diff clang-tools-extra/clangd/FindTarget.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/clang-tools-extra/clangd/FindTarget.cpp	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,1001 @@
+//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "FindTarget.h"
+#include "AST.h"
+#include "Logger.h"
+#include "clang/AST/ASTTypeTraits.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprConcepts.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include <utility>
+#include <vector>
+
+namespace clang {
+namespace clangd {
+namespace {
+using ast_type_traits::DynTypedNode;
+
+LLVM_ATTRIBUTE_UNUSED std::string
+nodeToString(const ast_type_traits::DynTypedNode &N) {
+  std::string S = std::string(N.getNodeKind().asStringRef());
+  {
+    llvm::raw_string_ostream OS(S);
+    OS << ": ";
+    N.print(OS, PrintingPolicy(LangOptions()));
+  }
+  std::replace(S.begin(), S.end(), '\n', ' ');
+  return S;
+}
+
+// Given a dependent type and a member name, heuristically resolve the
+// name to one or more declarations.
+// The current heuristic is simply to look up the name in the primary
+// template. This is a heuristic because the template could potentially
+// have specializations that declare different members.
+// Multiple declarations could be returned if the name is overloaded
+// (e.g. an overloaded method in the primary template).
+// This heuristic will give the desired answer in many cases, e.g.
+// for a call to vector<T>::size().
+// The name to look up is provided in the form of a factory that takes
+// an ASTContext, because an ASTContext may be needed to obtain the
+// name (e.g. if it's an operator name), but the caller may not have
+// access to an ASTContext.
+std::vector<const NamedDecl *> getMembersReferencedViaDependentName(
+    const Type *T,
+    llvm::function_ref<DeclarationName(ASTContext &)> NameFactory,
+    bool IsNonstaticMember) {
+  if (!T)
+    return {};
+  if (auto *ICNT = T->getAs<InjectedClassNameType>()) {
+    T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
+  }
+  auto *TST = T->getAs<TemplateSpecializationType>();
+  if (!TST)
+    return {};
+  const ClassTemplateDecl *TD = dyn_cast_or_null<ClassTemplateDecl>(
+      TST->getTemplateName().getAsTemplateDecl());
+  if (!TD)
+    return {};
+  CXXRecordDecl *RD = TD->getTemplatedDecl();
+  if (!RD->hasDefinition())
+    return {};
+  RD = RD->getDefinition();
+  DeclarationName Name = NameFactory(RD->getASTContext());
+  return RD->lookupDependentName(Name, [=](const NamedDecl *D) {
+    return IsNonstaticMember ? D->isCXXInstanceMember()
+                             : !D->isCXXInstanceMember();
+  });
+}
+
+// Given the type T of a dependent expression that appears of the LHS of a "->",
+// heuristically find a corresponding pointee type in whose scope we could look
+// up the name appearing on the RHS.
+const Type *getPointeeType(const Type *T) {
+  if (!T)
+    return nullptr;
+
+  if (T->isPointerType()) {
+    return T->getAs<PointerType>()->getPointeeType().getTypePtrOrNull();
+  }
+
+  // Try to handle smart pointer types.
+
+  // Look up operator-> in the primary template. If we find one, it's probably a
+  // smart pointer type.
+  auto ArrowOps = getMembersReferencedViaDependentName(
+      T,
+      [](ASTContext &Ctx) {
+        return Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow);
+      },
+      /*IsNonStaticMember=*/true);
+  if (ArrowOps.empty())
+    return nullptr;
+
+  // Getting the return type of the found operator-> method decl isn't useful,
+  // because we discarded template arguments to perform lookup in the primary
+  // template scope, so the return type would just have the form U* where U is a
+  // template parameter type.
+  // Instead, just handle the common case where the smart pointer type has the
+  // form of SmartPtr<X, ...>, and assume X is the pointee type.
+  auto *TST = T->getAs<TemplateSpecializationType>();
+  if (!TST)
+    return nullptr;
+  if (TST->getNumArgs() == 0)
+    return nullptr;
+  const TemplateArgument &FirstArg = TST->getArg(0);
+  if (FirstArg.getKind() != TemplateArgument::Type)
+    return nullptr;
+  return FirstArg.getAsType().getTypePtrOrNull();
+}
+
+const NamedDecl *getTemplatePattern(const NamedDecl *D) {
+  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
+    return CRD->getTemplateInstantiationPattern();
+  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+    return FD->getTemplateInstantiationPattern();
+  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
+    // Hmm: getTIP returns its arg if it's not an instantiation?!
