diff flang/lib/Decimal/big-radix-floating-point.h @ 173:0572611fdcc8 llvm10 llvm12

reorgnization done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 25 May 2020 11:55:54 +0900
parents
children 2e18cbf3894f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/flang/lib/Decimal/big-radix-floating-point.h	Mon May 25 11:55:54 2020 +0900
@@ -0,0 +1,325 @@
+//===-- lib/Decimal/big-radix-floating-point.h ------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
+#define FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
+
+// This is a helper class for use in floating-point conversions
+// between binary decimal representations.  It holds a multiple-precision
+// integer value using digits of a radix that is a large even power of ten
+// (10,000,000,000,000,000 by default, 10**16).  These digits are accompanied
+// by a signed exponent that denotes multiplication by a power of ten.
+// The effective radix point is to the right of the digits (i.e., they do
+// not represent a fraction).
+//
+// The operations supported by this class are limited to those required
+// for conversions between binary and decimal representations; it is not
+// a general-purpose facility.
+
+#include "flang/Common/bit-population-count.h"
+#include "flang/Common/leading-zero-bit-count.h"
+#include "flang/Common/uint128.h"
+#include "flang/Common/unsigned-const-division.h"
+#include "flang/Decimal/binary-floating-point.h"
+#include "flang/Decimal/decimal.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cinttypes>
+#include <limits>
+#include <type_traits>
+
+namespace Fortran::decimal {
+
+static constexpr std::uint64_t TenToThe(int power) {
+  return power <= 0 ? 1 : 10 * TenToThe(power - 1);
+}
+
+// 10**(LOG10RADIX + 3) must be < 2**wordbits, and LOG10RADIX must be
+// even, so that pairs of decimal digits do not straddle Digits.
+// So LOG10RADIX must be 16 or 6.
+template <int PREC, int LOG10RADIX = 16> class BigRadixFloatingPointNumber {
+public:
+  using Real = BinaryFloatingPointNumber<PREC>;
+  static constexpr int log10Radix{LOG10RADIX};
+
+private:
+  static constexpr std::uint64_t uint64Radix{TenToThe(log10Radix)};
+  static constexpr int minDigitBits{
+      64 - common::LeadingZeroBitCount(uint64Radix)};
+  using Digit = common::HostUnsignedIntType<minDigitBits>;
+  static constexpr Digit radix{uint64Radix};
+  static_assert(radix < std::numeric_limits<Digit>::max() / 1000,
+      "radix is somehow too big");
+  static_assert(radix > std::numeric_limits<Digit>::max() / 10000,
+      "radix is somehow too small");
+
+  // The base-2 logarithm of the least significant bit that can arise
+  // in a subnormal IEEE floating-point number.
+  static constexpr int minLog2AnyBit{
+      -Real::exponentBias - Real::binaryPrecision};
+
+  // The number of Digits needed to represent the smallest subnormal.
+  static constexpr int maxDigits{3 - minLog2AnyBit / log10Radix};
+
+public:
+  explicit BigRadixFloatingPointNumber(
+      enum FortranRounding rounding = RoundDefault)
+      : rounding_{rounding} {}
+
+  // Converts a binary floating point value.
+  explicit BigRadixFloatingPointNumber(
+      Real, enum FortranRounding = RoundDefault);
+
+  BigRadixFloatingPointNumber &SetToZero() {
+    isNegative_ = false;
+    digits_ = 0;
+    exponent_ = 0;
+    return *this;
+  }
+
+  // Converts decimal floating-point to binary.
+  ConversionToBinaryResult<PREC> ConvertToBinary();
+
+  // Parses and converts to binary.  Handles leading spaces,
+  // "NaN", & optionally-signed "Inf".  Does not skip internal
+  // spaces.
+  // The argument is a reference to a pointer that is left
+  // pointing to the first character that wasn't parsed.
+  ConversionToBinaryResult<PREC> ConvertToBinary(const char *&);
+
+  // Formats a decimal floating-point number to a user buffer.
+  // May emit "NaN" or "Inf", or an possibly-signed integer.
