Mercurial > hg > CbC > CbC_llvm
diff clang/lib/Lex/PPMacroExpansion.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/clang/lib/Lex/PPMacroExpansion.cpp Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,1871 @@ +//===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the top level handling of macro expansion for the +// preprocessor. +// +//===----------------------------------------------------------------------===// + +#include "clang/Basic/Attributes.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/FileManager.h" +#include "clang/Basic/IdentifierTable.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/LangOptions.h" +#include "clang/Basic/ObjCRuntime.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/CodeCompletionHandler.h" +#include "clang/Lex/DirectoryLookup.h" +#include "clang/Lex/ExternalPreprocessorSource.h" +#include "clang/Lex/HeaderSearch.h" +#include "clang/Lex/LexDiagnostic.h" +#include "clang/Lex/MacroArgs.h" +#include "clang/Lex/MacroInfo.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Lex/PreprocessorLexer.h" +#include "clang/Lex/PreprocessorOptions.h" +#include "clang/Lex/Token.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/Path.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstring> +#include <ctime> +#include <string> +#include <tuple> +#include <utility> + +using namespace clang; + +MacroDirective * +Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { + if (!II->hadMacroDefinition()) + return nullptr; + auto Pos = CurSubmoduleState->Macros.find(II); + return Pos == CurSubmoduleState->Macros.end() ? nullptr + : Pos->second.getLatest(); +} + +void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ + assert(MD && "MacroDirective should be non-zero!"); + assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); + + MacroState &StoredMD = CurSubmoduleState->Macros[II]; + auto *OldMD = StoredMD.getLatest(); + MD->setPrevious(OldMD); + StoredMD.setLatest(MD); + StoredMD.overrideActiveModuleMacros(*this, II); + + if (needModuleMacros()) { + // Track that we created a new macro directive, so we know we should + // consider building a ModuleMacro for it when we get to the end of + // the module. + PendingModuleMacroNames.push_back(II); + } + + // Set up the identifier as having associated macro history. + II->setHasMacroDefinition(true); + if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) + II->setHasMacroDefinition(false); + if (II->isFromAST()) + II->setChangedSinceDeserialization(); +} + +void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, + MacroDirective *ED, + MacroDirective *MD) { + // Normally, when a macro is defined, it goes through appendMacroDirective() + // above, which chains a macro to previous defines, undefs, etc. + // However, in a pch, the whole macro history up to the end of the pch is + // stored, so ASTReader goes through this function instead. + // However, built-in macros are already registered in the Preprocessor + // ctor, and ASTWriter stops writing the macro chain at built-in macros, + // so in that case the chain from the pch needs to be spliced to the existing + // built-in. + + assert(II && MD); + MacroState &StoredMD = CurSubmoduleState->Macros[II]; + + if (auto *OldMD = StoredMD.getLatest()) { + // shouldIgnoreMacro() in ASTWriter also stops at macros from the + // predefines buffer in module builds. However, in module builds, modules + // are loaded completely before predefines are processed, so StoredMD + // will be nullptr for them when they're loaded. StoredMD should only be + // non-nullptr for builtins read from a pch file. + assert(OldMD->getMacroInfo()->isBuiltinMacro() && + "only built-ins should have an entry here"); + assert(!OldMD->getPrevious() && "builtin should only have a single entry"); + ED->setPrevious(OldMD); + StoredMD.setLatest(MD); + } else { + StoredMD = MD; + } + + // Setup the identifier as having associated macro history. + II->setHasMacroDefinition(true); + if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) + II->setHasMacroDefinition(false); +} + +ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, + MacroInfo *Macro, + ArrayRef<ModuleMacro *> Overrides, + bool &New) { + llvm::FoldingSetNodeID ID; + ModuleMacro::Profile(ID, Mod, II); + + void *InsertPos; + if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { + New = false; + return MM; + } + + auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); + ModuleMacros.InsertNode(MM, InsertPos); + + // Each overridden macro is now overridden by one more macro. + bool HidAny = false; + for (auto *O : Overrides) { + HidAny |= (O->NumOverriddenBy == 0); + ++O->NumOverriddenBy; + } + + // If we were the first overrider for any macro, it's no longer a leaf. + auto &LeafMacros = LeafModuleMacros[II]; + if (HidAny) { + LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(), + [](ModuleMacro *MM) { + return MM->NumOverriddenBy != 0; + }), + LeafMacros.end()); + } + + // The new macro is always a leaf macro. + LeafMacros.push_back(MM); + // The identifier now has defined macros (that may or may not be visible). + II->setHasMacroDefinition(true); + + New = true; + return MM; +} + +ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) { + llvm::FoldingSetNodeID ID; + ModuleMacro::Profile(ID, Mod, II); + + void *InsertPos; + return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); +} + +void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, + ModuleMacroInfo &Info) { + assert(Info.ActiveModuleMacrosGeneration != + CurSubmoduleState->VisibleModules.getGeneration() && + "don't need to update this macro name info"); + Info.ActiveModuleMacrosGeneration = + CurSubmoduleState->VisibleModules.getGeneration(); + + auto Leaf = LeafModuleMacros.find(II); + if (Leaf == LeafModuleMacros.end()) { + // No imported macros at all: nothing to do. + return; + } + + Info.ActiveModuleMacros.clear(); + + // Every macro that's locally overridden is overridden by a visible macro. + llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; + for (auto *O : Info.OverriddenMacros) + NumHiddenOverrides[O] = -1; + + // Collect all macros that are not overridden by a visible macro. + llvm::SmallVector<ModuleMacro *, 16> Worklist; + for (auto *LeafMM : Leaf->second) { + assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); + if (NumHiddenOverrides.lookup(LeafMM) == 0) + Worklist.push_back(LeafMM); + } + while (!Worklist.empty()) { + auto *MM = Worklist.pop_back_val(); + if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { + // We only care about collecting definitions; undefinitions only act + // to override other definitions. + if (MM->getMacroInfo()) + Info.ActiveModuleMacros.push_back(MM); + } else { + for (auto *O : MM->overrides()) + if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) + Worklist.push_back(O); + } + } + // Our reverse postorder walk found the macros in reverse order. + std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); + + // Determine whether the macro name is ambiguous. + MacroInfo *MI = nullptr; + bool IsSystemMacro = true; + bool IsAmbiguous = false; + if (auto *MD = Info.MD) { + while (MD && isa<VisibilityMacroDirective>(MD)) + MD = MD->getPrevious(); + if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { + MI = DMD->getInfo(); + IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); + } + } + for (auto *Active : Info.ActiveModuleMacros) { + auto *NewMI = Active->getMacroInfo(); + + // Before marking the macro as ambiguous, check if this is a case where + // both macros are in system headers. If so, we trust that the system + // did not get it wrong. This also handles cases where Clang's own + // headers have a different spelling of certain system macros: + // #define LONG_MAX __LONG_MAX__ (clang's limits.h) + // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) + // + // FIXME: Remove the defined-in-system-headers check. clang's limits.h + // overrides the system limits.h's macros, so there's no conflict here. + if (MI && NewMI != MI && + !