+    VarDecl *T = VD->getTemplateInstantiationPattern();
+    return (T == D) ? nullptr : T;
+  } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
+    return ED->getInstantiatedFromMemberEnum();
+  } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
+    if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
+      if (const DeclContext *ParentPat =
+              dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
+        for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
+          if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
+            return BaseND;
+  } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
+    if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
+      if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
+        for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
+          return BaseECD;
+      }
+    }
+  }
+  return nullptr;
+}
+
+// TargetFinder locates the entities that an AST node refers to.
+//
+// Typically this is (possibly) one declaration and (possibly) one type, but
+// may be more:
+//  - for ambiguous nodes like OverloadExpr
+//  - if we want to include e.g. both typedefs and the underlying type
+//
+// This is organized as a set of mutually recursive helpers for particular node
+// types, but for most nodes this is a short walk rather than a deep traversal.
+//
+// It's tempting to do e.g. typedef resolution as a second normalization step,
+// after finding the 'primary' decl etc. But we do this monolithically instead
+// because:
+//  - normalization may require these traversals again (e.g. unwrapping a
+//    typedef reveals a decltype which must be traversed)
+//  - it doesn't simplify that much, e.g. the first stage must still be able
+//    to yield multiple decls to handle OverloadExpr
+//  - there are cases where it's required for correctness. e.g:
+//      template<class X> using pvec = vector<x*>; pvec<int> x;
+//    There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
+//    and both are lossy. We must know upfront what the caller ultimately wants.
+//
+// FIXME: improve common dependent scope using name lookup in primary templates.
+// e.g. template<typename T> int foo() { return std::vector<T>().size(); }
+// formally size() is unresolved, but the primary template is a good guess.
+// This affects:
+//  - DependentTemplateSpecializationType,
+//  - DependentNameType
+//  - UnresolvedUsingValueDecl
+//  - UnresolvedUsingTypenameDecl
+struct TargetFinder {
+  using RelSet = DeclRelationSet;
+  using Rel = DeclRelation;
+
+private:
+  llvm::SmallDenseMap<const NamedDecl *,
+                      std::pair<RelSet, /*InsertionOrder*/ size_t>>
+      Decls;
+  RelSet Flags;
+
+  template <typename T> void debug(T &Node, RelSet Flags) {
+    dlog("visit [{0}] {1}", Flags,
+         nodeToString(ast_type_traits::DynTypedNode::create(Node)));
+  }
+
+  void report(const NamedDecl *D, RelSet Flags) {
+    dlog("--> [{0}] {1}", Flags,
+         nodeToString(ast_type_traits::DynTypedNode::create(*D)));
+    auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
+    // If already exists, update the flags.
+    if (!It.second)
+      It.first->second.first |= Flags;
+  }
+
+public:
+  llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
+    using ValTy = std::pair<const NamedDecl *, RelSet>;
+    llvm::SmallVector<ValTy, 1> Result;
+    Result.resize(Decls.size());
+    for (const auto &Elem : Decls)
+      Result[Elem.second.second] = {Elem.first, Elem.second.first};
+    return Result;
+  }
+
+  void add(const Decl *Dcl, RelSet Flags) {
+    const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
+    if (!D)
+      return;
+    debug(*D, Flags);
+    if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
+      D = UDD->getNominatedNamespaceAsWritten();
+
+    if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
+      add(TND->getUnderlyingType(), Flags | Rel::Underlying);
+      Flags |= Rel::Alias; // continue with the alias.
+    } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
+      for (const UsingShadowDecl *S : UD->shadows())
+        add(S->getUnderlyingDecl(), Flags | Rel::Underlying);
+      Flags |= Rel::Alias; // continue with the alias.
+    } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
+      add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
+      Flags |= Rel::Alias; // continue with the alias
+    } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
+      // Include the using decl, but don't traverse it. This may end up
+      // including *all* shadows, which we don't want.
+      report(USD->getUsingDecl(), Flags | Rel::Alias);
+      // Shadow decls are synthetic and not themselves interesting.
+      // Record the underlying decl instead, if allowed.