+  // No decimal point is written, but if it were, it would be
+  // after the last digit; the effective decimal exponent is
+  // returned as part of the result structure so that it can be
+  // formatted by the client.
+  ConversionToDecimalResult ConvertToDecimal(
+      char *, std::size_t, enum DecimalConversionFlags, int digits) const;
+
+  // Discard decimal digits not needed to distinguish this value
+  // from the decimal encodings of two others (viz., the nearest binary
+  // floating-point numbers immediately below and above this one).
+  // The last decimal digit may not be uniquely determined in all
+  // cases, and will be the mean value when that is so (e.g., if
+  // last decimal digit values 6-8 would all work, it'll be a 7).
+  // This minimization necessarily assumes that the value will be
+  // emitted and read back into the same (or less precise) format
+  // with default rounding to the nearest value.
+  void Minimize(
+      BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more);
+
+  llvm::raw_ostream &Dump(llvm::raw_ostream &) const;
+
+private:
+  BigRadixFloatingPointNumber(const BigRadixFloatingPointNumber &that)
+      : digits_{that.digits_}, exponent_{that.exponent_},
+        isNegative_{that.isNegative_}, rounding_{that.rounding_} {
+    for (int j{0}; j < digits_; ++j) {
+      digit_[j] = that.digit_[j];
+    }
+  }
+
+  bool IsZero() const {
+    // Don't assume normalization.
+    for (int j{0}; j < digits_; ++j) {
+      if (digit_[j] != 0) {
+        return false;
+      }
+    }
+    return true;
+  }
+
+  // Predicate: true when 10*value would cause a carry.
+  // (When this happens during decimal-to-binary conversion,
+  // there are more digits in the input string than can be
+  // represented precisely.)
+  bool IsFull() const {
+    return digits_ == digitLimit_ && digit_[digits_ - 1] >= radix / 10;
+  }
+
+  // Sets *this to an unsigned integer value.
+  // Returns any remainder.
+  template <typename UINT> UINT SetTo(UINT n) {
+    static_assert(
+        std::is_same_v<UINT, common::uint128_t> || std::is_unsigned_v<UINT>);
+    SetToZero();
+    while (n != 0) {
+      auto q{common::DivideUnsignedBy<UINT, 10>(n)};
+      if (n != q * 10) {
+        break;
+      }
+      ++exponent_;
+      n = q;
+    }
+    if constexpr (sizeof n < sizeof(Digit)) {
+      if (n != 0) {
+        digit_[digits_++] = n;
+      }
+      return 0;
+    } else {
+      while (n != 0 && digits_ < digitLimit_) {
+        auto q{common::DivideUnsignedBy<UINT, radix>(n)};
+        digit_[digits_++] = static_cast<Digit>(n - q * radix);
+        n = q;
+      }
+      return n;
+    }
+  }
+
+  int RemoveLeastOrderZeroDigits() {
+    int remove{0};
+    if (digits_ > 0 && digit_[0] == 0) {
+      while (remove < digits_ && digit_[remove] == 0) {
+        ++remove;
+      }
+      if (remove >= digits_) {
+        digits_ = 0;
+      } else if (remove > 0) {
+        for (int j{0}; j + remove < digits_; ++j) {
+          digit_[j] = digit_[j + remove];
+        }
+        digits_ -= remove;
+      }
+    }
+    return remove;
+  }
+
+  void RemoveLeadingZeroDigits() {
+    while (digits_ > 0 && digit_[digits_ - 1] == 0) {
+      --digits_;
+    }
+  }
+
+  void Normalize() {
+    RemoveLeadingZeroDigits();
+    exponent_ += RemoveLeastOrderZeroDigits() * log10Radix;
+  }
+
+  // This limited divisibility test only works for even divisors of the radix,
+  // which is fine since it's only ever used with 2 and 5.
