridden()) | |
1048 break; | |
1049 V = GA->getAliasee(); | |
1050 } else { | |
1051 break; | |
1052 } | |
1053 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | |
1054 } while (Visited.insert(V).second); | |
1055 | |
1056 Type *IntPtrTy = DL.getIntPtrType(V->getContext()); | |
1057 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); | |
1058 } | |
1059 | |
1060 /// \brief Analyze a call site for potential inlining. | |
1061 /// | |
1062 /// Returns true if inlining this call is viable, and false if it is not | |
1063 /// viable. It computes the cost and adjusts the threshold based on numerous | |
1064 /// factors and heuristics. If this method returns false but the computed cost | |
1065 /// is below the computed threshold, then inlining was forcibly disabled by | |
1066 /// some artifact of the routine. | |
1067 bool CallAnalyzer::analyzeCall(CallSite CS) { | |
1068 ++NumCallsAnalyzed; | |
1069 | |
1070 // Perform some tweaks to the cost and threshold based on the direct | |
1071 // callsite information. | |
1072 | |
1073 // We want to more aggressively inline vector-dense kernels, so up the | |
1074 // threshold, and we'll lower it if the % of vector instructions gets too | |
1075 // low. Note that these bonuses are some what arbitrary and evolved over time | |
1076 // by accident as much as because they are principled bonuses. | |
1077 // | |
1078 // FIXME: It would be nice to remove all such bonuses. At least it would be | |
1079 // nice to base the bonus values on something more scientific. | |
1080 assert(NumInstructions == 0); | |
1081 assert(NumVectorInstructions == 0); | |
1082 FiftyPercentVectorBonus = 3 * Threshold / 2; | |
1083 TenPercentVectorBonus = 3 * Threshold / 4; | |
1084 const DataLayout &DL = F.getParent()->getDataLayout(); | |
1085 | |
1086 // Track whether the post-inlining function would have more than one basic | |
1087 // block. A single basic block is often intended for inlining. Balloon the | |
1088 // threshold by 50% until we pass the single-BB phase. | |
1089 bool SingleBB = true; | |
1090 int SingleBBBonus = Threshold / 2; | |
1091 | |
1092 // Speculatively apply all possible bonuses to Threshold. If cost exceeds | |
1093 // this Threshold any time, and cost cannot decrease, we can stop processing | |
1094 // the rest of the function body. | |
1095 Threshold += (SingleBBBonus + FiftyPercentVectorBonus); | |
1096 | |
1097 // Give out bonuses per argument, as the instructions setting them up will | |
1098 // be gone after inlining. | |
1099 for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { | |
1100 if (CS.isByValArgument(I)) { | |
1101 // We approximate the number of loads and stores needed by dividing the | |
1102 // size of the byval type by the target's pointer size. | |
1103 PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); | |
1104 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); | |
1105 unsigned PointerSize = DL.getPointerSizeInBits(); | |
1106 // Ceiling division. | |
1107 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; | |
1108 | |
1109 // If it generates more than 8 stores it is likely to be expanded as an | |
1110 // inline memcpy so we take that as an upper bound. Otherwise we assume | |
1111 // one load and one store per word copied. | |
1112 // FIXME: The maxStoresPerMemcpy setting from the target should be used | |
1113 // here instead of a magic number of 8, but it's not available via | |
1114 // DataLayout. | |
1115 NumStores = std::min(NumStores, 8U); | |
1116 | |
1117 Cost -= 2 * NumStores * InlineConstants::InstrCost; | |
1118 } else { | |
1119 // For non-byval arguments subtract off one instruction per call | |
1120 // argument. | |
1121 Cost -= InlineConstants::InstrCost; | |
1122 } | |
1123 } | |
1124 | |
1125 // If there is only one call of the function, and it has internal linkage, | |
1126 // the cost of inlining it drops dramatically. | |
1127 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && | |
1128 &F == CS.getCalledFunction(); | |
1129 if (OnlyOneCallAndLocalLinkage) | |
1130 Cost += InlineConstants::LastCallToStaticBonus; | |
1131 | |
1132 // If the instruction after the call, or if the normal destination of the | |
1133 // invoke is an unreachable instruction, the function is noreturn. As such, | |
1134 // there is little point in inlining this unless there is literally zero | |
1135 // cost. | |
1136 Instruction *Instr = CS.getInstruction(); | |
1137 if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { | |
1138 if (isa<UnreachableInst>(II->getNormalDest()->begin())) | |
1139 Threshold = 0; | |
1140 } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) | |
1141 Threshold = 0; | |
1142 | |
1143 // If this function uses the coldcc calling convention, prefer not to inline | |
1144 // it. | |
1145 if (F.getCallingConv() == CallingConv::Cold) | |
1146 Cost += InlineConstants::ColdccPenalty; | |
1147 | |
1148 // Check if we're done. This can happen due to bonuses and penalties. | |
1149 if (Cost > Threshold) | |
1150 return false; | |
1151 | |
1152 if (F.empty()) | |
1153 return true; | |
1154 | |
1155 Function *Caller = CS.getInstruction()->getParent()->getParent(); | |
1156 // Check if the caller function is recursive itself. | |
1157 for (User *U : Caller->users()) { | |
1158 CallSite Site(U); | |
1159 if (!Site) | |
1160 continue; | |
1161 Instruction *I = Site.getInstruction(); | |
1162 if (I->getParent()->getParent() == Caller) { | |
1163 IsCallerRecursive = true; | |
1164 break; | |
1165 } | |
1166 } | |
1167 | |
1168 // Populate our simplified values by mapping from function arguments to call | |
1169 // arguments with known important simplifications. | |
1170 CallSite::arg_iterator CAI = CS.arg_begin(); | |
1171 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); | |
1172 FAI != FAE; ++FAI, ++CAI) { | |
1173 assert(CAI != CS.arg_end()); | |
1174 if (Constant *C = dyn_cast<Constant>(CAI)) | |
1175 SimplifiedValues[&*FAI] = C; | |
1176 | |
1177 Value *PtrArg = *CAI; | |
1178 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { | |
1179 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); | |
1180 | |
1181 // We can SROA any pointer arguments derived from alloca instructions. | |
1182 if (isa<AllocaInst>(PtrArg)) { | |
1183 SROAArgValues[&*FAI] = PtrArg; | |
1184 SROAArgCosts[PtrArg] = 0; | |
1185 } | |
1186 } | |
1187 } | |
1188 NumConstantArgs = SimplifiedValues.size(); | |
1189 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); | |
1190 NumAllocaArgs = SROAArgValues.size(); | |
1191 | |
1192 // FIXME: If a caller has multiple calls to a callee, we end up recomputing | |
1193 // the ephemeral values multiple times (and they're completely determined by | |
1194 // the callee, so this is purely duplicate work). | |
1195 SmallPtrSet<const Value *, 32> EphValues; | |
1196 CodeMetrics::collectEphemeralValues(&F, &ACT->getAssumptionCache(F), EphValues); | |
1197 | |
1198 // The worklist of live basic blocks in the callee *after* inlining. We avoid | |
1199 // adding basic blocks of the callee which can be proven to be dead for this | |
1200 // particular call site in order to get more accurate cost estimates. This | |
1201 // requires a somewhat heavyweight iteration pattern: we need to walk the | |
1202 // basic blocks in a breadth-first order as we insert live successors. To | |
1203 // accomplish this, prioritizing for small iterations because we exit after | |
1204 // crossing our threshold, we use a small-size optimized SetVector. | |
1205 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, | |
1206 SmallPtrSet<BasicBlock *, 16> > BBSetVector; | |
1207 BBSetVector BBWorklist; | |
1208 BBWorklist.insert(&F.getEntryBlock()); | |
1209 // Note that we *must not* cache the size, this loop grows the worklist. | |
1210 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { | |
1211 // Bail out the moment we cross the threshold. This means we'll under-count | |
1212 // the cost, but only when undercounting doesn't matter. | |
1213 if (Cost > Threshold) | |
1214 break; | |
1215 | |
1216 BasicBlock *BB = BBWorklist[Idx]; | |
1217 if (BB->empty()) | |
1218 continue; | |
1219 | |
1220 // Disallow inlining a blockaddress. A blockaddress only has defined | |
1221 // behavior for an indirect branch in the same function, and we do not | |
1222 // currently support inlining indirect branches. But, the inliner may not | |
1223 // see an indirect branch that ends up being dead code at a particular call | |
1224 // site. If the blockaddress escapes the function, e.g., via a global | |
1225 // variable, inlining may lead to an invalid cross-function reference. | |
1226 if (BB->hasAddressTaken()) | |
1227 return false; | |
1228 | |
1229 // Analyze the cost of this block. If we blow through the threshold, this | |
1230 // returns false, and we can bail on out. | |
1231 if (!analyzeBlock(BB, EphValues)) { | |
1232 if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | |
1233 HasIndirectBr || HasFrameEscape) | |
1234 return false; | |
1235 | |
1236 // If the caller is a recursive function then we don't want to inline | |
1237 // functions which allocate a lot of stack space because it would increase | |
1238 // the caller stack usage dramatically. | |
1239 if (IsCallerRecursive && | |
1240 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | |
1241 return false; | |
1242 | |
1243 break; | |
1244 } | |
1245 | |
1246 TerminatorInst *TI = BB->getTerminator(); | |
1247 | |
1248 // Add in the live successors by first checking whether we have terminator | |
1249 // that may be simplified based on the values simplified by this call. | |
1250 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | |
1251 if (BI->isConditional()) { | |
1252 Value *Cond = BI->getCondition(); | |
1253 if (ConstantInt *SimpleCond | |
1254 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | |
1255 BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); | |
1256 continue; | |
1257 } | |
1258 } | |
1259 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | |
1260 Value *Cond = SI->getCondition(); | |
1261 if (ConstantInt *SimpleCond | |
1262 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | |
1263 BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); | |
1264 continue; | |
1265 } | |
1266 } | |
1267 | |
1268 // If we're unable to select a particular successor, just count all of | |
1269 // them. | |
1270 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; | |
1271 ++TIdx) | |
1272 BBWorklist.insert(TI->getSuccessor(TIdx)); | |
1273 | |
1274 // If we had any successors at this point, than post-inlining is likely to | |
1275 // have them as well. Note that we assume any basic blocks which existed | |
1276 // due to branches or switches which folded above will also fold after | |
1277 // inlining. | |
1278 if (SingleBB && TI->getNumSuccessors() > 1) { | |
1279 // Take off the bonus we applied to the threshold. | |
1280 Threshold -= SingleBBBonus; | |
1281 SingleBB = false; | |
1282 } | |
1283 } | |
1284 | |
1285 // If this is a noduplicate call, we can still inline as long as | |
1286 // inlining this would cause the removal of the caller (so the instruction | |
1287 // is not actually duplicated, just moved). | |
1288 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) | |
1289 return false; | |
1290 | |
1291 // We applied the maximum possible vector bonus at the beginning. Now, | |
1292 // subtract the excess bonus, if any, from the Threshold before | |
1293 // comparing against Cost. | |
1294 if (NumVectorInstructions <= NumInstructions / 10) | |
1295 Threshold -= FiftyPercentVectorBonus; | |
1296 else if (NumVectorInstructions <= NumInstructions / 2) | |
1297 Threshold -= (FiftyPercentVectorBonus - TenPercentVectorBonus); | |
1298 | |
1299 return Cost < Threshold; | |
1300 } | |
1301 | |
1302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |
1303 /// \brief Dump stats about this call's analysis. | |
1304 void CallAnalyzer::dump() { | |
1305 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" | |
1306 DEBUG_PRINT_STAT(NumConstantArgs); | |
1307 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); | |
1308 DEBUG_PRINT_STAT(NumAllocaArgs); | |
1309 DEBUG_PRINT_STAT(NumConstantPtrCmps); | |
1310 DEBUG_PRINT_STAT(NumConstantPtrDiffs); | |
1311 DEBUG_PRINT_STAT(NumInstructionsSimplified); | |
1312 DEBUG_PRINT_STAT(NumInstructions); | |
1313 DEBUG_PRINT_STAT(SROACostSavings); | |
1314 DEBUG_PRINT_STAT(SROACostSavingsLost); | |
1315 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); | |
1316 DEBUG_PRINT_STAT(Cost); | |
1317 DEBUG_PRINT_STAT(Threshold); | |
1318 #undef DEBUG_PRINT_STAT | |
1319 } | |
1320 #endif | |
1321 | |
1322 INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | |
1323 true, true) | |
1324 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | |
1325 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | |
1326 INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | |
1327 true, true) | |
1328 | |
1329 char InlineCostAnalysis::ID = 0; | |
1330 | |
1331 InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {} | |
1332 | |
1333 InlineCostAnalysis::~InlineCostAnalysis() {} | |
1334 | |
1335 void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | |
1336 AU.setPreservesAll(); | |
1337 AU.addRequired<AssumptionCacheTracker>(); | |
1338 AU.addRequired<TargetTransformInfoWrapperPass>(); | |
1339 CallGraphSCCPass::getAnalysisUsage(AU); | |
1340 } | |
1341 | |