+      D = USD->getTargetDecl();
+      Flags |= Rel::Underlying; // continue with the underlying decl.
+    }
+
+    if (const Decl *Pat = getTemplatePattern(D)) {
+      assert(Pat != D);
+      add(Pat, Flags | Rel::TemplatePattern);
+      // Now continue with the instantiation.
+      Flags |= Rel::TemplateInstantiation;
+    }
+
+    report(D, Flags);
+  }
+
+  void add(const Stmt *S, RelSet Flags) {
+    if (!S)
+      return;
+    debug(*S, Flags);
+    struct Visitor : public ConstStmtVisitor<Visitor> {
+      TargetFinder &Outer;
+      RelSet Flags;
+      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
+
+      void VisitCallExpr(const CallExpr *CE) {
+        Outer.add(CE->getCalleeDecl(), Flags);
+      }
+      void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
+        Outer.add(E->getNamedConcept(), Flags);
+      }
+      void VisitDeclRefExpr(const DeclRefExpr *DRE) {
+        const Decl *D = DRE->getDecl();
+        // UsingShadowDecl allows us to record the UsingDecl.
+        // getFoundDecl() returns the wrong thing in other cases (templates).
+        if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
+          D = USD;
+        Outer.add(D, Flags);
+      }
+      void VisitMemberExpr(const MemberExpr *ME) {
+        const Decl *D = ME->getMemberDecl();
+        if (auto *USD =
+                llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
+          D = USD;
+        Outer.add(D, Flags);
+      }
+      void VisitOverloadExpr(const OverloadExpr *OE) {
+        for (auto *D : OE->decls())
+          Outer.add(D, Flags);
+      }
+      void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
+        Outer.add(SE->getPack(), Flags);
+      }
+      void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
+        Outer.add(CCE->getConstructor(), Flags);
+      }
+      void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
+        for (const DesignatedInitExpr::Designator &D :
+             llvm::reverse(DIE->designators()))
+          if (D.isFieldDesignator()) {
+            Outer.add(D.getField(), Flags);
+            // We don't know which designator was intended, we assume the outer.
+            break;
+          }
+      }
+      void
+      VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
+        const Type *BaseType = E->getBaseType().getTypePtrOrNull();
+        if (E->isArrow()) {
+          BaseType = getPointeeType(BaseType);
+        }
+        for (const NamedDecl *D : getMembersReferencedViaDependentName(
+                 BaseType, [E](ASTContext &) { return E->getMember(); },
+                 /*IsNonstaticMember=*/true)) {
+          Outer.add(D, Flags);
+        }
+      }
+      void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
+        for (const NamedDecl *D : getMembersReferencedViaDependentName(
+                 E->getQualifier()->getAsType(),
+                 [E](ASTContext &) { return E->getDeclName(); },
+                 /*IsNonstaticMember=*/false)) {
+          Outer.add(D, Flags);
+        }
+      }
+      void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
+        Outer.add(OIRE->getDecl(), Flags);
+      }
+      void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
+        Outer.add(OME->getMethodDecl(), Flags);
+      }
+      void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
+        if (OPRE->isExplicitProperty())
+          Outer.add(OPRE->getExplicitProperty(), Flags);
+        else {
+          if (OPRE->isMessagingGetter())
+            Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
+          if (OPRE->isMessagingSetter())
+            Outer.add(OPRE->getImplicitPropertySetter(), Flags);
+        }
+      }
+      void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
+        Outer.add(OPE->getProtocol(), Flags);
+      }
+      void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
+        Outer.add(OVE->getSourceExpr(), Flags);
+      }
+      void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
+        Outer.add(POE->getSyntacticForm(), Flags);
+      }
+    };
+    Visitor(*this, Flags).Visit(S);
+  }
+
+  void add(QualType T, RelSet Flags) {
+    if (T.isNull())
+      return;
+    debug(T, Flags);
+    struct Visitor : public TypeVisitor<Visitor> {
+      TargetFinder &Outer;
+      RelSet Flags;
+      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
+
+      void VisitTagType(const TagType *TT) {
+        Outer.add(TT->getAsTagDecl(), Flags);
+      }
+
+      void VisitElaboratedType(const ElaboratedType *ET) {
+        Outer.add(ET->desugar(), Flags);
+      }
+
+      void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
+        Outer.add(ICNT->getDecl(), Flags);
+      }
+
+      void VisitDecltypeType(const DecltypeType *DTT) {
+        Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
+      }
+      void VisitDeducedType(const DeducedType *DT) {
+        // FIXME: In practice this doesn't work: the AutoType you find inside
+        // TypeLoc never has a deduced type. https://llvm.org/PR42914
+        Outer.add(DT->getDeducedType(), Flags | Rel::Underlying);
+      }
+      void VisitDeducedTemplateSpecializationType(
+          const DeducedTemplateSpecializationType *DTST) {
+        // FIXME: This is a workaround for https://llvm.org/PR42914,
+        // which is causing DTST->getDeducedType() to be empty. We
+        // fall back to the template pattern and miss the instantiation
+        // even when it's known in principle. Once that bug is fixed,
+        // this method can be removed (the existing handling in
+        // VisitDeducedType() is sufficient).