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) + IsAmbiguous = true; + IsSystemMacro &= Active->getOwningModule()->IsSystem || + SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); + MI = NewMI; + } + Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; +} + +void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { + ArrayRef<ModuleMacro*> Leaf; + auto LeafIt = LeafModuleMacros.find(II); + if (LeafIt != LeafModuleMacros.end()) + Leaf = LeafIt->second; + const MacroState *State = nullptr; + auto Pos = CurSubmoduleState->Macros.find(II); + if (Pos != CurSubmoduleState->Macros.end()) + State = &Pos->second; + + llvm::errs() << "MacroState " << State << " " << II->getNameStart(); + if (State && State->isAmbiguous(*this, II)) + llvm::errs() << " ambiguous"; + if (State && !State->getOverriddenMacros().empty()) { + llvm::errs() << " overrides"; + for (auto *O : State->getOverriddenMacros()) + llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); + } + llvm::errs() << "\n"; + + // Dump local macro directives. + for (auto *MD = State ? State->getLatest() : nullptr; MD; + MD = MD->getPrevious()) { + llvm::errs() << " "; + MD->dump(); + } + + // Dump module macros. + llvm::DenseSet<ModuleMacro*> Active; + for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) + Active.insert(MM); + llvm::DenseSet<ModuleMacro*> Visited; + llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); + while (!Worklist.empty()) { + auto *MM = Worklist.pop_back_val(); + llvm::errs() << " ModuleMacro " << MM << " " + << MM->getOwningModule()->getFullModuleName(); + if (!MM->getMacroInfo()) + llvm::errs() << " undef"; + + if (Active.count(MM)) + llvm::errs() << " active"; + else if (!CurSubmoduleState->VisibleModules.isVisible( + MM->getOwningModule())) + llvm::errs() << " hidden"; + else if (MM->getMacroInfo()) + llvm::errs() << " overridden"; + + if (!MM->overrides().empty()) { + llvm::errs() << " overrides"; + for (auto *O : MM->overrides()) { + llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); + if (Visited.insert(O).second) + Worklist.push_back(O); + } + } + llvm::errs() << "\n"; + if (auto *MI = MM->getMacroInfo()) { + llvm::errs() << " "; + MI->dump(); + llvm::errs() << "\n"; + } + } +} + +/// RegisterBuiltinMacro - Register the specified identifier in the identifier +/// table and mark it as a builtin macro to be expanded. +static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ + // Get the identifier. + IdentifierInfo *Id = PP.getIdentifierInfo(Name); + + // Mark it as being a macro that is builtin. + MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); + MI->setIsBuiltinMacro(); + PP.appendDefMacroDirective(Id, MI); + return Id; +} + +/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the +/// identifier table. +void Preprocessor::RegisterBuiltinMacros() { + Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); + Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); + Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); + Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); + Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); + Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); + + // C++ Standing Document Extensions. + if (LangOpts.CPlusPlus) + Ident__has_cpp_attribute = + RegisterBuiltinMacro(*this, "__has_cpp_attribute"); + else + Ident__has_cpp_attribute = nullptr; + + // GCC Extensions. + Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); + Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); + Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); + + // Microsoft Extensions. + if (LangOpts.MicrosoftExt) { + Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); + Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); + } else { + Ident__identifier = nullptr; + Ident__pragma = nullptr; + } + + // Clang Extensions. + Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); + Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); + Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); + Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); + Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); + if (!LangOpts.CPlusPlus) + Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); + else + Ident__has_c_attribute = nullptr; + + Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); + Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); + Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); + Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); + Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); + Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); + Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); + Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); + Ident__is_target_environment = + RegisterBuiltinMacro(*this, "__is_target_environment"); + + // Modules. + Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); + if (!LangOpts.CurrentModule.empty()) + Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); + else + Ident__MODULE__ = nullptr; +} + +/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token +/// in its expansion, currently expands to that token literally. +static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, + const IdentifierInfo *MacroIdent, + Preprocessor &PP) { + IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); + + // If the token isn't an identifier, it's always literally expanded. + if (!II) return true; + + // If the information about this identifier is out of date, update it from + // the external source. + if (II->isOutOfDate()) + PP.getExternalSource()->updateOutOfDateIdentifier(*II); + + // If the identifier is a macro, and if that macro is enabled, it may be + // expanded so it's not a trivial expansion. + if (auto *ExpansionMI = PP.getMacroInfo(II)) + if (ExpansionMI->isEnabled() && + // Fast expanding "#define X X" is ok, because X would be disabled. + II != MacroIdent) + return false; + + // If this is an object-like macro invocation, it is safe to trivially expand + // it. + if (MI->isObjectLike()) return true; + + // If this is a function-like macro invocation, it's safe to trivially expand + // as long as the identifier is not a macro argument. + return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end(); +} + +/// isNextPPTokenLParen - Determine whether the next preprocessor token to be +/// lexed is a '('. If so, consume the token and return true, if not, this +/// method should have no observable side-effect on the lexed tokens. +bool Preprocessor::isNextPPTokenLParen() { + // Do some quick tests for rejection cases. + unsigned Val; + if (CurLexer) + Val = CurLexer->isNextPPTokenLParen(); + else + Val = CurTokenLexer->isNextTokenLParen(); + + if (Val == 2) { + // We have run off the end. If it's a source file we don't + // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the + // macro stack. + if (CurPPLexer) + return false; + for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { + if (Entry.TheLexer) + Val = Entry.TheLexer->isNextPPTokenLParen(); + else + Val = Entry.TheTokenLexer->isNextTokenLParen(); + + if (Val != 2) + break; + + // Ran off the end of a source file? + if (Entry.ThePPLexer) + return false; + } + } + + // Okay, if we know that the token is a '(', lex it and return. Otherwise we + // have found something that isn't a '(' or we found the end of the + // translation unit. In either case, return false. + return Val == 1; +} + +/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be +/// expanded as a macro, handle it and return the next token as 'Identifier'. +bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, + const MacroDefinition &M) { + MacroInfo *MI = M.getMacroInfo(); + + // If this is a macro expansion in the "#if !defined(x)" line for the file, + // then the macro could