diff lld/ELF/ARMErrataFix.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lld/ELF/ARMErrataFix.cpp	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,532 @@
+//===- ARMErrataFix.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+// This file implements Section Patching for the purpose of working around the
+// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
+// can result in an incorrect instruction fetch or processor deadlock." The
+// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
+// Cortex-A8. A high level description of the patching technique is given in
+// the opening comment of AArch64ErrataFix.cpp.
+//===----------------------------------------------------------------------===//
+
+#include "ARMErrataFix.h"
+
+#include "Config.h"
+#include "LinkerScript.h"
+#include "OutputSections.h"
+#include "Relocations.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "lld/Common/Memory.h"
+#include "lld/Common/Strings.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support;
+using namespace llvm::support::endian;
+
+namespace lld {
+namespace elf {
+
+// The documented title for Erratum 657417 is:
+// "A 32bit branch instruction that spans two 4K regions can result in an
+// incorrect instruction fetch or processor deadlock". Graphically using a
+// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
+// xxxxxx000 // Memory region 1 start
+// target:
+// ...
+// xxxxxxffe f7fe // First halfword of branch to target:
+// xxxxxx000 // Memory region 2 start
+// xxxxxx002 bfff // Second halfword of branch to target:
+//
+// The specific trigger conditions that can be detected at link time are:
+// - There is a 32-bit Thumb-2 branch instruction with an address of the form
+//   xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
+//   second 2 bytes are in region 2.
+// - The branch instruction is one of BLX, BL, B.w BCC.w
+// - The instruction preceding the branch is a 32-bit non-branch instruction.
+// - The target of the branch is in region 1.
+//
+// The linker mitigation for the fix is to redirect any branch that meets the
+// erratum conditions to a patch section containing a branch to the target.
+//
+// As adding patch sections may move branches onto region boundaries the patch
+// must iterate until no more patches are added.
+//
+// Example, before:
+// 00000FFA func: NOP.w      // 32-bit Thumb function
+// 00000FFE       B.W func   // 32-bit branch spanning 2 regions, dest in 1st.
+// Example, after:
+// 00000FFA func: NOP.w      // 32-bit Thumb function
+// 00000FFE       B.w __CortexA8657417_00000FFE
+// 00001002       2 - bytes padding
+// 00001004 __CortexA8657417_00000FFE: B.w func
+
+class Patch657417Section : public SyntheticSection {
+public:
+  Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
+
+  void writeTo(uint8_t *buf) override;
+
+  size_t getSize() const override { return 4; }
+
+  // Get the virtual address of the branch instruction at patcheeOffset.
+  uint64_t getBranchAddr() const;
+
+  static bool classof(const SectionBase *d) {
+    return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
+  }
+
+  // The Section we are patching.
+  const InputSection *patchee;
+  // The offset of the instruction in the Patchee section we are patching.
+  uint64_t patcheeOffset;
+  // A label for the start of the Patch that we can use as a relocation target.
+  Symbol *patchSym;
+  // A decoding of the branch instruction at patcheeOffset.
+  uint32_t instr;
+  // True If the patch is to be written in ARM state, otherwise the patch will
+  // be written in Thumb state.
+  bool isARM;
+};
+
+// Return true if the half-word, when taken as the first of a pair of halfwords
+// is the first half of a 32-bit instruction.
+// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
+// section A6.3: 32-bit Thumb instruction encoding
+// |             HW1                   |               HW2                |
+// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op|           x (15)              |
+// With op1 == 0b00, a 16-bit instruction is encoded.
+//
+// We test only the first halfword, looking for op != 0b00.
+static bool is32bitInstruction(uint16_t hw) {
+  return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
+}
+
+// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
+// section A6.3.4 Branches and miscellaneous control.
+// |             HW1              |               HW2                |
+// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
+// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
+// op1 == 0x1               | Branch (B.W)
+// op1 == 1x0               | Branch with Link and Exchange (BLX.w)
+// op1 == 1x1               | Branch with Link (BL.W)
+
+static bool isBcc(uint32_t instr) {
+  return (instr & 0xf800d000) == 0xf0008000 &&
+         (instr & 0x03800000) != 0x03800000;
+}
+
+static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
+
+static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
+
+static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
+
+static bool is32bitBranch(uint32_t instr) {
+  return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
+}
+
+Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
+                                       uint32_t instr, bool isARM)
+    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
+                       ".text.patch"),
+      patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
+  parent = p->getParent();
+  patchSym = addSyntheticLocal(
+      saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
+      isARM ? 0 : 1, getSize(), *this);
+  addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
+}
+
+uint64_t Patch657417Section::getBranchAddr() const {
+  return patchee->getVA(patcheeOffset);
+}
+
+// Given a branch instruction instr at sourceAddr work out its destination
+// address. This is only used when the branch instruction has no relocation.