+        if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
+          Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
+      }
+      void VisitTypedefType(const TypedefType *TT) {
+        Outer.add(TT->getDecl(), Flags);
+      }
+      void
+      VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
+        // Have to handle these case-by-case.
+
+        // templated type aliases: there's no specialized/instantiated using
+        // decl to point to. So try to find a decl for the underlying type
+        // (after substitution), and failing that point to the (templated) using
+        // decl.
+        if (TST->isTypeAlias()) {
+          Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
+          // Don't *traverse* the alias, which would result in traversing the
+          // template of the underlying type.
+          Outer.report(
+              TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
+              Flags | Rel::Alias | Rel::TemplatePattern);
+        }
+        // specializations of template template parameters aren't instantiated
+        // into decls, so they must refer to the parameter itself.
+        else if (const auto *Parm =
+                     llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
+                         TST->getTemplateName().getAsTemplateDecl()))
+          Outer.add(Parm, Flags);
+        // class template specializations have a (specialized) CXXRecordDecl.
+        else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
+          Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
+        else {
+          // fallback: the (un-specialized) declaration from primary template.
+          if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
+            Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
+        }
+      }
+      void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
+        Outer.add(TTPT->getDecl(), Flags);
+      }
+      void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
+        Outer.add(OIT->getDecl(), Flags);
+      }
+      void VisitObjCObjectType(const ObjCObjectType *OOT) {
+        // FIXME: ObjCObjectTypeLoc has no children for the protocol list, so
+        // there is no node in id<Foo> that refers to ObjCProtocolDecl Foo.
+        if (OOT->isObjCQualifiedId() && OOT->getNumProtocols() == 1)
+          Outer.add(OOT->getProtocol(0), Flags);
+      }
+    };
+    Visitor(*this, Flags).Visit(T.getTypePtr());
+  }
+
+  void add(const NestedNameSpecifier *NNS, RelSet Flags) {
+    if (!NNS)
+      return;
+    debug(*NNS, Flags);
+    switch (NNS->getKind()) {
+    case NestedNameSpecifier::Identifier:
+      return;
+    case NestedNameSpecifier::Namespace:
+      add(NNS->getAsNamespace(), Flags);
+      return;
+    case NestedNameSpecifier::NamespaceAlias:
+      add(NNS->getAsNamespaceAlias(), Flags);
+      return;
+    case NestedNameSpecifier::TypeSpec:
+    case NestedNameSpecifier::TypeSpecWithTemplate:
+      add(QualType(NNS->getAsType(), 0), Flags);
+      return;
+    case NestedNameSpecifier::Global:
+      // This should be TUDecl, but we can't get a pointer to it!
+      return;
+    case NestedNameSpecifier::Super:
+      add(NNS->getAsRecordDecl(), Flags);
+      return;
+    }
+    llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
+  }
+
+  void add(const CXXCtorInitializer *CCI, RelSet Flags) {
+    if (!CCI)
+      return;
+    debug(*CCI, Flags);
+
+    if (CCI->isAnyMemberInitializer())
+      add(CCI->getAnyMember(), Flags);
+    // Constructor calls contain a TypeLoc node, so we don't handle them here.