expand to different things in other contexts, we need + // to disable the optimization in this case. + if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); + + // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. + if (MI->isBuiltinMacro()) { + if (Callbacks) + Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), + /*Args=*/nullptr); + ExpandBuiltinMacro(Identifier); + return true; + } + + /// Args - If this is a function-like macro expansion, this contains, + /// for each macro argument, the list of tokens that were provided to the + /// invocation. + MacroArgs *Args = nullptr; + + // Remember where the end of the expansion occurred. For an object-like + // macro, this is the identifier. For a function-like macro, this is the ')'. + SourceLocation ExpansionEnd = Identifier.getLocation(); + + // If this is a function-like macro, read the arguments. + if (MI->isFunctionLike()) { + // Remember that we are now parsing the arguments to a macro invocation. + // Preprocessor directives used inside macro arguments are not portable, and + // this enables the warning. + InMacroArgs = true; + ArgMacro = &Identifier; + + Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); + + // Finished parsing args. + InMacroArgs = false; + ArgMacro = nullptr; + + // If there was an error parsing the arguments, bail out. + if (!Args) return true; + + ++NumFnMacroExpanded; + } else { + ++NumMacroExpanded; + } + + // Notice that this macro has been used. + markMacroAsUsed(MI); + + // Remember where the token is expanded. + SourceLocation ExpandLoc = Identifier.getLocation(); + SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); + + if (Callbacks) { + if (InMacroArgs) { + // We can have macro expansion inside a conditional directive while + // reading the function macro arguments. To ensure, in that case, that + // MacroExpands callbacks still happen in source order, queue this + // callback to have it happen after the function macro callback. + DelayedMacroExpandsCallbacks.push_back( + MacroExpandsInfo(Identifier, M, ExpansionRange)); + } else { + Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); + if (!DelayedMacroExpandsCallbacks.empty()) { + for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { + // FIXME: We lose macro args info with delayed callback. + Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, + /*Args=*/nullptr); + } + DelayedMacroExpandsCallbacks.clear(); + } + } + } + + // If the macro definition is ambiguous, complain. + if (M.isAmbiguous()) { + Diag(Identifier, diag::warn_pp_ambiguous_macro) + << Identifier.getIdentifierInfo(); + Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) + << Identifier.getIdentifierInfo(); + M.forAllDefinitions([&](const MacroInfo *OtherMI) { + if (OtherMI != MI) + Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) + << Identifier.getIdentifierInfo(); + }); + } + + // If we started lexing a macro, enter the macro expansion body. + + // If this macro expands to no tokens, don't bother to push it onto the + // expansion stack, only to take it right back off. + if (MI->getNumTokens() == 0) { + // No need for arg info. + if (Args) Args->destroy(*this); + + // Propagate whitespace info as if we had pushed, then popped, + // a macro context. + Identifier.setFlag(Token::LeadingEmptyMacro); + PropagateLineStartLeadingSpaceInfo(Identifier); + ++NumFastMacroExpanded; + return false; + } else if (MI->getNumTokens() == 1 && + isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), + *this)) { + // Otherwise, if this macro expands into a single trivially-expanded + // token: expand it now. This handles common cases like + // "#define VAL 42". + + // No need for arg info. + if (Args) Args->destroy(*this); + + // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro + // identifier to the expanded token. + bool isAtStartOfLine = Identifier.isAtStartOfLine(); + bool hasLeadingSpace = Identifier.hasLeadingSpace(); + + // Replace the result token. + Identifier = MI->getReplacementToken(0); + + // Restore the StartOfLine/LeadingSpace markers. + Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); + Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); + + // Update the tokens location to include both its expansion and physical + // locations. + SourceLocation Loc = + SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, + ExpansionEnd,Identifier.getLength()); + Identifier.setLocation(Loc); + + // If this is a disabled macro or #define X X, we must mark the result as + // unexpandable. + if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { + if (MacroInfo *NewMI = getMacroInfo(NewII)) + if (!NewMI->isEnabled() || NewMI == MI) { + Identifier.setFlag(Token::DisableExpand); + // Don't warn for "#define X X" like "#define bool bool" from + // stdbool.h. + if (NewMI != MI || MI->isFunctionLike()) + Diag(Identifier, diag::pp_disabled_macro_expansion); + } + } + + // Since this is not an identifier token, it can't be macro expanded, so + // we're done. + ++NumFastMacroExpanded; + return true; + } + + // Start expanding the macro. + EnterMacro(Identifier, ExpansionEnd, MI, Args); + return false; +} + +enum Bracket { + Brace, + Paren +}; + +/// CheckMatchedBrackets - Returns true if the braces and parentheses in the +/// token vector are properly nested. +static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { + SmallVector<Bracket, 8> Brackets; + for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), + E = Tokens.end(); + I != E; ++I) { + if (I->is(tok::l_paren)) { + Brackets.push_back(Paren); + } else if (I->is(tok::r_paren)) { + if (Brackets.empty() || Brackets.back() == Brace) + return false; + Brackets.pop_back(); + } else if (I->is(tok::l_brace)) { + Brackets.push_back(Brace); + } else if (I->is(tok::r_brace)) { + if (Brackets.empty() || Brackets.back() == Paren) + return false; + Brackets.pop_back(); + } + } + return Brackets.empty(); +} + +/// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new +/// vector of tokens in NewTokens. The new number of arguments will be placed +/// in NumArgs and the ranges which need to surrounded in parentheses will be +/// in ParenHints. +/// Returns false if the token stream cannot be changed. If this is because +/// of an initializer list starting a macro argument, the range of those +/// initializer lists will be place in InitLists. +static bool GenerateNewArgTokens(Preprocessor &PP, + SmallVectorImpl<Token> &OldTokens, + SmallVectorImpl<Token> &NewTokens, + unsigned &NumArgs, + SmallVectorImpl<SourceRange> &ParenHints, + SmallVectorImpl<SourceRange> &InitLists) { + if (!CheckMatchedBrackets(OldTokens)) + return false; + + // Once it is known that the brackets are matched, only a simple count of the + // braces is needed. + unsigned Braces = 0; + + // First token of a new macro argument. + SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); + + // First closing brace in a new macro argument. Used to generate + // SourceRanges for InitLists. + SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); + NumArgs = 0; + Token TempToken; + // Set to true when a macro separator token is found inside a braced list. + // If true, the fixed argument spans multiple old arguments and ParenHints + // will be updated. + bool FoundSeparatorToken = false; + for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), + E = OldTokens.end(); + I != E; ++I) { + if (I->is(tok::l_brace)) { + ++Braces; + } else if (I->is(tok::r_brace)) { + --Braces; + if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) + ClosingBrace = I; + } else if (I->is(tok::eof)) { + // EOF token is used to separate macro arguments + if (Braces != 0) { + // Assume comma separator is actually braced list separator and change + // it back to a comma. + FoundSeparatorToken = true; + I->setKind(tok::comma); + I->setLength(1); + } else { // Braces == 0 + // Separator token still separates