1342 bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { | |
1343 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); | |
1344 ACT = &getAnalysis<AssumptionCacheTracker>(); | |
1345 return false; | |
1346 } | |
1347 | |
1348 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { | |
1349 return getInlineCost(CS, CS.getCalledFunction(), Threshold); | |
1350 } | |
1351 | |
1352 /// \brief Test that two functions either have or have not the given attribute | |
1353 /// at the same time. | |
1354 template<typename AttrKind> | |
1355 static bool attributeMatches(Function *F1, Function *F2, AttrKind Attr) { | |
1356 return F1->getFnAttribute(Attr) == F2->getFnAttribute(Attr); | |
1357 } | |
1358 | |
1359 /// \brief Test that there are no attribute conflicts between Caller and Callee | |
1360 /// that prevent inlining. | |
1361 static bool functionsHaveCompatibleAttributes(Function *Caller, | |
1362 Function *Callee, | |
1363 TargetTransformInfo &TTI) { | |
1364 return TTI.areInlineCompatible(Caller, Callee) && | |
1365 attributeMatches(Caller, Callee, Attribute::SanitizeAddress) && | |
1366 attributeMatches(Caller, Callee, Attribute::SanitizeMemory) && | |
1367 attributeMatches(Caller, Callee, Attribute::SanitizeThread); | |
1368 } | |
1369 | |
1370 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, | |
1371 int Threshold) { | |
1372 // Cannot inline indirect calls. | |
1373 if (!Callee) | |
1374 return llvm::InlineCost::getNever(); | |
1375 | |
1376 // Calls to functions with always-inline attributes should be inlined | |
1377 // whenever possible. | |
1378 if (CS.hasFnAttr(Attribute::AlwaysInline)) { | |
1379 if (isInlineViable(*Callee)) | |
1380 return llvm::InlineCost::getAlways(); | |
1381 return llvm::InlineCost::getNever(); | |
1382 } | |
1383 | |
1384 // Never inline functions with conflicting attributes (unless callee has | |
1385 // always-inline attribute). | |
1386 if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee, | |
1387 TTIWP->getTTI(*Callee))) | |
1388 return llvm::InlineCost::getNever(); | |
1389 | |
1390 // Don't inline this call if the caller has the optnone attribute. | |
1391 if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone)) | |
1392 return llvm::InlineCost::getNever(); | |
1393 | |
1394 // Don't inline functions which can be redefined at link-time to mean | |
1395 // something else. Don't inline functions marked noinline or call sites | |
1396 // marked noinline. | |
1397 if (Callee->mayBeOverridden() || | |
1398 Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) | |
1399 return llvm::InlineCost::getNever(); | |
1400 | |
1401 DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() | |
1402 << "...\n"); | |
1403 | |
1404 CallAnalyzer CA(TTIWP->getTTI(*Callee), ACT, *Callee, Threshold, CS); | |
1405 bool ShouldInline = CA.analyzeCall(CS); | |
1406 | |
1407 DEBUG(CA.dump()); | |
1408 | |
1409 // Check if there was a reason to force inlining or no inlining. | |
1410 if (!ShouldInline && CA.getCost() < CA.getThreshold()) | |
1411 return InlineCost::getNever(); | |
1412 if (ShouldInline && CA.getCost() >= CA.getThreshold()) | |
1413 return InlineCost::getAlways(); | |
1414 | |
1415 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); | |
1416 } | |
1417 | |
1418 bool InlineCostAnalysis::isInlineViable(Function &F) { | |
1419 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); | |
1420 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { | |
1421 // Disallow inlining of functions which contain indirect branches or | |
1422 // blockaddresses. | |
1423 if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) | |
1424 return false; | |
1425 | |
1426 for (auto &II : *BI) { | |
1427 CallSite CS(&II); | |
1428 if (!CS) | |
1429 continue; | |
1430 | |
1431 // Disallow recursive calls. | |
1432 if (&F == CS.getCalledFunction()) | |
1433 return false; | |
1434 | |
1435 // Disallow calls which expose returns-twice to a function not previously | |
1436 // attributed as such. | |
1437 if (!ReturnsTwice && CS.isCall() && | |
1438 cast<CallInst>(CS.getInstruction())->canReturnTwice()) | |
1439 return false; | |
1440 | |
1441 // Disallow inlining functions that call @llvm.localescape. Doing this | |
1442 // correctly would require major changes to the inliner. | |
1443 if (CS.getCalledFunction() && | |
1444 CS.getCalledFunction()->getIntrinsicID() == | |
1445 llvm::Intrinsic::localescape) | |
1446 return false; | |
1447 } | |
1448 } | |
1449 | |
1450 return true; | |
1451 } |