+  }
+};
+
+} // namespace
+
+llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
+allTargetDecls(const ast_type_traits::DynTypedNode &N) {
+  dlog("allTargetDecls({0})", nodeToString(N));
+  TargetFinder Finder;
+  DeclRelationSet Flags;
+  if (const Decl *D = N.get<Decl>())
+    Finder.add(D, Flags);
+  else if (const Stmt *S = N.get<Stmt>())
+    Finder.add(S, Flags);
+  else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
+    Finder.add(NNSL->getNestedNameSpecifier(), Flags);
+  else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
+    Finder.add(NNS, Flags);
+  else if (const TypeLoc *TL = N.get<TypeLoc>())
+    Finder.add(TL->getType(), Flags);
+  else if (const QualType *QT = N.get<QualType>())
+    Finder.add(*QT, Flags);
+  else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
+    Finder.add(CCI, Flags);
+
+  return Finder.takeDecls();
+}
+
+llvm::SmallVector<const NamedDecl *, 1>
+targetDecl(const ast_type_traits::DynTypedNode &N, DeclRelationSet Mask) {
+  llvm::SmallVector<const NamedDecl *, 1> Result;
+  for (const auto &Entry : allTargetDecls(N)) {
+    if (!(Entry.second & ~Mask))
+      Result.push_back(Entry.first);
+  }
+  return Result;
+}
+
+llvm::SmallVector<const NamedDecl *, 1>
+explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask) {
+  assert(!(Mask & (DeclRelation::TemplatePattern |
+                   DeclRelation::TemplateInstantiation)) &&
+         "explicitRefenceTargets handles templates on its own");
+  auto Decls = allTargetDecls(N);
+
+  // We prefer to return template instantiation, but fallback to template
+  // pattern if instantiation is not available.
+  Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
+
+  llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
+  llvm::SmallVector<const NamedDecl *, 1> Targets;
+  bool SeenTemplateInstantiations = false;
+  for (auto &D : Decls) {
+    if (D.second & ~Mask)
+      continue;
+    if (D.second & DeclRelation::TemplatePattern) {
+      TemplatePatterns.push_back(D.first);
+      continue;
+    }
+    if (D.second & DeclRelation::TemplateInstantiation)
+      SeenTemplateInstantiations = true;
+    Targets.push_back(D.first);
+  }
+  if (!SeenTemplateInstantiations)
+    Targets.insert(Targets.end(), TemplatePatterns.begin(),
+                   TemplatePatterns.end());
+  return Targets;
+}
+
+namespace {
+llvm::SmallVector<ReferenceLoc, 2> refInDecl(const Decl *D) {
+  struct Visitor : ConstDeclVisitor<Visitor> {
+    llvm::SmallVector<ReferenceLoc, 2> Refs;
+
+    void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
+      // We want to keep it as non-declaration references, as the
+      // "using namespace" declaration doesn't have a name.
+      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
+                                  D->getIdentLocation(),
+                                  /*IsDecl=*/false,
+                                  {D->getNominatedNamespaceAsWritten()}});
+    }
+
+    void VisitUsingDecl(const UsingDecl *D) {
+      // "using ns::identifier;" is a non-declaration reference.
+      Refs.push_back(
+          ReferenceLoc{D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
+                       explicitReferenceTargets(DynTypedNode::create(*D),
+                                                DeclRelation::Underlying)});
+    }
+
+    void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
+      // For namespace alias, "namespace Foo = Target;", we add two references.
+      // Add a declaration reference for Foo.
+      VisitNamedDecl(D);
+      // Add a non-declaration reference for Target.
+      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
+                                  D->getTargetNameLoc(),
+                                  /*IsDecl=*/false,
+                                  {D->getAliasedNamespace()}});
+    }
+
+    void VisitNamedDecl(const NamedDecl *ND) {
+      // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
+      // as their underlying decls, covering the same range, will be visited.
+      if (llvm::isa<ClassTemplateDecl>(ND) ||
+          llvm::isa<FunctionTemplateDecl>(ND) ||
+          llvm::isa<VarTemplateDecl>(ND) ||
+          llvm::isa<TypeAliasTemplateDecl>(ND))
+        return;
+      // FIXME: decide on how to surface destructors when we need them.
+      if (llvm::isa<CXXDestructorDecl>(ND))
+        return;
+      // Filter anonymous decls, name location will point outside the name token
+      // and the clients are not prepared to handle that.