arguments. + ++NumArgs; + + // If the argument starts with a brace, it can't be fixed with + // parentheses. A different diagnostic will be given. + if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { + InitLists.push_back( + SourceRange(ArgStartIterator->getLocation(), + PP.getLocForEndOfToken(ClosingBrace->getLocation()))); + ClosingBrace = E; + } + + // Add left paren + if (FoundSeparatorToken) { + TempToken.startToken(); + TempToken.setKind(tok::l_paren); + TempToken.setLocation(ArgStartIterator->getLocation()); + TempToken.setLength(0); + NewTokens.push_back(TempToken); + } + + // Copy over argument tokens + NewTokens.insert(NewTokens.end(), ArgStartIterator, I); + + // Add right paren and store the paren locations in ParenHints + if (FoundSeparatorToken) { + SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); + TempToken.startToken(); + TempToken.setKind(tok::r_paren); + TempToken.setLocation(Loc); + TempToken.setLength(0); + NewTokens.push_back(TempToken); + ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), + Loc)); + } + + // Copy separator token + NewTokens.push_back(*I); + + // Reset values + ArgStartIterator = I + 1; + FoundSeparatorToken = false; + } + } + } + + return !ParenHints.empty() && InitLists.empty(); +} + +/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next +/// token is the '(' of the macro, this method is invoked to read all of the +/// actual arguments specified for the macro invocation. This returns null on +/// error. +MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, + MacroInfo *MI, + SourceLocation &MacroEnd) { + // The number of fixed arguments to parse. + unsigned NumFixedArgsLeft = MI->getNumParams(); + bool isVariadic = MI->isVariadic(); + + // Outer loop, while there are more arguments, keep reading them. + Token Tok; + + // Read arguments as unexpanded tokens. This avoids issues, e.g., where + // an argument value in a macro could expand to ',' or '(' or ')'. + LexUnexpandedToken(Tok); + assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); + + // ArgTokens - Build up a list of tokens that make up each argument. Each + // argument is separated by an EOF token. Use a SmallVector so we can avoid + // heap allocations in the common case. + SmallVector<Token, 64> ArgTokens; + bool ContainsCodeCompletionTok = false; + bool FoundElidedComma = false; + + SourceLocation TooManyArgsLoc; + + unsigned NumActuals = 0; + while (Tok.isNot(tok::r_paren)) { + if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) + break; + + assert(Tok.isOneOf(tok::l_paren, tok::comma) && + "only expect argument separators here"); + + size_t ArgTokenStart = ArgTokens.size(); + SourceLocation ArgStartLoc = Tok.getLocation(); + + // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note + // that we already consumed the first one. + unsigned NumParens = 0; + + while (true) { + // Read arguments as unexpanded tokens. This avoids issues, e.g., where + // an argument value in a macro could expand to ',' or '(' or ')'. + LexUnexpandedToken(Tok); + + if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" + if (!ContainsCodeCompletionTok) { + Diag(MacroName, diag::err_unterm_macro_invoc); + Diag(MI->getDefinitionLoc(), diag::note_macro_here) + << MacroName.getIdentifierInfo(); + // Do not lose the EOF/EOD. Return it to the client. + MacroName = Tok; + return nullptr; + } + // Do not lose the EOF/EOD. + auto Toks = std::make_unique<Token[]>(1); + Toks[0] = Tok; + EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); + break; + } else if (Tok.is(tok::r_paren)) { + // If we found the ) token, the macro arg list is done. + if (NumParens-- == 0) { + MacroEnd = Tok.getLocation(); + if (!ArgTokens.empty() && + ArgTokens.back().commaAfterElided()) { + FoundElidedComma = true; + } + break; + } + } else if (Tok.is(tok::l_paren)) { + ++NumParens; + } else if (Tok.is(tok::comma)) { + // In Microsoft-compatibility mode, single commas from nested macro + // expansions should not be considered as argument separators. We test + // for this with the IgnoredComma token flag. + if (Tok.getFlags() & Token::IgnoredComma) { + // However, in MSVC's preprocessor, subsequent expansions do treat + // these commas as argument separators. This leads to a common + // workaround used in macros that need to work in both MSVC and + // compliant preprocessors. Therefore, the IgnoredComma flag can only + // apply once to any given token. + Tok.clearFlag(Token::IgnoredComma); + } else if (NumParens == 0) { + // Comma ends this argument if there are more fixed arguments + // expected. However, if this is a variadic macro, and this is part of + // the variadic part, then the comma is just an argument token. + if (!isVariadic) + break; + if (NumFixedArgsLeft > 1) + break; + } + } else if (Tok.is(tok::comment) && !KeepMacroComments) { + // If this is a comment token in the argument list and we're just in + // -C mode (not -CC mode), discard the comment. + continue; + } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { + // Reading macro arguments can cause macros that we are currently + // expanding from to be popped off the expansion stack. Doing so causes + // them to be reenabled for expansion. Here we record whether any + // identifiers we lex as macro arguments correspond to disabled macros. + // If so, we mark the token as noexpand. This is a subtle aspect of + // C99 6.10.3.4p2. + if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) + if (!MI->isEnabled()) + Tok.setFlag(Token::DisableExpand); + } else if (Tok.is(tok::code_completion)) { + ContainsCodeCompletionTok = true; + if (CodeComplete) + CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), + MI, NumActuals); + // Don't mark that we reached the code-completion point because the + // parser is going to handle the token and there will be another + // code-completion callback. + } + + ArgTokens.push_back(Tok); + } + + // If this was an empty argument list foo(), don't add this as an empty + // argument. + if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) + break; + + // If this is not a variadic macro, and too many args were specified, emit + // an error. + if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { + if (ArgTokens.size() != ArgTokenStart) + TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); + else + TooManyArgsLoc = ArgStartLoc; + } + + // Empty arguments are standard in C99 and C++0x, and are supported as an + // extension in other modes. + if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) + Diag(Tok, LangOpts.CPlusPlus11 ? + diag::warn_cxx98_compat_empty_fnmacro_arg : + diag::ext_empty_fnmacro_arg); + + // Add a marker EOF token to the end of the token list for this argument. + Token EOFTok; + EOFTok.startToken(); + EOFTok.setKind(tok::eof); + EOFTok.setLocation(Tok.getLocation()); + EOFTok.setLength(0); + ArgTokens.push_back(EOFTok); + ++NumActuals; + if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) + --NumFixedArgsLeft; + } + + // Okay, we either found the r_paren. Check to see if we parsed too few + // arguments. + unsigned MinArgsExpected = MI->getNumParams(); + + // If this is not a variadic macro, and too many args were specified, emit + // an error. + if (!isVariadic && NumActuals > MinArgsExpected && + !ContainsCodeCompletionTok) { + // Emit the diagnostic at the macro name in case there is a missing ). + // Emitting it at the , could be far away from the macro name. + Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); + Diag(MI->getDefinitionLoc(), diag::note_macro_here) + << MacroName.getIdentifierInfo(); + + // Commas from braced initializer lists will be treated as argument + // separators inside macros. Attempt to correct for this with parentheses. + // TODO: See if this can be generalized to angle brackets for templates + // inside macro arguments. + + SmallVector<Token, 4> FixedArgTokens; + unsigned FixedNumArgs = 0; + SmallVector<SourceRange, 4> ParenHints, InitLists; + if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, + ParenHints, InitLists)) { + if (!InitLists.empty()) { + DiagnosticBuilder DB = + Diag(MacroName, + diag::note_init_list_at_beginning_of_macro_argument); + for (SourceRange Range : InitLists) + DB << Range; + } + return nullptr; + } + if (FixedNumArgs != MinArgsExpected) + return nullptr; + + DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); + for (SourceRange ParenLocation : ParenHints) { + DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); + DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); + } + ArgTokens.swap(FixedArgTokens); + NumActuals = FixedNumArgs; + } + + // See MacroArgs instance var for description of this. + bool isVarargsElided = false; + + if (ContainsCodeCompletionTok) { + // Recover from not-fully-formed macro invocation during code-completion. + Token EOFTok; + EOFTok.startToken(); + EOFTok.setKind(tok::eof); + EOFTok.setLocation(Tok.getLocation()); + EOFTok.setLength(0); + for (; NumActuals < MinArgsExpected; ++NumActuals) + ArgTokens.push_back(EOFTok); + } + + if (NumActuals < MinArgsExpected) { + // There are several cases where too few arguments is ok, handle them now. + if (NumActuals == 0 && MinArgsExpected == 1) { + // #define A(X) or #define A(...) ---> A() + + // If there is exactly one argument, and that argument is missing, + // then we have an empty "()" argument empty list. This is fine, even if + // the macro expects one argument (the argument is just empty). + isVarargsElided = MI->isVariadic(); + } else if ((FoundElidedComma || MI->isVariadic()) && + (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) + (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() + // Varargs where the named vararg parameter is missing: OK as extension. + // #define A(x, ...) + // A("blah") + // + // If the macro contains the comma pasting extension, the diagnostic + // is suppressed; we know we'll get another diagnostic later. + if (!MI->hasCommaPasting()) { + Diag(Tok, diag::ext_missing_varargs_arg); + Diag(MI->getDefinitionLoc(), diag::note_macro_here) + << MacroName.getIdentifierInfo(); + } + + // Remember this occurred, allowing us to elide the comma when used for + // cases like: + // #define A(x, foo...) blah(a, ## foo) + // #define B(x, ...) blah(a, ## __VA_ARGS__) + // #define C(...) blah(a, ## __VA_ARGS__) + // A(x) B(x) C() + isVarargsElided = true; + } else if (!ContainsCodeCompletionTok) { + // Otherwise, emit the error. + Diag(Tok, diag::err_too_few_args_in_macro_invoc); + Diag(MI->getDefinitionLoc(), diag::note_macro_here) + << MacroName.getIdentifierInfo(); + return nullptr; + } + + // Add a marker EOF token to the end of the token list for this argument. + SourceLocation EndLoc = Tok.getLocation(); + Tok.startToken(); + Tok.setKind(tok::eof); + Tok.setLocation(EndLoc); + Tok.setLength(0); + ArgTokens.push_back(Tok); + + // If we expect two arguments, add both as empty. + if (NumActuals == 0 && MinArgsExpected == 2) + ArgTokens.push_back(Tok); + + } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && + !ContainsCodeCompletionTok) { + // Emit the diagnostic at the macro name in case there is a missing ). + // Emitting it at the , could be far away from the macro name. + Diag(MacroName, diag::err_too_many_args_in_macro_invoc); + Diag(MI->getDefinitionLoc(), diag::note_macro_here) + << MacroName.getIdentifierInfo(); + return nullptr; + } + + return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); +} + +/// Keeps macro expanded tokens for TokenLexers. +// +/// Works like a stack; a TokenLexer adds the macro expanded tokens that is +/// going to lex in the cache and when it finishes the tokens are removed +/// from the end of the cache. +Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, + ArrayRef<Token> tokens) { + assert(tokLexer); + if (tokens.empty()) + return nullptr; + + size_t newIndex = MacroExpandedTokens.size(); + bool cacheNeedsToGrow = tokens.size() > + MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); + MacroExpandedTokens.append(tokens.begin(), tokens.end()); + + if (cacheNeedsToGrow) { + // Go through all the TokenLexers whose 'Tokens' pointer points in the + // buffer and update the pointers to the (potential) new buffer array. + for (const auto &Lexer : MacroExpandingLexersStack) { + TokenLexer *prevLexer; + size_t tokIndex; + std::tie(prevLexer, tokIndex) = Lexer; + prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; + } + } + + MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); + return MacroExpandedTokens.data() + newIndex; +} + +void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { + assert(!MacroExpandingLexersStack.empty()); + size_t tokIndex = MacroExpandingLexersStack.back().second; + assert(tokIndex < MacroExpandedTokens.size()); + // Pop the cached macro expanded tokens from the end. + MacroExpandedTokens.resize(tokIndex); + MacroExpandingLexersStack.pop_back(); +} + +/// ComputeDATE_TIME - Compute the current time, enter it into the specified +/// scratch buffer, then return DATELoc/TIMELoc locations with the position of +/// the identifier tokens inserted. +static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, + Preprocessor &PP) { + time_t TT = time(nullptr); + struct tm *TM = localtime(&TT); + + static const char * const Months[] = { + "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" + }; + + { + SmallString<32> TmpBuffer; + llvm::raw_svector_ostream TmpStream(TmpBuffer); + TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], + TM->tm_mday, TM->tm_year + 1900); + Token TmpTok; + TmpTok.startToken(); + PP.CreateString(TmpStream.str(), TmpTok); + DATELoc = TmpTok.getLocation(); + } + + { + SmallString<32> TmpBuffer; + llvm::raw_svector_ostream TmpStream(TmpBuffer); + TmpStream << llvm::format("\"%02d:%02d:%02d\"", + TM->tm_hour, TM->tm_min, TM->tm_sec); + Token TmpTok; + TmpTok.startToken(); + PP.CreateString(TmpStream.str(), TmpTok); + TIMELoc = TmpTok.getLocation(); + } +} + +/// HasFeature - Return true if we recognize and implement the feature +/// specified by the identifier as a standard language feature. +static bool HasFeature(const Preprocessor &PP, StringRef Feature) { + const LangOptions &LangOpts = PP.getLangOpts(); + + // Normalize the feature name, __foo__ becomes foo. + if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) + Feature = Feature.substr(2, Feature.size() - 4); + +#define FEATURE(Name, Predicate) .Case(#Name, Predicate) + return llvm::StringSwitch<bool>(Feature) +#include "clang/Basic/Features.def" + .Default(false); +#undef FEATURE +} + +/// HasExtension - Return true if we recognize and implement the feature +/// specified by the identifier, either as an extension or a standard language +/// feature. +static bool HasExtension(const Preprocessor &PP, StringRef Extension) { + if (HasFeature(PP, Extension)) + return true; + + // If the use of an extension results in an error diagnostic, extensions are + // effectively unavailable, so just return false here. + if (PP.getDiagnostics().getExtensionHandlingBehavior() >= + diag::Severity::Error) + return false; + + const LangOptions &LangOpts = PP.getLangOpts(); + + // Normalize the extension name, __foo__ becomes foo. + if (Extension.startswith("__") && Extension.endswith("__") && + Extension.size() >= 4) + Extension = Extension.substr(2, Extension.size() - 4); + + // Because we inherit the feature list from HasFeature, this string switch + // must be less restrictive than HasFeature's. +#define EXTENSION(Name, Predicate) .Case(#Name, Predicate) + return llvm::StringSwitch<bool>(Extension) +#include "clang/Basic/Features.def" + .Default(false); +#undef EXTENSION +} + +/// EvaluateHasIncludeCommon - Process a '__has_include("path")' +/// or '__has_include_next("path")' expression. +/// Returns true if successful. +static