Mercurial > hg > CbC > CbC_llvm
diff clang/lib/CodeGen/CGValue.h @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 2e18cbf3894f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/clang/lib/CodeGen/CGValue.h Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,632 @@ +//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// These classes implement wrappers around llvm::Value in order to +// fully represent the range of values for C L- and R- values. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H +#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H + +#include "clang/AST/ASTContext.h" +#include "clang/AST/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Type.h" +#include "Address.h" +#include "CodeGenTBAA.h" + +namespace llvm { + class Constant; + class MDNode; +} + +namespace clang { +namespace CodeGen { + class AggValueSlot; + class CodeGenFunction; + struct CGBitFieldInfo; + +/// RValue - This trivial value class is used to represent the result of an +/// expression that is evaluated. It can be one of three things: either a +/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the +/// address of an aggregate value in memory. +class RValue { + enum Flavor { Scalar, Complex, Aggregate }; + + // The shift to make to an aggregate's alignment to make it look + // like a pointer. + enum { AggAlignShift = 4 }; + + // Stores first value and flavor. + llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; + // Stores second value and volatility. + llvm::PointerIntPair<llvm::Value *, 1, bool> V2; + +public: + bool isScalar() const { return V1.getInt() == Scalar; } + bool isComplex() const { return V1.getInt() == Complex; } + bool isAggregate() const { return V1.getInt() == Aggregate; } + + bool isVolatileQualified() const { return V2.getInt(); } + + /// getScalarVal() - Return the Value* of this scalar value. + llvm::Value *getScalarVal() const { + assert(isScalar() && "Not a scalar!"); + return V1.getPointer(); + } + + /// getComplexVal - Return the real/imag components of this complex value. + /// + std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { + return std::make_pair(V1.getPointer(), V2.getPointer()); + } + + /// getAggregateAddr() - Return the Value* of the address of the aggregate. + Address getAggregateAddress() const { + assert(isAggregate() && "Not an aggregate!"); + auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; + return Address(V1.getPointer(), CharUnits::fromQuantity(align)); + } + llvm::Value *getAggregatePointer() const { + assert(isAggregate() && "Not an aggregate!"); + return V1.getPointer(); + } + + static RValue getIgnored() { + // FIXME: should we make this a more explicit state? + return get(nullptr); + } + + static RValue get(llvm::Value *V) { + RValue ER; + ER.V1.setPointer(V); + ER.V1.setInt(Scalar); + ER.V2.setInt(false); + return ER; + } + static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { + RValue ER; + ER.V1.setPointer(V1); + ER.V2.setPointer(V2); + ER.V1.setInt(Complex); + ER.V2.setInt(false); + return ER; + } + static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { + return getComplex(C.first, C.second); + } + // FIXME: Aggregate rvalues need to retain information about whether they are + // volatile or not. Remove default to find all places that probably get this + // wrong. + static RValue getAggregate(Address addr, bool isVolatile = false) { + RValue ER; + ER.V1.setPointer(addr.getPointer()); + ER.V1.setInt(Aggregate); + + auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); + ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); + ER.V2.setInt(isVolatile); + return ER; + } +}; + +/// Does an ARC strong l-value have precise lifetime? +enum ARCPreciseLifetime_t { + ARCImpreciseLifetime, ARCPreciseLifetime +}; + +/// The source of the alignment of an l-value; an expression of +/// confidence in the alignment actually matching the estimate. +enum class AlignmentSource { + /// The l-value was an access to a declared entity or something + /// equivalently strong, like the address of an array allocated by a + /// language runtime. + Decl, + + /// The l-value was considered opaque, so the alignment was + /// determined from a type, but that type was an explicitly-aligned + /// typedef. + AttributedType, + + /// The l-value was considered opaque, so the alignment was + /// determined from a type. + Type +}; + +/// Given that the base address has the given alignment source, what's +/// our confidence in the alignment of the field? +static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { + // For now, we don't distinguish fields of opaque pointers from + // top-level declarations, but maybe we should. + return AlignmentSource::Decl; +} + +class LValueBaseInfo { + AlignmentSource AlignSource; + +public: + explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) + : AlignSource(Source) {} + AlignmentSource