+      if (ND->getDeclName().isIdentifier() &&
+          !ND->getDeclName().getAsIdentifierInfo())
+        return;
+      Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
+                                  ND->getLocation(),
+                                  /*IsDecl=*/true,
+                                  {ND}});
+    }
+  };
+
+  Visitor V;
+  V.Visit(D);
+  return V.Refs;
+}
+
+llvm::SmallVector<ReferenceLoc, 2> refInExpr(const Expr *E) {
+  struct Visitor : ConstStmtVisitor<Visitor> {
+    // FIXME: handle more complicated cases: more ObjC, designated initializers.
+    llvm::SmallVector<ReferenceLoc, 2> Refs;
+
+    void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
+      Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
+                                  E->getConceptNameLoc(),
+                                  /*IsDecl=*/false,
+                                  {E->getNamedConcept()}});
+    }
+    void VisitDeclRefExpr(const DeclRefExpr *E) {
+      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
+                                  E->getNameInfo().getLoc(),
+                                  /*IsDecl=*/false,
+                                  {E->getFoundDecl()}});
+    }
+
+    void VisitMemberExpr(const MemberExpr *E) {
+      // Skip destructor calls to avoid duplication: TypeLoc within will be
+      // visited separately.
+      if (llvm::dyn_cast<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
+        return;
+      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
+                                  E->getMemberNameInfo().getLoc(),
+                                  /*IsDecl=*/false,
+                                  {E->getFoundDecl()}});
+    }
+
+    void VisitOverloadExpr(const OverloadExpr *E) {
+      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
+                                  E->getNameInfo().getLoc(),
+                                  /*IsDecl=*/false,
+                                  llvm::SmallVector<const NamedDecl *, 1>(
+                                      E->decls().begin(), E->decls().end())});
+    }
+
+    void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
+                                  E->getPackLoc(),
+                                  /*IsDecl=*/false,
+                                  {E->getPack()}});
+    }
+
+    void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
+      Refs.push_back(ReferenceLoc{
+          NestedNameSpecifierLoc(), E->getLocation(),
+          /*IsDecl=*/false,
+          // Select the getter, setter, or @property depending on the call.
+          explicitReferenceTargets(DynTypedNode::create(*E), {})});
+    }
+
+    void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
+      for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
+        if (!D.isFieldDesignator())
+          continue;
+        Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
+                                    D.getFieldLoc(),
+                                    /*IsDecl=*/false,
+                                    {D.getField()}});
+      }
+    }
+  };
+
+  Visitor V;
+  V.Visit(E);
+  return V.Refs;
+}
+
+llvm::SmallVector<ReferenceLoc, 2> refInTypeLoc(TypeLoc L) {
+  struct Visitor : TypeLocVisitor<Visitor> {
+    llvm::Optional<ReferenceLoc> Ref;
+
+    void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
+      // We only know about qualifier, rest if filled by inner locations.
+      Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
+      // Fill in the qualifier.
+      if (!Ref)
+        return;
+      assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
+      Ref->Qualifier = L.getQualifierLoc();
+    }
+
+    void VisitTagTypeLoc(TagTypeLoc L) {
+      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
+                         L.getNameLoc(),
+                         /*IsDecl=*/false,
+                         {L.getDecl()}};
+    }
+
+    void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
+      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
+                         L.getNameLoc(),
+                         /*IsDecl=*/false,
+                         {L.getDecl()}};
+    }
+
+    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
+      // We must ensure template type aliases are included in results if they
+      // were written in the source code, e.g. in
+      //    template <class T> using valias = vector<T>;
+      //    ^valias<int> x;
+      // 'explicitReferenceTargets' will return:
+      //    1. valias with mask 'Alias'.
+      //    2. 'vector<int>' with mask 'Underlying'.
+      //  we want to return only #1 in this case.