bool EvaluateHasIncludeCommon(Token &Tok, + IdentifierInfo *II, Preprocessor &PP, + const DirectoryLookup *LookupFrom, + const FileEntry *LookupFromFile) { + // Save the location of the current token. If a '(' is later found, use + // that location. If not, use the end of this location instead. + SourceLocation LParenLoc = Tok.getLocation(); + + // These expressions are only allowed within a preprocessor directive. + if (!PP.isParsingIfOrElifDirective()) { + PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; + // Return a valid identifier token. + assert(Tok.is(tok::identifier)); + Tok.setIdentifierInfo(II); + return false; + } + + // Get '('. If we don't have a '(', try to form a header-name token. + do { + if (PP.LexHeaderName(Tok)) + return false; + } while (Tok.getKind() == tok::comment); + + // Ensure we have a '('. + if (Tok.isNot(tok::l_paren)) { + // No '(', use end of last token. + LParenLoc = PP.getLocForEndOfToken(LParenLoc); + PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; + // If the next token looks like a filename or the start of one, + // assume it is and process it as such. + if (Tok.isNot(tok::header_name)) + return false; + } else { + // Save '(' location for possible missing ')' message. + LParenLoc = Tok.getLocation(); + if (PP.LexHeaderName(Tok)) + return false; + } + + if (Tok.isNot(tok::header_name)) { + PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); + return false; + } + + // Reserve a buffer to get the spelling. + SmallString<128> FilenameBuffer; + bool Invalid = false; + StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); + if (Invalid) + return false; + + SourceLocation FilenameLoc = Tok.getLocation(); + + // Get ')'. + PP.LexNonComment(Tok); + + // Ensure we have a trailing ). + if (Tok.isNot(tok::r_paren)) { + PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) + << II << tok::r_paren; + PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; + return false; + } + + bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); + // If GetIncludeFilenameSpelling set the start ptr to null, there was an + // error. + if (Filename.empty()) + return false; + + // Search include directories. + const DirectoryLookup *CurDir; + Optional<FileEntryRef> File = + PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, + CurDir, nullptr, nullptr, nullptr, nullptr, nullptr); + + if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { + SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; + if (File) + FileType = + PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); + Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); + } + + // Get the result value. A result of true means the file exists. + return File.hasValue(); +} + +/// EvaluateHasInclude - Process a '__has_include("path")' expression. +/// Returns true if successful. +static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, + Preprocessor &PP) { + return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); +} + +/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. +/// Returns true if successful. +static bool EvaluateHasIncludeNext(Token &Tok, + IdentifierInfo *II, Preprocessor &PP) { + // __has_include_next is like __has_include, except that we start + // searching after the current found directory. If we can't do this, + // issue a diagnostic. + // FIXME: Factor out duplication with + // Preprocessor::HandleIncludeNextDirective. + const DirectoryLookup *Lookup = PP.GetCurDirLookup(); + const FileEntry *LookupFromFile = nullptr; + if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) { + // If the main file is a header, then it's either for PCH/AST generation, + // or libclang opened it. Either way, handle it as a normal include below + // and do not complain about __has_include_next. + } else if (PP.isInPrimaryFile()) { + Lookup = nullptr; + PP.Diag(Tok, diag::pp_include_next_in_primary); + } else if (PP.getCurrentLexerSubmodule()) { + // Start looking up in the directory *after* the one in which the current + // file would be found, if any. + assert(PP.getCurrentLexer() && "#include_next directive in macro?"); + LookupFromFile = PP.getCurrentLexer()->getFileEntry(); + Lookup = nullptr; + } else if (!Lookup) { + PP.Diag(Tok, diag::pp_include_next_absolute_path); + } else { + // Start looking up in the next directory. + ++Lookup; + } + + return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); +} + +/// Process single-argument builtin feature-like macros that return +/// integer values. +static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, + Token &Tok, IdentifierInfo *II, + Preprocessor &PP, + llvm::function_ref< + int(Token &Tok, + bool &HasLexedNextTok)> Op) { + // Parse the initial '('. + PP.LexUnexpandedToken(Tok); + if (Tok.isNot(tok::l_paren)) { + PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II + << tok::l_paren; + + // Provide a dummy '0' value on output stream to elide further errors. + if (!Tok.isOneOf(tok::eof, tok::eod)) { + OS << 0; + Tok.setKind(tok::numeric_constant); + } + return; + } + + unsigned ParenDepth = 1; + SourceLocation LParenLoc = Tok.getLocation(); + llvm::Optional<int> Result; + + Token ResultTok; + bool SuppressDiagnostic = false; + while (true) { + // Parse next token. + PP.LexUnexpandedToken(Tok); + +already_lexed: + switch (Tok.getKind()) { + case tok::eof: + case tok::eod: + // Don't provide even a dummy value if the eod or eof marker is + // reached. Simply provide a diagnostic. + PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); + return; + + case tok::comma: + if (!SuppressDiagnostic) { + PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); + SuppressDiagnostic = true; + } + continue; + + case tok::l_paren: + ++ParenDepth; + if (Result.hasValue()) + break; + if (!SuppressDiagnostic) { + PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; + SuppressDiagnostic = true; + } + continue; + + case tok::r_paren: + if (--ParenDepth > 0) + continue; + + // The last ')' has been reached; return the value if one found or + // a diagnostic and a dummy value. + if (Result.hasValue()) { + OS << Result.getValue(); + // For strict conformance to __has_cpp_attribute rules, use 'L' + // suffix for dated literals. + if (Result.getValue() > 1) + OS << 'L'; + } else { + OS << 0; + if (!SuppressDiagnostic) + PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); + } + Tok.setKind(tok::numeric_constant); + return; + + default: { + // Parse the macro argument, if one not found so far. + if (Result.hasValue()) + break; + + bool HasLexedNextToken = false; + Result = Op(Tok, HasLexedNextToken); + ResultTok = Tok; + if (HasLexedNextToken) + goto already_lexed; + continue; + } + } + + // Diagnose missing ')'. + if (!SuppressDiagnostic) { + if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { + if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) + Diag << LastII; + else + Diag << ResultTok.getKind(); + Diag << tok::r_paren << ResultTok.getLocation(); + } + PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; + SuppressDiagnostic = true; + } + } +} + +/// Helper function to return the IdentifierInfo structure of a Token +/// or generate a diagnostic if none available. +static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, + Preprocessor &PP, + signed DiagID) { + IdentifierInfo *II; + if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) + return II; + + PP.Diag(Tok.getLocation(), DiagID); + return nullptr; +} + +/// Implements the __is_target_arch builtin macro. +static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { + std::string ArchName = II->getName().lower() + "--"; + llvm::Triple Arch(ArchName); + const llvm::Triple &TT = TI.getTriple(); + if (TT.isThumb()) { + // arm matches thumb or thumbv7. armv7 matches thumbv7. + if ((Arch.getSubArch() == llvm::Triple::NoSubArch || + Arch.getSubArch() == TT.getSubArch()) && + ((TT.getArch() == llvm::Triple::thumb && + Arch.getArch() == llvm::Triple::arm) || + (TT.getArch() == llvm::Triple::thumbeb && + Arch.getArch() == llvm::Triple::armeb))) + return true; + } + // Check the parsed arch when it has no sub arch to allow Clang to + // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. + return (Arch.getSubArch() == llvm::Triple::NoSubArch || + Arch.getSubArch() == TT.getSubArch()) && + Arch.getArch() == TT.getArch(); +} + +/// Implements the __is_target_vendor builtin macro. +static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { + StringRef VendorName = TI.getTriple().getVendorName(); + if (VendorName.empty()) + VendorName = "unknown"; + return VendorName.equals_lower(II->getName()); +} + +/// Implements the __is_target_os builtin macro. +static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { + std::string OSName = + (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); + llvm::Triple OS(OSName); + if (OS.getOS() == llvm::Triple::Darwin) { + // Darwin matches macos, ios, etc. + return TI.getTriple().isOSDarwin(); + } + return TI.getTriple().getOS() == OS.getOS(); +} + +/// Implements the __is_target_environment builtin macro. +static bool isTargetEnvironment(const TargetInfo &TI, + const IdentifierInfo *II) { + std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); + llvm::Triple Env(EnvName); + return TI.getTriple().getEnvironment() == Env.getEnvironment(); +} + +static void remapMacroPath( + SmallString<256> &Path, + const std::map<std::string, std::string, std::greater<std::string>> + &MacroPrefixMap) { + for (const auto &Entry : MacroPrefixMap) + if (Path.startswith(Entry.first)) { + Path = (Twine(Entry.second) + Path.substr(Entry.first.size())).str(); + break; + } +} + +/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded +/// as a builtin macro, handle it and return the next token as 'Tok'. +void Preprocessor::ExpandBuiltinMacro(Token &Tok) { + // Figure out which token this is. + IdentifierInfo *II = Tok.getIdentifierInfo(); + assert(II && "Can't be a macro without id info!"); + + // If this is an _Pragma or Microsoft __pragma directive, expand it, + // invoke the pragma handler, then lex the token after it. + if (II == Ident_Pragma) + return Handle_Pragma(Tok); + else if (II == Ident__pragma) // in non-MS mode this is null + return HandleMicrosoft__pragma(Tok); + + ++NumBuiltinMacroExpanded; + + SmallString<128> TmpBuffer; + llvm::raw_svector_ostream OS(TmpBuffer); + + // Set up the return result. + Tok.setIdentifierInfo(nullptr); + Tok.clearFlag(Token::NeedsCleaning); + bool IsAtStartOfLine = Tok.isAtStartOfLine(); + bool HasLeadingSpace = Tok.hasLeadingSpace(); + + if (II == Ident__LINE__) { + // C99 6.10.8: "__LINE__: The presumed line number (within the current + // source file) of the current source line (an integer constant)". This can + // be affected by #line. + SourceLocation Loc = Tok.getLocation(); + + // Advance to the location of the first _, this might not be the first byte + // of the token if it starts with an escaped newline. + Loc = AdvanceToTokenCharacter(Loc, 0); + + // One wrinkle here is that GCC expands __LINE__ to location of the *end* of + // a macro expansion. This doesn't matter for object-like macros, but + // can matter for a function-like macro that expands to contain __LINE__. + // Skip down through expansion points until we find a file loc for the + // end of the expansion history. + Loc = SourceMgr.getExpansionRange(Loc).getEnd(); + PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); + + // __LINE__ expands to a simple numeric value. + OS << (PLoc.isValid()? PLoc.getLine() : 1); + Tok.setKind(tok::numeric_constant); + } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || + II == Ident__FILE_NAME__) { + // C99 6.10.8: "__FILE__: The presumed name of the current source file (a + // character string literal)". This can be affected by #line. + PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); + + // __BASE_FILE__ is a GNU extension that returns the top of the presumed + // #include stack instead of the current file. + if (II == Ident__BASE_FILE__ && PLoc.isValid()) { + SourceLocation NextLoc = PLoc.getIncludeLoc(); + while (NextLoc.isValid()) { + PLoc = SourceMgr.getPresumedLoc(NextLoc); + if (PLoc.isInvalid()) + break; + + NextLoc = PLoc.getIncludeLoc(); + } + } + + // Escape this filename. Turn '\' -> '\\' '"' -> '\"' + SmallString<256> FN; + if (PLoc.isValid()) { + // __FILE_NAME__ is a Clang-specific extension that expands to the + // the last part of __FILE__. + if (II == Ident__FILE_NAME__) { + // Try to get the last path component, failing that return the original + // presumed location. + StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); + if (PLFileName != "") + FN += PLFileName; + else + FN += PLoc.getFilename(); + } else { + FN += PLoc.getFilename(); + } + Lexer::Stringify(FN); + remapMacroPath(FN, PPOpts->MacroPrefixMap); + OS << '"' << FN << '"'; + } + Tok.setKind(tok::string_literal); + } else if (II == Ident__DATE__) { + Diag(Tok.getLocation(), diag::warn_pp_date_time); + if (!DATELoc.isValid()) + ComputeDATE_TIME(DATELoc, TIMELoc, *this); + Tok.setKind(tok::string_literal); + Tok.setLength(strlen("\"Mmm dd yyyy\"")); + Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), + Tok.getLocation(), + Tok.getLength())); + return; + } else if (II == Ident__TIME__) { + Diag(Tok.getLocation(), diag::warn_pp_date_time); + if (!TIMELoc.isValid()) + ComputeDATE_TIME(DATELoc, TIMELoc, *this); + Tok.setKind(tok::string_literal); + Tok.setLength(strlen("\"hh:mm:ss\"")); + Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), + Tok.getLocation(), + Tok.getLength())); + return; + } else if (II == Ident__INCLUDE_LEVEL__) { + // Compute the presumed include depth of this token. This can be affected + // by GNU line markers. + unsigned Depth = 0; + + PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); + if (PLoc.isValid()) { + PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); + for (; PLoc.isValid(); ++Depth) + PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); + } + + // __INCLUDE_LEVEL__ expands to a simple numeric value. + OS << Depth; + Tok.setKind(tok::numeric_constant); + } else if (II == Ident__TIMESTAMP__) { + Diag(Tok.getLocation(), diag::warn_pp_date_time); + // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be + // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. + + // Get the file that we are lexing out of. If we're currently lexing from + // a macro, dig into the include stack. + const FileEntry *CurFile = nullptr; + PreprocessorLexer *TheLexer = getCurrentFileLexer(); + + if (TheLexer) + CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); + + const char *Result; + if (CurFile) { + time_t TT = CurFile->getModificationTime(); + struct tm *TM = localtime(&TT); + Result = asctime(TM); + } else { + Result = "??? ??? ?? ??:??:?? ????