+static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
+  uint8_t buf[4];
+  write16le(buf, instr >> 16);
+  write16le(buf + 2, instr & 0x0000ffff);
+  int64_t offset;
+  if (isBcc(instr))
+    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
+  else if (isB(instr))
+    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
+  else
+    offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
+  return sourceAddr + offset + 4;
+}
+
+void Patch657417Section::writeTo(uint8_t *buf) {
+  // The base instruction of the patch is always a 32-bit unconditional branch.
+  if (isARM)
+    write32le(buf, 0xea000000);
+  else
+    write32le(buf, 0x9000f000);
+  // If we have a relocation then apply it. For a SyntheticSection buf already
+  // has outSecOff added, but relocateAlloc also adds outSecOff so we need to
+  // subtract to avoid double counting.
+  if (!relocations.empty()) {
+    relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
+    return;
+  }
+
+  // If we don't have a relocation then we must calculate and write the offset
+  // ourselves.
+  // Get the destination offset from the addend in the branch instruction.
+  // We cannot use the instruction in the patchee section as this will have
+  // been altered to point to us!
+  uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
+  uint64_t p = getVA(4);
+  target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
+}
+
+// Given a branch instruction spanning two 4KiB regions, at offset off from the
+// start of isec, return true if the destination of the branch is within the
+// first of the two 4Kib regions.
+static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
+                                    uint32_t instr, const Relocation *r) {
+  uint64_t sourceAddr = isec->getVA(0) + off;
+  assert((sourceAddr & 0xfff) == 0xffe);
+  uint64_t destAddr = sourceAddr;
+  // If there is a branch relocation at the same offset we must use this to
+  // find the destination address as the branch could be indirected via a thunk
+  // or the PLT.
+  if (r) {
+    uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
+    // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
+    destAddr = dst + r->addend + 4;
+  } else {
+    // If there is no relocation, we must have an intra-section branch
+    // We must extract the offset from the addend manually.
+    destAddr = getThumbDestAddr(sourceAddr, instr);
+  }
+
+  return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
+}
+
+// Return true if a branch can reach a patch section placed after isec.
+// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
+static bool patchInRange(const InputSection *isec, uint64_t off,
+                         uint32_t instr) {
+
+  // We need the branch at source to reach a patch section placed immediately
+  // after isec. As there can be more than one patch in the patch section we
+  // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
+  // for a 1 MiB range.
+  return target->inBranchRange(
+      isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
+      isec->getVA() + isec->getSize() + 0x100);
+}
+
+struct ScanResult {
+  // Offset of branch within its InputSection.
+  uint64_t off;
+  // Cached decoding of the branch instruction.
+  uint32_t instr;
+  // Branch relocation at off. Will be nullptr if no relocation exists.
+  Relocation *rel;
+};
+
+// Detect the erratum sequence, returning the offset of the branch instruction
+// and a decoding of the branch. If the erratum sequence is not found then
+// return an offset of 0 for the branch. 0 is a safe value to use for no patch
+// as there must be at least one 32-bit non-branch instruction before the
+// branch so the minimum offset for a patch is 4.
+static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
+                                           uint64_t limit) {
+  uint64_t isecAddr = isec->getVA(0);
+  // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
+  // need to check for a 32-bit instruction immediately before a 32-bit branch
+  // at 0xffe modulo 0x1000.
+  off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
+  if (off >= limit || limit - off < 8) {
+    // Need at least 2 4-byte sized instructions to trigger erratum.
+    off = limit;
+    return {0, 0, nullptr};
+  }
+
+  ScanResult scanRes = {0, 0, nullptr};
+  const uint8_t *buf = isec->data().begin();
+  // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
+  // little-endian halfwords.
+  const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
+  uint16_t hw11 = *instBuf++;
+  uint16_t hw12 = *instBuf++;
+  uint16_t hw21 = *instBuf++;
+  uint16_t hw22 = *instBuf++;
+  if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
+    uint32_t instr1 = (hw11 << 16) | hw12;
+    uint32_t instr2 = (hw21 << 16) | hw22;
+    if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
+      // Find a relocation for the branch if it exists. This will be used
+      // to determine the target.