+  template <int N> bool IsDivisibleBy() const {
+    static_assert(N > 1 && radix % N == 0, "bad modulus");
+    return digits_ == 0 || (digit_[0] % N) == 0;
+  }
+
+  template <unsigned DIVISOR> int DivideBy() {
+    Digit remainder{0};
+    for (int j{digits_ - 1}; j >= 0; --j) {
+      Digit q{common::DivideUnsignedBy<Digit, DIVISOR>(digit_[j])};
+      Digit nrem{digit_[j] - DIVISOR * q};
+      digit_[j] = q + (radix / DIVISOR) * remainder;
+      remainder = nrem;
+    }
+    return remainder;
+  }
+
+  int DivideByPowerOfTwo(int twoPow) { // twoPow <= LOG10RADIX
+    int remainder{0};
+    for (int j{digits_ - 1}; j >= 0; --j) {
+      Digit q{digit_[j] >> twoPow};
+      int nrem = digit_[j] - (q << twoPow);
+      digit_[j] = q + (radix >> twoPow) * remainder;
+      remainder = nrem;
+    }
+    return remainder;
+  }
+
+  int AddCarry(int position = 0, int carry = 1) {
+    for (; position < digits_; ++position) {
+      Digit v{digit_[position] + carry};
+      if (v < radix) {
+        digit_[position] = v;
+        return 0;
+      }
+      digit_[position] = v - radix;
+      carry = 1;
+    }
+    if (digits_ < digitLimit_) {
+      digit_[digits_++] = carry;
+      return 0;
+    }
+    Normalize();
+    if (digits_ < digitLimit_) {
+      digit_[digits_++] = carry;
+      return 0;
+    }
+    return carry;
+  }
+
+  void Decrement() {
+    for (int j{0}; digit_[j]-- == 0; ++j) {
+      digit_[j] = radix - 1;
+    }
+  }
+
+  template <int N> int MultiplyByHelper(int carry = 0) {
+    for (int j{0}; j < digits_; ++j) {
+      auto v{N * digit_[j] + carry};
+      carry = common::DivideUnsignedBy<Digit, radix>(v);
+      digit_[j] = v - carry * radix; // i.e., v % radix
+    }
+    return carry;
+  }
+
+  template <int N> int MultiplyBy(int carry = 0) {
+    if (int newCarry{MultiplyByHelper<N>(carry)}) {
+      return AddCarry(digits_, newCarry);
+    } else {
+      return 0;
+    }
+  }
+
+  template <int N> int MultiplyWithoutNormalization() {
+    if (int carry{MultiplyByHelper<N>(0)}) {
+      if (digits_ < digitLimit_) {
+        digit_[digits_++] = carry;
+        return 0;
+      } else {
+        return carry;
+      }
+    } else {
+      return 0;
+    }
+  }
+
+  void LoseLeastSignificantDigit(); // with rounding
+
+  void PushCarry(int carry) {
+    if (digits_ == maxDigits && RemoveLeastOrderZeroDigits() == 0) {
+      LoseLeastSignificantDigit();
+      digit_[digits_ - 1] += carry;
+    } else {
+      digit_[digits_++] = carry;
+    }
+  }
+
+  // Adds another number and then divides by two.
+  // Assumes same exponent and sign.
+  // Returns true when the the result has effectively been rounded down.
+  bool Mean(const BigRadixFloatingPointNumber &);
+
+  bool ParseNumber(const char *&, bool &inexact);
+
+  using Raw = typename Real::RawType;
+  constexpr Raw SignBit() const { return Raw{isNegative_} << (Real::bits - 1); }
+  constexpr Raw Infinity() const {
+    return (Raw{Real::maxExponent} << Real::significandBits) | SignBit();
+  }
+  static constexpr Raw NaN() {
+    return (Raw{Real::maxExponent} << Real::significandBits) |
+        (Raw{1} << (Real::significandBits - 2));
+  }
+
+  Digit digit_[maxDigits]; // in little-endian order: digit_[0] is LSD
+  int digits_{0}; // # of elements in digit_[] array; zero when zero
+  int digitLimit_{maxDigits}; // precision clamp
+  int exponent_{0}; // signed power of ten
+  bool isNegative_{false};
+  enum FortranRounding rounding_ { RoundDefault };
+};
+} // namespace Fortran::decimal
+#endif