\n"; + } + // Surround the string with " and strip the trailing newline. + OS << '"' << StringRef(Result).drop_back() << '"'; + Tok.setKind(tok::string_literal); + } else if (II == Ident__COUNTER__) { + // __COUNTER__ expands to a simple numeric value. + OS << CounterValue++; + Tok.setKind(tok::numeric_constant); + } else if (II == Ident__has_feature) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + return II && HasFeature(*this, II->getName()); + }); + } else if (II == Ident__has_extension) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + return II && HasExtension(*this, II->getName()); + }); + } else if (II == Ident__has_builtin) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + const LangOptions &LangOpts = getLangOpts(); + if (!II) + return false; + else if (II->getBuiltinID() != 0) { + switch (II->getBuiltinID()) { + case Builtin::BI__builtin_operator_new: + case Builtin::BI__builtin_operator_delete: + // denotes date of behavior change to support calling arbitrary + // usual allocation and deallocation functions. Required by libc++ + return 201802; + default: + return true; + } + return true; + } else if (II->getTokenID() != tok::identifier || + II->hasRevertedTokenIDToIdentifier()) { + // Treat all keywords that introduce a custom syntax of the form + // + // '__some_keyword' '(' [...] ')' + // + // as being "builtin functions", even if the syntax isn't a valid + // function call (for example, because the builtin takes a type + // argument). + if (II->getName().startswith("__builtin_") || + II->getName().startswith("__is_") || + II->getName().startswith("__has_")) + return true; + return llvm::StringSwitch<bool>(II->getName()) + .Case("__array_rank", true) + .Case("__array_extent", true) + .Case("__reference_binds_to_temporary", true) + .Case("__underlying_type", true) + .Default(false); + } else { + return llvm::StringSwitch<bool>(II->getName()) + // Report builtin templates as being builtins. + .Case("__make_integer_seq", LangOpts.CPlusPlus) + .Case("__type_pack_element", LangOpts.CPlusPlus) + // Likewise for some builtin preprocessor macros. + // FIXME: This is inconsistent; we usually suggest detecting + // builtin macros via #ifdef. Don't add more cases here. + .Case("__is_target_arch", true) + .Case("__is_target_vendor", true) + .Case("__is_target_os", true) + .Case("__is_target_environment", true) + .Default(false); + } + }); + } else if (II == Ident__is_identifier) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [](Token &Tok, bool &HasLexedNextToken) -> int { + return Tok.is(tok::identifier); + }); + } else if (II == Ident__has_attribute) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + return II ? hasAttribute(AttrSyntax::GNU, nullptr, II, + getTargetInfo(), getLangOpts()) : 0; + }); + } else if (II == Ident__has_declspec) { + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II, + getTargetInfo(), getLangOpts()) : 0; + }); + } else if (II == Ident__has_cpp_attribute || + II == Ident__has_c_attribute) { + bool IsCXX = II == Ident__has_cpp_attribute; + EvaluateFeatureLikeBuiltinMacro( + OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *ScopeII = nullptr; + IdentifierInfo *II = ExpectFeatureIdentifierInfo( + Tok, *this, diag::err_feature_check_malformed); + if (!II) + return false; + + // It is possible to receive a scope token. Read the "::", if it is + // available, and the subsequent identifier. + LexUnexpandedToken(Tok); + if (Tok.isNot(tok::coloncolon)) + HasLexedNextToken = true; + else { + ScopeII = II; + LexUnexpandedToken(Tok); + II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_feature_check_malformed); + } + + AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C; + return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), + getLangOpts()) + : 0; + }); + } else if (II == Ident__has_include || + II == Ident__has_include_next) { + // The argument to these two builtins should be a parenthesized + // file name string literal using angle brackets (<>) or + // double-quotes (""). + bool Value; + if (II == Ident__has_include) + Value = EvaluateHasInclude(Tok, II, *this); + else + Value = EvaluateHasIncludeNext(Tok, II, *this); + + if (Tok.isNot(tok::r_paren)) + return; + OS << (int)Value; + Tok.setKind(tok::numeric_constant); + } else if (II == Ident__has_warning) { + // The argument should be a parenthesized string literal. + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + std::string WarningName; + SourceLocation StrStartLoc = Tok.getLocation(); + + HasLexedNextToken = Tok.is(tok::string_literal); + if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", + /*AllowMacroExpansion=*/false)) + return false; + + // FIXME: Should we accept "-R..." flags here, or should that be + // handled by a separate __has_remark? + if (WarningName.size() < 3 || WarningName[0] != '-' || + WarningName[1] != 'W') { + Diag(StrStartLoc, diag::warn_has_warning_invalid_option); + return false; + } + + // Finally, check if the warning flags maps to a diagnostic group. + // We construct a SmallVector here to talk to getDiagnosticIDs(). + // Although we don't use the result, this isn't a hot path, and not + // worth special casing. + SmallVector<diag::kind, 10> Diags; + return !getDiagnostics().getDiagnosticIDs()-> + getDiagnosticsInGroup(diag::Flavor::WarningOrError, + WarningName.substr(2), Diags); + }); + } else if (II == Ident__building_module) { + // The argument to this builtin should be an identifier. The + // builtin evaluates to 1 when that identifier names the module we are + // currently building. + EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, + [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, + diag::err_expected_id_building_module); + return getLangOpts().isCompilingModule() && II && + (II->getName() == getLangOpts().CurrentModule); + }); + } else if (II == Ident__MODULE__) { + // The current module as an identifier. + OS << getLangOpts().CurrentModule; + IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); + Tok.setIdentifierInfo(ModuleII); + Tok.setKind(ModuleII->getTokenID()); + } else if (II == Ident__identifier) { + SourceLocation Loc = Tok.getLocation(); + + // We're expecting '__identifier' '(' identifier ')'. Try to recover + // if the parens are missing. + LexNonComment(Tok); + if (Tok.isNot(tok::l_paren)) { + // No '(', use end of last token. + Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) + << II << tok::l_paren; + // If the next token isn't valid as our argument, we can't recover. + if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) + Tok.setKind(tok::identifier); + return; + } + + SourceLocation LParenLoc = Tok.getLocation(); + LexNonComment(Tok); + + if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) + Tok.setKind(tok::identifier); + else { + Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) + << Tok.getKind(); + // Don't walk past anything that's not a real token. + if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) + return; + } + + // Discard the ')', preserving 'Tok' as our result. + Token RParen; + LexNonComment(RParen); + if (RParen.isNot(tok::r_paren)) { + Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) + << Tok.getKind() << tok::r_paren; + Diag(LParenLoc, diag::note_matching) << tok::l_paren; + } + return; + } else if (II == Ident__is_target_arch) { + EvaluateFeatureLikeBuiltinMacro( + OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo( + Tok, *this, diag::err_feature_check_malformed); + return II && isTargetArch(getTargetInfo(), II); + }); + } else if (II == Ident__is_target_vendor) { + EvaluateFeatureLikeBuiltinMacro( + OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo( + Tok, *this, diag::err_feature_check_malformed); + return II && isTargetVendor(getTargetInfo(), II); + }); + } else if (II == Ident__is_target_os) { + EvaluateFeatureLikeBuiltinMacro( + OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo( + Tok, *this, diag::err_feature_check_malformed); + return II && isTargetOS(getTargetInfo(), II); + }); + } else if (II == Ident__is_target_environment) { + EvaluateFeatureLikeBuiltinMacro( + OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { + IdentifierInfo *II = ExpectFeatureIdentifierInfo( + Tok, *this, diag::err_feature_check_malformed); + return II && isTargetEnvironment(getTargetInfo(), II); + }); + } else { + llvm_unreachable("Unknown identifier!"); + } + CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); + Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); + Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); +} + +void Preprocessor::markMacroAsUsed(MacroInfo *MI) { + // If the 'used' status changed, and the macro requires 'unused' warning, + // remove its SourceLocation from the warn-for-unused-macro locations. + if (MI->isWarnIfUnused() && !MI->isUsed()) + WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); + MI->setIsUsed(true); +}