+      uint64_t branchOff = off + 4;
+      auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
+        return r.offset == branchOff &&
+               (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
+                r.type == R_ARM_THM_CALL);
+      });
+      if (relIt != isec->relocations.end())
+        scanRes.rel = &(*relIt);
+      if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
+        if (patchInRange(isec, branchOff, instr2)) {
+          scanRes.off = branchOff;
+          scanRes.instr = instr2;
+        } else {
+          warn(toString(isec->file) +
+               ": skipping cortex-a8 657417 erratum sequence, section " +
+               isec->name + " is too large to patch");
+        }
+      }
+    }
+  }
+  off += 0x1000;
+  return scanRes;
+}
+
+void ARMErr657417Patcher::init() {
+  // The Arm ABI permits a mix of ARM, Thumb and Data in the same
+  // InputSection. We must only scan Thumb instructions to avoid false
+  // matches. We use the mapping symbols in the InputObjects to identify this
+  // data, caching the results in sectionMap so we don't have to recalculate
+  // it each pass.
+
+  // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
+  // half open intervals [Symbol Value, Next Symbol Value) of code and data
+  // within sections. If there is no next symbol then the half open interval is
+  // [Symbol Value, End of section). The type, code or data, is determined by
+  // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
+  auto isArmMapSymbol = [](const Symbol *s) {
+    return s->getName() == "$a" || s->getName().startswith("$a.");
+  };
+  auto isThumbMapSymbol = [](const Symbol *s) {
+    return s->getName() == "$t" || s->getName().startswith("$t.");
+  };
+  auto isDataMapSymbol = [](const Symbol *s) {
+    return s->getName() == "$d" || s->getName().startswith("$d.");
+  };
+
+  // Collect mapping symbols for every executable InputSection.
+  for (InputFile *file : objectFiles) {
+    auto *f = cast<ObjFile<ELF32LE>>(file);
+    for (Symbol *s : f->getLocalSymbols()) {
+      auto *def = dyn_cast<Defined>(s);
+      if (!def)
+        continue;
+      if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
+          !isDataMapSymbol(def))
+        continue;
+      if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
+        if (sec->flags & SHF_EXECINSTR)
+          sectionMap[sec].push_back(def);
+    }
+  }
+  // For each InputSection make sure the mapping symbols are in sorted in
+  // ascending order and are in alternating Thumb, non-Thumb order.
+  for (auto &kv : sectionMap) {
+    std::vector<const Defined *> &mapSyms = kv.second;
+    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
+      return a->value < b->value;
+    });
+    mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
+                              [=](const Defined *a, const Defined *b) {
+                                return (isThumbMapSymbol(a) ==
+                                        isThumbMapSymbol(b));
+                              }),
+                  mapSyms.end());
+    // Always start with a Thumb Mapping Symbol
+    if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
+      mapSyms.erase(mapSyms.begin());
+  }
+  initialized = true;
+}
+
+void ARMErr657417Patcher::insertPatches(
+    InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
+  uint64_t spacing = 0x100000 - 0x7500;
+  uint64_t isecLimit;
+  uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
+  uint64_t patchUpperBound = prevIsecLimit + spacing;
+  uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
+
+  // Set the outSecOff of patches to the place where we want to insert them.
+  // We use a similar strategy to initial thunk placement, using 1 MiB as the
+  // range of the Thumb-2 conditional branch with a contingency accounting for
+  // thunk generation.
+  auto patchIt = patches.begin();
+  auto patchEnd = patches.end();
+  for (const InputSection *isec : isd.sections) {
+    isecLimit = isec->outSecOff + isec->getSize();
+    if (isecLimit > patchUpperBound) {
+      for (; patchIt != patchEnd; ++patchIt) {
+        if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
+          break;
+        (*patchIt)->outSecOff = prevIsecLimit;
+      }
+      patchUpperBound = prevIsecLimit + spacing;
+    }
+    prevIsecLimit = isecLimit;
+  }
+  for (; patchIt != patchEnd; ++patchIt)
+    (*patchIt)->outSecOff = isecLimit;
+
+  // Merge all patch sections. We use the outSecOff assigned above to
+  // determine the insertion point. This is ok as we only merge into an
+  // InputSectionDescription once per pass, and at the end of the pass
+  // assignAddresses() will recalculate all the outSecOff values.
+  std::vector<InputSection *> tmp;
+  tmp.reserve(isd.sections.size() + patches.size());
+  auto mergeCmp = [](const InputSection *a, const InputSection *b) {
+    if (a->outSecOff != b->outSecOff)
+      return a->outSecOff < b->outSecOff;
+    return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
+  };
+  std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
+             patches.end(), std::back_inserter(tmp), mergeCmp);
+  isd.sections = std::move(tmp);
+}
+
+// Given a branch instruction described by ScanRes redirect it to a patch
+// section containing an unconditional branch instruction to the target.
+// Ensure that this patch section is 4-byte aligned so that the branch cannot
+// span two 4 KiB regions. Place the patch section so that it is always after
+// isec so the branch we are patching always goes forwards.
