Mercurial > hg > CbC > CbC_llvm
diff flang/lib/Decimal/big-radix-floating-point.h @ 173:0572611fdcc8 llvm10 llvm12
reorgnization done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 11:55:54 +0900 |
parents | |
children | 2e18cbf3894f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/flang/lib/Decimal/big-radix-floating-point.h Mon May 25 11:55:54 2020 +0900 @@ -0,0 +1,325 @@ +//===-- lib/Decimal/big-radix-floating-point.h ------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_ +#define FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_ + +// This is a helper class for use in floating-point conversions +// between binary decimal representations. It holds a multiple-precision +// integer value using digits of a radix that is a large even power of ten +// (10,000,000,000,000,000 by default, 10**16). These digits are accompanied +// by a signed exponent that denotes multiplication by a power of ten. +// The effective radix point is to the right of the digits (i.e., they do +// not represent a fraction). +// +// The operations supported by this class are limited to those required +// for conversions between binary and decimal representations; it is not +// a general-purpose facility. + +#include "flang/Common/bit-population-count.h" +#include "flang/Common/leading-zero-bit-count.h" +#include "flang/Common/uint128.h" +#include "flang/Common/unsigned-const-division.h" +#include "flang/Decimal/binary-floating-point.h" +#include "flang/Decimal/decimal.h" +#include "llvm/Support/raw_ostream.h" +#include <cinttypes> +#include <limits> +#include <type_traits> + +namespace Fortran::decimal { + +static constexpr std::uint64_t TenToThe(int power) { + return power <= 0 ? 1 : 10 * TenToThe(power - 1); +} + +// 10**(LOG10RADIX + 3) must be < 2**wordbits, and LOG10RADIX must be +// even, so that pairs of decimal digits do not straddle Digits. +// So LOG10RADIX must be 16 or 6. +template <int PREC, int LOG10RADIX = 16> class BigRadixFloatingPointNumber { +public: + using Real = BinaryFloatingPointNumber<PREC>; + static constexpr int log10Radix{LOG10RADIX}; + +private: + static constexpr std::uint64_t uint64Radix{TenToThe(log10Radix)}; + static constexpr int minDigitBits{ + 64 - common::LeadingZeroBitCount(uint64Radix)}; + using Digit = common::HostUnsignedIntType<minDigitBits>; + static constexpr Digit radix{uint64Radix}; + static_assert(radix < std::numeric_limits<Digit>::max() / 1000, + "radix is somehow too big"); + static_assert(radix > std::numeric_limits<Digit>::max() / 10000, + "radix is somehow too small"); + + // The base-2 logarithm of the least significant bit that can arise + // in a subnormal IEEE floating-point number. + static constexpr int minLog2AnyBit{ + -Real::exponentBias - Real::binaryPrecision}; + + // The number of Digits needed to represent the smallest subnormal. + static constexpr int maxDigits{3 - minLog2AnyBit / log10Radix}; + +public: + explicit BigRadixFloatingPointNumber( + enum FortranRounding rounding = RoundDefault) + : rounding_{rounding} {} + + // Converts a binary floating point value. + explicit BigRadixFloatingPointNumber( + Real, enum FortranRounding = RoundDefault); + + BigRadixFloatingPointNumber &SetToZero() { + isNegative_ = false; + digits_ = 0; + exponent_ = 0; + return *this; + } + + // Converts decimal floating-point to binary. + ConversionToBinaryResult<PREC> ConvertToBinary(); + + // Parses and converts to binary. Handles leading spaces, + // "NaN", & optionally-signed "Inf". Does not skip internal + // spaces. + // The argument is a reference to a pointer that is left + // pointing to the first character that wasn't parsed. + ConversionToBinaryResult<PREC> ConvertToBinary(const char *&); + + // Formats a decimal floating-point number to a user buffer. + // May emit "NaN" or "Inf", or an possibly-signed integer. + // No decimal point is written, but if it were, it would be + // after the last digit; the effective decimal exponent is + // returned as part of the result structure so that it can be + // formatted by the client. + ConversionToDecimalResult ConvertToDecimal( + char *, std::size_t, enum DecimalConversionFlags, int digits) const; + + // Discard decimal digits not needed to distinguish this value + // from the decimal encodings of two others (viz., the nearest binary + // floating-point numbers immediately below and above this one). + // The last decimal digit may not be uniquely determined in all + // cases, and will be the mean value when that is so (e.g., if + // last decimal digit values 6-8 would all work, it'll be a 7). + // This minimization necessarily assumes that the value will be + // emitted and read back into the same (or less precise) format + // with default rounding to the nearest value. + void Minimize( + BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more); + + llvm::raw_ostream &Dump(llvm::raw_ostream &) const; + +private: + BigRadixFloatingPointNumber(const BigRadixFloatingPointNumber &that) + : digits_{that.digits_}, exponent_{that.exponent_}, + isNegative_{that.isNegative_}, rounding_{that.rounding_} { + for (int j{0}; j < digits_; ++j) { + digit_[j] = that.digit_[j]; + } + } + + bool IsZero() const { + // Don't assume normalization. + for (int j{0}; j < digits_; ++j) { + if (digit_[j] != 0) { + return false; + } + } + return true; + } + + // Predicate: true when 10*value would cause a carry. + // (When this happens during decimal-to-binary conversion, + // there are more digits in the input string than can be + // represented precisely.) + bool IsFull() const { + return digits_ == digitLimit_ && digit_[digits_ - 1] >= radix / 10; + } + + // Sets *this to an unsigned integer value. + // Returns any remainder. + template <typename UINT> UINT SetTo(UINT n) { + static_assert( + std::is_same_v<UINT, common::uint128_t> || std::is_unsigned_v<UINT>); + SetToZero(); + while (n != 0) { + auto q{common::DivideUnsignedBy<UINT, 10>(n)}; + if (n != q * 10) { + break; + } + ++exponent_; + n = q; + } + if constexpr (sizeof n < sizeof(Digit)) { + if (n != 0) { + digit_[digits_++] = n; + } + return 0; + } else { + while (n != 0 && digits_ < digitLimit_) { + auto q{common::DivideUnsignedBy<UINT, radix>(n)}; + digit_[digits_++] = static_cast<Digit>(n - q * radix); + n = q; + } + return n; + } + } + + int RemoveLeastOrderZeroDigits() { + int remove{0}; + if (digits_ > 0 && digit_[0] == 0) { + while (remove < digits_ && digit_[remove] == 0) { + ++remove; + } + if (remove >= digits_) { + digits_ = 0; + } else if (remove > 0) { + for (int j{0}; j + remove < digits_; ++j) { + digit_[j] = digit_[j + remove]; + } + digits_ -= remove; + } + } + return remove; + } + + void RemoveLeadingZeroDigits() { + while (digits_ > 0 && digit_[digits_ - 1] == 0) { + --digits_; + } + } + + void Normalize() { + RemoveLeadingZeroDigits(); + exponent_ += RemoveLeastOrderZeroDigits() * log10Radix; + } + + // This limited divisibility test only works for even divisors of the radix, + // which is fine since it's only ever used with 2 and 5. + template <int N> bool IsDivisibleBy() const { + static_assert(N > 1 && radix % N == 0, "bad modulus"); + return digits_ == 0 || (digit_[0] % N) == 0; + } + + template <unsigned DIVISOR> int DivideBy() { + Digit remainder{0}; + for (int j{digits_ - 1}; j >= 0; --j) { + Digit q{common::DivideUnsignedBy<Digit, DIVISOR>(digit_[j])}; + Digit nrem{digit_[j] - DIVISOR * q}; + digit_[j] = q + (radix / DIVISOR) * remainder; + remainder = nrem; + } + return remainder; + } + + int DivideByPowerOfTwo(int twoPow) { // twoPow <= LOG10RADIX + int remainder{0}; + for (int j{digits_ - 1}; j >= 0; --j) { + Digit q{digit_[j] >> twoPow}; + int nrem = digit_[j] - (q << twoPow); + digit_[j] = q + (radix >> twoPow) * remainder; + remainder = nrem; + } + return remainder; + } + + int AddCarry(int position = 0, int carry = 1) { + for (; position < digits_; ++position) { + Digit v{digit_[position] + carry}; + if (v < radix) { + digit_[position] = v; + return 0; + } + digit_[position] = v - radix; + carry = 1; + } + if (digits_ < digitLimit_) { + digit_[digits_++] = carry; + return 0; + } + Normalize(); + if (digits_ < digitLimit_) { + digit_[digits_++] = carry; + return 0; + } + return carry; + } + + void Decrement() { + for (int j{0}; digit_[j]-- == 0; ++j) { + digit_[j] = radix - 1; + } + } + + template <int N> int MultiplyByHelper(int carry = 0) { + for (int j{0}; j < digits_; ++j) { + auto v{N * digit_[j] + carry}; + carry = common::DivideUnsignedBy<Digit, radix>(v); + digit_[j] = v - carry * radix; // i.e., v % radix + } + return carry; + } + + template <int N> int MultiplyBy(int carry = 0) { + if (int newCarry{MultiplyByHelper<N>(carry)}) { + return AddCarry(digits_, newCarry); + } else { + return 0; + } + } + + template <int N> int MultiplyWithoutNormalization() { + if (int carry{MultiplyByHelper<N>(0)}) { + if (digits_ < digitLimit_) { + digit_[digits_++] = carry; + return 0; + } else { + return carry; + } + } else { + return 0; + } + } + + void LoseLeastSignificantDigit(); // with rounding + + void PushCarry(int carry) { + if (digits_ == maxDigits && RemoveLeastOrderZeroDigits() == 0) { + LoseLeastSignificantDigit(); + digit_[digits_ - 1] += carry; + } else { + digit_[digits_++] = carry; + } + } + + // Adds another number and then divides by two. + // Assumes same exponent and sign. + // Returns true when the the result has effectively been rounded down. + bool Mean(const BigRadixFloatingPointNumber &); + + bool ParseNumber(const char *&, bool &inexact); + + using Raw = typename Real::RawType; + constexpr Raw SignBit() const { return Raw{isNegative_} << (Real::bits - 1); } + constexpr Raw Infinity() const { + return (Raw{Real::maxExponent} << Real::significandBits) | SignBit(); + } + static constexpr Raw NaN() { + return (Raw{Real::maxExponent} << Real::significandBits) | + (Raw{1} << (Real::significandBits - 2)); + } + + Digit digit_[maxDigits]; // in little-endian order: digit_[0] is LSD + int digits_{0}; // # of elements in digit_[] array; zero when zero + int digitLimit_{maxDigits}; // precision clamp + int exponent_{0}; // signed power of ten + bool isNegative_{false}; + enum FortranRounding rounding_ { RoundDefault }; +}; +} // namespace Fortran::decimal +#endif