getAlignmentSource() const { return AlignSource; } + void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } + + void mergeForCast(const LValueBaseInfo &Info) { + setAlignmentSource(Info.getAlignmentSource()); + } +}; + +/// LValue - This represents an lvalue references. Because C/C++ allow +/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a +/// bitrange. +class LValue { + enum { + Simple, // This is a normal l-value, use getAddress(). + VectorElt, // This is a vector element l-value (V[i]), use getVector* + BitField, // This is a bitfield l-value, use getBitfield*. + ExtVectorElt, // This is an extended vector subset, use getExtVectorComp + GlobalReg // This is a register l-value, use getGlobalReg() + } LVType; + + llvm::Value *V; + + union { + // Index into a vector subscript: V[i] + llvm::Value *VectorIdx; + + // ExtVector element subset: V.xyx + llvm::Constant *VectorElts; + + // BitField start bit and size + const CGBitFieldInfo *BitFieldInfo; + }; + + QualType Type; + + // 'const' is unused here + Qualifiers Quals; + + // The alignment to use when accessing this lvalue. (For vector elements, + // this is the alignment of the whole vector.) + unsigned Alignment; + + // objective-c's ivar + bool Ivar:1; + + // objective-c's ivar is an array + bool ObjIsArray:1; + + // LValue is non-gc'able for any reason, including being a parameter or local + // variable. + bool NonGC: 1; + + // Lvalue is a global reference of an objective-c object + bool GlobalObjCRef : 1; + + // Lvalue is a thread local reference + bool ThreadLocalRef : 1; + + // Lvalue has ARC imprecise lifetime. We store this inverted to try + // to make the default bitfield pattern all-zeroes. + bool ImpreciseLifetime : 1; + + // This flag shows if a nontemporal load/stores should be used when accessing + // this lvalue. + bool Nontemporal : 1; + + LValueBaseInfo BaseInfo; + TBAAAccessInfo TBAAInfo; + + Expr *BaseIvarExp; + +private: + void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, + LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { + assert((!Alignment.isZero() || Type->isIncompleteType()) && + "initializing l-value with zero alignment!"); + this->Type = Type; + this->Quals = Quals; + const unsigned MaxAlign = 1U << 31; + this->Alignment = Alignment.getQuantity() <= MaxAlign + ? Alignment.getQuantity() + : MaxAlign; + assert(this->Alignment == Alignment.getQuantity() && + "Alignment exceeds allowed max!"); + this->BaseInfo = BaseInfo; + this->TBAAInfo = TBAAInfo; + + // Initialize Objective-C flags. + this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; + this->ImpreciseLifetime = false; + this->Nontemporal = false; + this->ThreadLocalRef = false; + this->BaseIvarExp = nullptr; + } + +public: + bool isSimple() const { return LVType == Simple; } + bool isVectorElt() const { return LVType == VectorElt; } + bool isBitField() const { return LVType == BitField; } + bool isExtVectorElt() const { return LVType == ExtVectorElt; } + bool isGlobalReg() const { return LVType == GlobalReg; } + + bool isVolatileQualified() const { return Quals.hasVolatile(); } + bool isRestrictQualified() const { return Quals.hasRestrict(); } + unsigned getVRQualifiers() const { + return Quals.getCVRQualifiers() & ~Qualifiers::Const; + } + + QualType getType() const { return Type; } + + Qualifiers::ObjCLifetime getObjCLifetime() const { + return Quals.getObjCLifetime(); + } + + bool isObjCIvar() const { return Ivar; } + void setObjCIvar(bool Value) { Ivar = Value; } + + bool isObjCArray() const { return ObjIsArray; } + void setObjCArray(bool Value) { ObjIsArray = Value; } + + bool isNonGC () const { return NonGC; } + void setNonGC(bool Value) { NonGC = Value; } + + bool isGlobalObjCRef() const { return GlobalObjCRef; } + void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } + + bool isThreadLocalRef() const { return ThreadLocalRef; } + void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} + + ARCPreciseLifetime_t isARCPreciseLifetime() const { + return ARCPreciseLifetime_t(!ImpreciseLifetime); + } + void setARCPreciseLifetime(ARCPreciseLifetime_t value) { + ImpreciseLifetime = (value == ARCImpreciseLifetime); + } + bool isNontemporal() const { return Nontemporal; } + void setNontemporal(bool Value) { Nontemporal = Value; } + + bool isObjCWeak() const { + return Quals.getObjCGCAttr() == Qualifiers::Weak; + } + bool isObjCStrong() const { + return Quals.getObjCGCAttr() == Qualifiers::Strong; + } + + bool isVolatile() const { + return Quals.hasVolatile(); + } + + Expr *getBaseIvarExp() const { return BaseIvarExp; } + void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } + + TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } + void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } + + const Qualifiers &getQuals() const { return Quals; } + Qualifiers &getQuals() { return Quals; } + + LangAS getAddressSpace() const { return