+static void implementPatch(ScanResult sr, InputSection *isec,
+                           std::vector<Patch657417Section *> &patches) {
+
+  log("detected cortex-a8-657419 erratum sequence starting at " +
+      utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
+  Patch657417Section *psec;
+  // We have two cases to deal with.
+  // Case 1. There is a relocation at patcheeOffset to a symbol. The
+  // unconditional branch in the patch must have a relocation so that any
+  // further redirection via the PLT or a Thunk happens as normal. At
+  // patcheeOffset we redirect the existing relocation to a Symbol defined at
+  // the start of the patch section.
+  //
+  // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
+  // a symbol that we can use as a target for a relocation in the patch section.
+  // Luckily we know that the destination cannot be indirected via the PLT or
+  // a Thunk so we can just write the destination directly.
+  if (sr.rel) {
+    // Case 1. We have an existing relocation to redirect to patch and a
+    // Symbol target.
+
+    // Create a branch relocation for the unconditional branch in the patch.
+    // This can be redirected via the PLT or Thunks.
+    RelType patchRelType = R_ARM_THM_JUMP24;
+    int64_t patchRelAddend = sr.rel->addend;
+    bool destIsARM = false;
+    if (isBL(sr.instr) || isBLX(sr.instr)) {
+      // The final target of the branch may be ARM or Thumb, if the target
+      // is ARM then we write the patch in ARM state to avoid a state change
+      // Thunk from the patch to the target.
+      uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
+                                                       : sr.rel->sym->getVA();
+      destIsARM = (dstSymAddr & 1) == 0;
+    }
+    psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
+    if (destIsARM) {
+      // The patch will be in ARM state. Use an ARM relocation and account for
+      // the larger ARM PC-bias of 8 rather than Thumb's 4.
+      patchRelType = R_ARM_JUMP24;
+      patchRelAddend -= 4;
+    }
+    psec->relocations.push_back(
+        Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
+    // Redirect the existing branch relocation to the patch.
+    sr.rel->expr = R_PC;
+    sr.rel->addend = -4;
+    sr.rel->sym = psec->patchSym;
+  } else {
+    // Case 2. We do not have a relocation to the patch. Add a relocation of the
+    // appropriate type to the patch at patcheeOffset.
+
+    // The destination is ARM if we have a BLX.
+    psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
+    RelType type;
+    if (isBcc(sr.instr))
+      type = R_ARM_THM_JUMP19;
+    else if (isB(sr.instr))
+      type = R_ARM_THM_JUMP24;
+    else
+      type = R_ARM_THM_CALL;
+    isec->relocations.push_back(
+        Relocation{R_PC, type, sr.off, -4, psec->patchSym});
+  }
+  patches.push_back(psec);
+}
+
+// Scan all the instructions in InputSectionDescription, for each instance of
+// the erratum sequence create a Patch657417Section. We return the list of
+// Patch657417Sections that need to be applied to the InputSectionDescription.
+std::vector<Patch657417Section *>
+ARMErr657417Patcher::patchInputSectionDescription(
+    InputSectionDescription &isd) {
+  std::vector<Patch657417Section *> patches;
+  for (InputSection *isec : isd.sections) {
+    // LLD doesn't use the erratum sequence in SyntheticSections.
+    if (isa<SyntheticSection>(isec))
+      continue;
+    // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
+    // data. We have already sorted mapSyms in ascending order and removed
+    // consecutive mapping symbols of the same type. Our range of executable
+    // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
+    // or [thumbSym->value, section size).
+    std::vector<const Defined *> &mapSyms = sectionMap[isec];
+
+    auto thumbSym = mapSyms.begin();
+    while (thumbSym != mapSyms.end()) {
+      auto nonThumbSym = std::next(thumbSym);
+      uint64_t off = (*thumbSym)->value;
+      uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
+                                                      : (*nonThumbSym)->value;
+
+      while (off < limit) {
+        ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
+        if (sr.off)
+          implementPatch(sr, isec, patches);
+      }
+      if (nonThumbSym == mapSyms.end())
+        break;
+      thumbSym = std::next(nonThumbSym);
+    }
+  }
+  return patches;
+}
+
+bool ARMErr657417Patcher::createFixes() {
+  if (!initialized)
+    init();
+
+  bool addressesChanged = false;
+  for (OutputSection *os : outputSections) {
+    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
+      continue;
+    for (BaseCommand *bc : os->sectionCommands)
+      if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
+        std::vector<Patch657417Section *> patches =
+            patchInputSectionDescription(*isd);
+        if (!patches.empty()) {
+          insertPatches(*isd, patches);
+          addressesChanged = true;
+        }
+      }
+  }
+  return addressesChanged;
+}
+
+} // namespace elf
+} // namespace lld