+      Ref = ReferenceLoc{
+          NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
+          explicitReferenceTargets(DynTypedNode::create(L.getType()),
+                                   DeclRelation::Alias)};
+    }
+    void VisitDeducedTemplateSpecializationTypeLoc(
+        DeducedTemplateSpecializationTypeLoc L) {
+      Ref = ReferenceLoc{
+          NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
+          explicitReferenceTargets(DynTypedNode::create(L.getType()),
+                                   DeclRelation::Alias)};
+    }
+
+    void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
+      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
+                         TL.getNameLoc(),
+                         /*IsDecl=*/false,
+                         {TL.getDecl()}};
+    }
+
+    void VisitDependentTemplateSpecializationTypeLoc(
+        DependentTemplateSpecializationTypeLoc L) {
+      Ref = ReferenceLoc{
+          L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
+          explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
+    }
+
+    void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
+      Ref = ReferenceLoc{
+          L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
+          explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
+    }
+
+    void VisitTypedefTypeLoc(TypedefTypeLoc L) {
+      Ref = ReferenceLoc{NestedNameSpecifierLoc(),
+                         L.getNameLoc(),
+                         /*IsDecl=*/false,
+                         {L.getTypedefNameDecl()}};
+    }
+  };
+
+  Visitor V;
+  V.Visit(L.getUnqualifiedLoc());
+  if (!V.Ref)
+    return {};
+  return {*V.Ref};
+}
+
+class ExplicitReferenceCollector
+    : public RecursiveASTVisitor<ExplicitReferenceCollector> {
+public:
+  ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out)
+      : Out(Out) {
+    assert(Out);
+  }
+
+  bool VisitTypeLoc(TypeLoc TTL) {
+    if (TypeLocsToSkip.count(TTL.getBeginLoc().getRawEncoding()))
+      return true;
+    visitNode(DynTypedNode::create(TTL));
+    return true;
+  }
+
+  bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
+    // ElaboratedTypeLoc will reports information for its inner type loc.
+    // Otherwise we loose information about inner types loc's qualifier.
+    TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
+    TypeLocsToSkip.insert(Inner.getBeginLoc().getRawEncoding());
+    return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
+  }
+
+  bool VisitExpr(Expr *E) {
+    visitNode(DynTypedNode::create(*E));
+    return true;
+  }
+
+  bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
+    visitNode(DynTypedNode::create(*OVE));
+    // Not clear why the source expression is skipped by default...
+    // FIXME: can we just make RecursiveASTVisitor do this?
+    return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
+  }
+
+  bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
+    visitNode(DynTypedNode::create(*POE));
+    // Traverse only the syntactic form to find the *written* references.
+    // (The semantic form also contains lots of duplication)
+    return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
+  }
+
+  // We re-define Traverse*, since there's no corresponding Visit*.
+  // TemplateArgumentLoc is the only way to get locations for references to
+  // template template parameters.
+  bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
+    switch (A.getArgument().getKind()) {
+    case TemplateArgument::Template:
+    case TemplateArgument::TemplateExpansion:
+      reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
+                                   A.getTemplateNameLoc(),
+                                   /*IsDecl=*/false,
+                                   {A.getArgument()
+                                        .getAsTemplateOrTemplatePattern()
+                                        .getAsTemplateDecl()}},
+                      DynTypedNode::create(A.getArgument()));
+      break;
+    case TemplateArgument::Declaration:
+      break; // FIXME: can this actually happen in TemplateArgumentLoc?
+    case TemplateArgument::Integral:
+    case TemplateArgument::Null:
+    case TemplateArgument::NullPtr:
+      break; // no references.
+    case TemplateArgument::Pack:
+    case TemplateArgument::Type:
+    case TemplateArgument::Expression:
+      break; // Handled by VisitType and VisitExpression.
+    };
+    return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
+  }
+
+  bool VisitDecl(Decl *D) {
+    visitNode(DynTypedNode::create(*D));
+    return true;
+  }
+
+  // We have to use Traverse* because there is no corresponding Visit*.
+  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
+    if (!L.getNestedNameSpecifier())
+      return true;
+    visitNode(DynTypedNode::create(L));
+    // Inner type is missing information about its qualifier, skip it.
+    if (auto TL = L.getTypeLoc())
+      TypeLocsToSkip.insert(TL.getBeginLoc().getRawEncoding());
+    return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
+  }
+
+  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
+    visitNode(DynTypedNode::create(*Init));
+    return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
+  }
+
+private:
+  /// Obtain information about a reference directly defined in \p N. Does not
+  /// recurse into child nodes, e.g. do not expect references for constructor
+  /// initializers
+  ///
+  /// Any of the fields in the returned structure can be empty, but not all of
+  /// them, e.g.
+  ///   - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
+  ///     source location information may be missing,
+  ///   - for dependent code, targets may be empty.