Quals.getAddressSpace(); } + + CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } + void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } + + LValueBaseInfo getBaseInfo() const { return BaseInfo; } + void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } + + // simple lvalue + llvm::Value *getPointer(CodeGenFunction &CGF) const { + assert(isSimple()); + return V; + } + Address getAddress(CodeGenFunction &CGF) const { + return Address(getPointer(CGF), getAlignment()); + } + void setAddress(Address address) { + assert(isSimple()); + V = address.getPointer(); + Alignment = address.getAlignment().getQuantity(); + } + + // vector elt lvalue + Address getVectorAddress() const { + return Address(getVectorPointer(), getAlignment()); + } + llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; } + llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } + + // extended vector elements. + Address getExtVectorAddress() const { + return Address(getExtVectorPointer(), getAlignment()); + } + llvm::Value *getExtVectorPointer() const { + assert(isExtVectorElt()); + return V; + } + llvm::Constant *getExtVectorElts() const { + assert(isExtVectorElt()); + return VectorElts; + } + + // bitfield lvalue + Address getBitFieldAddress() const { + return Address(getBitFieldPointer(), getAlignment()); + } + llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } + const CGBitFieldInfo &getBitFieldInfo() const { + assert(isBitField()); + return *BitFieldInfo; + } + + // global register lvalue + llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } + + static LValue MakeAddr(Address address, QualType type, ASTContext &Context, + LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { + Qualifiers qs = type.getQualifiers(); + qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); + + LValue R; + R.LVType = Simple; + assert(address.getPointer()->getType()->isPointerTy()); + R.V = address.getPointer(); + R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); + return R; + } + + static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, + QualType type, LValueBaseInfo BaseInfo, + TBAAAccessInfo TBAAInfo) { + LValue R; + R.LVType = VectorElt; + R.V = vecAddress.getPointer(); + R.VectorIdx = Idx; + R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), + BaseInfo, TBAAInfo); + return R; + } + + static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, + QualType type, LValueBaseInfo BaseInfo, + TBAAAccessInfo TBAAInfo) { + LValue R; + R.LVType = ExtVectorElt; + R.V = vecAddress.getPointer(); + R.VectorElts = Elts; + R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), + BaseInfo, TBAAInfo); + return R; + } + + /// Create a new object to represent a bit-field access. + /// + /// \param Addr - The base address of the bit-field sequence this + /// bit-field refers to. + /// \param Info - The information describing how to perform the bit-field + /// access. + static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, + QualType type, LValueBaseInfo BaseInfo, + TBAAAccessInfo TBAAInfo) { + LValue R; + R.LVType = BitField; + R.V = Addr.getPointer(); + R.BitFieldInfo = &Info; + R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, + TBAAInfo); + return R; + } + + static LValue MakeGlobalReg(Address Reg, QualType type) { + LValue R; + R.LVType = GlobalReg; + R.V = Reg.getPointer(); + R.Initialize(type, type.getQualifiers(), Reg.getAlignment(), + LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); + return R; + } + + RValue asAggregateRValue(CodeGenFunction &CGF) const { + return RValue::getAggregate(getAddress(CGF), isVolatileQualified()); + } +}; + +/// An aggregate value slot. +class AggValueSlot { + /// The address. + llvm::Value *Addr; + + // Qualifiers + Qualifiers Quals; + + unsigned Alignment; + + /// DestructedFlag - This is set to true if some external code is + /// responsible for setting up a destructor for the slot. Otherwise + /// the code which constructs it should push the appropriate cleanup. + bool DestructedFlag : 1; + + /// ObjCGCFlag - This is set to true if writing to the memory in the + /// slot might require calling an appropriate Objective-C GC + /// barrier. The exact interaction here is unnecessarily mysterious. + bool ObjCGCFlag : 1; + + /// ZeroedFlag - This is set to true if the memory in the slot is + /// known to be zero before the assignment into it. This means that + /// zero fields don't need to be set. + bool ZeroedFlag : 1; + + /// AliasedFlag - This is set to true if the slot might be aliased + /// and it's not undefined behavior to access it through such an + /// alias. Note that it's always undefined behavior to access a C++ + /// object that's under construction through an alias derived from + /// outside the construction process. + /// + /// This flag controls whether calls that produce the aggregate + /// value may be evaluated directly into the slot, or whether they + /// must be evaluated into an unaliased temporary and then memcpy'ed + /// over. Since it's invalid in general to memcpy a non-POD C++ + /// object, it's important that this flag never be set when + /// evaluating an expression which constructs such an object. + bool AliasedFlag : 1; + + /// This is set to true if the tail padding of this slot might overlap + /// another object that may have already been initialized (and whose + /// value must be preserved by this initialization). If so, we may only + /// store up to the dsize of the type. Otherwise we can widen stores to + /// the size of the type. + bool OverlapFlag : 1; + + /// If is set to true, sanitizer checks are already generated for this address + /// or not required. For instance, if this address represents an object + /// created in 'new' expression, sanitizer checks for memory is made as a part + /// of 'operator new' emission and object constructor should not generate + /// them. + bool SanitizerCheckedFlag : 1; + +public: + enum IsAliased_t { IsNotAliased, IsAliased }; + enum IsDestructed_t { IsNotDestructed, IsDestructed }; + enum IsZeroed_t { IsNotZeroed, IsZeroed }; + enum Overlap_t { DoesNotOverlap, MayOverlap }; + enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; + enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; + + /// ignored - Returns an aggregate value slot indicating that the + /// aggregate value is being ignored. + static AggValueSlot ignored() { + return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, + DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); + } + + /// forAddr - Make a slot for an aggregate value. + /// + /// \param quals - The qualifiers that dictate how the slot should + /// be initialied. Only 'volatile' and the Objective-C lifetime + /// qualifiers matter. + /// + /// \param isDestructed - true if something else is responsible + /// for calling destructors on this object + /// \param needsGC - true if the slot is potentially located + /// somewhere that ObjC GC calls should be emitted for + static AggValueSlot forAddr(Address addr, + Qualifiers quals, + IsDestructed_t isDestructed, + NeedsGCBarriers_t needsGC, + IsAliased_t isAliased, + Overlap_t mayOverlap, + IsZeroed_t isZeroed = IsNotZeroed, + IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { + AggValueSlot AV; + if (addr.isValid()) { + AV.Addr = addr.getPointer(); + AV.Alignment = addr.getAlignment().getQuantity(); + } else { + AV.Addr = nullptr; + AV.Alignment = 0; + } + AV.Quals = quals; + AV.DestructedFlag = isDestructed; + AV.ObjCGCFlag = needsGC; + AV.ZeroedFlag = isZeroed; + AV.AliasedFlag = isAliased; + AV.OverlapFlag = mayOverlap; + AV.SanitizerCheckedFlag = isChecked; + return AV; + } + + static AggValueSlot + forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, + NeedsGCBarriers_t needsGC, IsAliased_t isAliased, + Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, + IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { + return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC, + isAliased, mayOverlap, isZeroed, isChecked); + } + + IsDestructed_t isExternallyDestructed() const { + return IsDestructed_t(DestructedFlag); + } + void setExternallyDestructed(bool destructed = true) { + DestructedFlag = destructed; + } + + Qualifiers getQualifiers() const { return Quals; } + + bool isVolatile() const { + return Quals.hasVolatile(); + } + + void setVolatile(bool flag) { + if (flag) + Quals.addVolatile(); + else + Quals.removeVolatile(); + } + + Qualifiers::ObjCLifetime getObjCLifetime() const { + return Quals.getObjCLifetime(); + } + + NeedsGCBarriers_t requiresGCollection() const { + return NeedsGCBarriers_t(ObjCGCFlag); + } + + llvm::Value *getPointer() const { + return Addr; + } + + Address getAddress() const { + return Address(Addr, getAlignment()); + } + + bool isIgnored() const { + return Addr == nullptr; + } + + CharUnits getAlignment() const { + return CharUnits::fromQuantity(Alignment); + } + + IsAliased_t isPotentiallyAliased() const { + return IsAliased_t(AliasedFlag); + } + + Overlap_t mayOverlap() const { + return Overlap_t(OverlapFlag); + } + + bool isSanitizerChecked() const { + return SanitizerCheckedFlag; + } + + RValue asRValue() const { + if (isIgnored()) { + return RValue::getIgnored(); + } else { + return RValue::getAggregate(getAddress(), isVolatile()); + } + } + + void setZeroed(bool V = true) { ZeroedFlag = V; } + IsZeroed_t isZeroed() const { + return IsZeroed_t(ZeroedFlag); + } + + /// Get the preferred size to use when storing a value to this slot. This + /// is the type size unless that might overlap another object, in which + /// case it's the dsize. + CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { + return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first + : Ctx.getTypeSizeInChars(Type); + } +}; + +} // end namespace CodeGen +} // end namespace clang + +#endif