+  ///
+  /// (!) For the purposes of this function declarations are not considered to
+  ///     be references. However, declarations can have references inside them,
+  ///     e.g. 'namespace foo = std' references namespace 'std' and this
+  ///     function will return the corresponding reference.
+  llvm::SmallVector<ReferenceLoc, 2> explicitReference(DynTypedNode N) {
+    if (auto *D = N.get<Decl>())
+      return refInDecl(D);
+    if (auto *E = N.get<Expr>())
+      return refInExpr(E);
+    if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
+      // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
+      return {ReferenceLoc{
+          NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
+          explicitReferenceTargets(
+              DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
+              DeclRelation::Alias)}};
+    }
+    if (const TypeLoc *TL = N.get<TypeLoc>())
+      return refInTypeLoc(*TL);
+    if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
+      // Other type initializers (e.g. base initializer) are handled by visiting
+      // the typeLoc.
+      if (CCI->isAnyMemberInitializer()) {
+        return {ReferenceLoc{NestedNameSpecifierLoc(),
+                             CCI->getMemberLocation(),
+                             /*IsDecl=*/false,
+                             {CCI->getAnyMember()}}};
+      }
+    }
+    // We do not have location information for other nodes (QualType, etc)
+    return {};
+  }
+
+  void visitNode(DynTypedNode N) {
+    for (const auto &R : explicitReference(N))
+      reportReference(R, N);
+  }
+
+  void reportReference(const ReferenceLoc &Ref, DynTypedNode N) {
+    // Our promise is to return only references from the source code. If we lack
+    // location information, skip these nodes.
+    // Normally this should not happen in practice, unless there are bugs in the
+    // traversals or users started the traversal at an implicit node.
+    if (Ref.NameLoc.isInvalid()) {
+      dlog("invalid location at node {0}", nodeToString(N));
+      return;
+    }
+    Out(Ref);
+  }
+
+  llvm::function_ref<void(ReferenceLoc)> Out;
+  /// TypeLocs starting at these locations must be skipped, see
+  /// TraverseElaboratedTypeSpecifierLoc for details.
+  llvm::DenseSet</*SourceLocation*/ unsigned> TypeLocsToSkip;
+};
+} // namespace
+
+void findExplicitReferences(const Stmt *S,
+                            llvm::function_ref<void(ReferenceLoc)> Out) {
+  assert(S);
+  ExplicitReferenceCollector(Out).TraverseStmt(const_cast<Stmt *>(S));
+}
+void findExplicitReferences(const Decl *D,
+                            llvm::function_ref<void(ReferenceLoc)> Out) {
+  assert(D);
+  ExplicitReferenceCollector(Out).TraverseDecl(const_cast<Decl *>(D));
+}
+void findExplicitReferences(const ASTContext &AST,
+                            llvm::function_ref<void(ReferenceLoc)> Out) {
+  ExplicitReferenceCollector(Out).TraverseAST(const_cast<ASTContext &>(AST));
+}
+
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
+  switch (R) {
+#define REL_CASE(X)                                                            \
+  case DeclRelation::X:                                                        \
+    return OS << #X;
+    REL_CASE(Alias);
+    REL_CASE(Underlying);
+    REL_CASE(TemplateInstantiation);
+    REL_CASE(TemplatePattern);
+#undef REL_CASE
+  }
+  llvm_unreachable("Unhandled DeclRelation enum");
+}
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
+  const char *Sep = "";
+  for (unsigned I = 0; I < RS.S.size(); ++I) {
+    if (RS.S.test(I)) {
+      OS << Sep << static_cast<DeclRelation>(I);
+      Sep = "|";
+    }
+  }
+  return OS;
+}
+
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
+  // note we cannot print R.NameLoc without a source manager.
+  OS << "targets = {";
+  bool First = true;
+  for (const NamedDecl *T : R.Targets) {
+    if (!First)
+      OS << ", ";
+    else
+      First = false;
+    OS << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
+  }
+  OS << "}";
+  if (R.Qualifier) {
+    OS << ", qualifier = '";
+    R.Qualifier.getNestedNameSpecifier()->print(OS,
+                                                PrintingPolicy(LangOptions()));
+    OS << "'";
+  }
+  if (R.IsDecl)
+    OS << ", decl";
+  return OS;
+}
+
+} // namespace clangd
+} // namespace clang