Mercurial > hg > CbC > CbC_llvm
diff lld/ELF/InputFiles.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lld/ELF/InputFiles.cpp Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,1634 @@ +//===- InputFiles.cpp -----------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "InputFiles.h" +#include "Driver.h" +#include "InputSection.h" +#include "LinkerScript.h" +#include "SymbolTable.h" +#include "Symbols.h" +#include "SyntheticSections.h" +#include "lld/Common/DWARF.h" +#include "lld/Common/ErrorHandler.h" +#include "lld/Common/Memory.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/LTO/LTO.h" +#include "llvm/MC/StringTableBuilder.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Support/ARMAttributeParser.h" +#include "llvm/Support/ARMBuildAttributes.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Path.h" +#include "llvm/Support/TarWriter.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; +using namespace llvm::ELF; +using namespace llvm::object; +using namespace llvm::sys; +using namespace llvm::sys::fs; +using namespace llvm::support::endian; + +namespace lld { +// Returns "<internal>", "foo.a(bar.o)" or "baz.o". +std::string toString(const elf::InputFile *f) { + if (!f) + return "<internal>"; + + if (f->toStringCache.empty()) { + if (f->archiveName.empty()) + f->toStringCache = std::string(f->getName()); + else + f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); + } + return f->toStringCache; +} + +namespace elf { +bool InputFile::isInGroup; +uint32_t InputFile::nextGroupId; +std::vector<BinaryFile *> binaryFiles; +std::vector<BitcodeFile *> bitcodeFiles; +std::vector<LazyObjFile *> lazyObjFiles; +std::vector<InputFile *> objectFiles; +std::vector<SharedFile *> sharedFiles; + +std::unique_ptr<TarWriter> tar; + +static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { + unsigned char size; + unsigned char endian; + std::tie(size, endian) = getElfArchType(mb.getBuffer()); + + auto report = [&](StringRef msg) { + StringRef filename = mb.getBufferIdentifier(); + if (archiveName.empty()) + fatal(filename + ": " + msg); + else + fatal(archiveName + "(" + filename + "): " + msg); + }; + + if (!mb.getBuffer().startswith(ElfMagic)) + report("not an ELF file"); + if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) + report("corrupted ELF file: invalid data encoding"); + if (size != ELFCLASS32 && size != ELFCLASS64) + report("corrupted ELF file: invalid file class"); + + size_t bufSize = mb.getBuffer().size(); + if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || + (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) + report("corrupted ELF file: file is too short"); + + if (size == ELFCLASS32) + return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; + return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; +} + +InputFile::InputFile(Kind k, MemoryBufferRef m) + : mb(m), groupId(nextGroupId), fileKind(k) { + // All files within the same --{start,end}-group get the same group ID. + // Otherwise, a new file will get a new group ID. + if (!isInGroup) + ++nextGroupId; +} + +Optional<MemoryBufferRef> readFile(StringRef path) { + // The --chroot option changes our virtual root directory. + // This is useful when you are dealing with files created by --reproduce. + if (!config->chroot.empty() && path.startswith("/")) + path = saver.save(config->chroot + path); + + log(path); + + auto mbOrErr = MemoryBuffer::getFile(path, -1, false); + if (auto ec = mbOrErr.getError()) { + error("cannot open " + path + ": " + ec.message()); + return None; + } + + std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; + MemoryBufferRef mbref = mb->getMemBufferRef(); + make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership + + if (tar) + tar->append(relativeToRoot(path), mbref.getBuffer()); + return mbref; +} + +// All input object files must be for the same architecture +// (e.g. it does not make sense to link x86 object files with +// MIPS object files.) This function checks for that error. +static bool isCompatible(InputFile *file) { + if (!file->isElf() && !isa<BitcodeFile>(file)) + return true; + + if (file->ekind == config->ekind && file->emachine == config->emachine) { + if (config->emachine != EM_MIPS) + return true; + if (isMipsN32Abi(file) == config->mipsN32Abi) + return true; + } + + if (!config->emulation.empty()) { + error(toString(file) + " is incompatible with " + config->emulation); + return false; + } + + InputFile *existing; + if (!objectFiles.empty()) + existing = objectFiles[0]; + else if (!sharedFiles.empty()) + existing = sharedFiles[0]; + else + existing = bitcodeFiles[0]; + + error(toString(file) + " is incompatible with " + toString(existing)); + return false; +} + +template <class ELFT> static void doParseFile(InputFile *file) { + if (!isCompatible(file)) + return; + + // Binary file + if (auto *f = dyn_cast<BinaryFile>(file)) { + binaryFiles.push_back(f); + f->parse(); + return; + } + + // .a file + if (auto *f = dyn_cast<ArchiveFile>(file)) { + f->parse(); + return; + } + + // Lazy object file + if (auto *f = dyn_cast<LazyObjFile>(file)) { + lazyObjFiles.push_back(f); + f->parse<ELFT>(); + return; + } + + if (config->trace) + message(toString(file)); + + // .so file + if (auto *f = dyn_cast<SharedFile>(file)) { + f->parse<ELFT>(); + return; + } + + // LLVM bitcode file + if (auto *f = dyn_cast<BitcodeFile>(file)) { + bitcodeFiles.push_back(f); + f->parse<ELFT>(); + return; + } + + // Regular object file + objectFiles.push_back(file); + cast<ObjFile<ELFT>>(file)->parse(); +} + +// Add symbols in File to the symbol table. +void parseFile(InputFile *file) { + switch (config->ekind) { + case ELF32LEKind: + doParseFile<ELF32LE>(file); + return; + case ELF32BEKind: + doParseFile<ELF32BE>(file); + return; + case ELF64LEKind: + doParseFile<ELF64LE>(file); + return; + case ELF64BEKind: + doParseFile<ELF64BE>(file); + return; + default: + llvm_unreachable("unknown ELFT"); + } +} + +// Concatenates arguments to construct a string representing an error location. +static std::string createFileLineMsg(StringRef path, unsigned line) { + std::string filename = std::string(path::filename(path)); + std::string lineno = ":" + std::to_string(line); + if (filename == path) + return filename + lineno; + return filename + lineno + " (" + path.str() + lineno + ")"; +} + +template <class ELFT> +static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, + InputSectionBase &sec, uint64_t offset) { + // In DWARF, functions and variables are stored to different places. + // First, lookup a function for a given offset. + if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) + return createFileLineMsg(info->FileName, info->Line); + + // If it failed, lookup again as a variable. + if (Optional<std::pair<std::string, unsigned>> fileLine = + file.getVariableLoc(sym.getName())) + return createFileLineMsg(fileLine->first, fileLine->second); + + // File.sourceFile contains STT_FILE symbol, and that is a last resort. + return std::string(file.sourceFile); +} + +std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, + uint64_t offset) { + if (kind() != ObjKind) + return ""; + switch (config->ekind) { + default: + llvm_unreachable("Invalid kind"); + case ELF32LEKind: + return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); + case ELF32BEKind: + return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); + case ELF64LEKind: + return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); + case ELF64BEKind: + return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); + } +} + +template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { + dwarf = make<DWARFCache>(std::make_unique<DWARFContext>( + std::make_unique<LLDDwarfObj<ELFT>>(this))); +} + +// Returns the pair of file name and line number describing location of data +// object (variable, array, etc) definition. +template <class ELFT> +Optional<std::pair<std::string, unsigned>> +ObjFile<ELFT>::getVariableLoc(StringRef name) { + llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); + + return dwarf->getVariableLoc(name); +} + +// Returns source line information for a given offset +// using DWARF debug info. +template <class ELFT> +Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, + uint64_t offset) { + llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); + + // Detect SectionIndex for specified section. + uint64_t sectionIndex = object::SectionedAddress::UndefSection; + ArrayRef<InputSectionBase *> sections = s->file->getSections(); + for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { + if (s == sections[curIndex]) { + sectionIndex = curIndex; + break; + } + } + + // Use fake address calculated by adding section file offset and offset in + // section. See comments for ObjectInfo class. + return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex); +} + +ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { + ekind = getELFKind(mb, ""); + + switch (ekind) { + case ELF32LEKind: + init<ELF32LE>(); + break; + case ELF32BEKind: + init<ELF32BE>(); + break; + case ELF64LEKind: + init<ELF64LE>(); + break; + case ELF64BEKind: + init<ELF64BE>(); + break; + default: + llvm_unreachable("getELFKind"); + } +} + +template <typename Elf_Shdr> +static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { + for (const Elf_Shdr &sec : sections) + if (sec.sh_type == type) + return &sec; + return nullptr; +} + +template <class ELFT> void ELFFileBase::init() { + using Elf_Shdr = typename ELFT::Shdr; + using Elf_Sym = typename ELFT::Sym; + + // Initialize trivial attributes. + const ELFFile<ELFT> &obj = getObj<ELFT>(); + emachine = obj.getHeader()->e_machine; + osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; + abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; + + ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); + + // Find a symbol table. + bool isDSO = + (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); + const Elf_Shdr *symtabSec = + findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); + + if (!symtabSec) + return; + + // Initialize members corresponding to a symbol table. + firstGlobal = symtabSec->sh_info; + + ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); + if (firstGlobal == 0 || firstGlobal > eSyms.size()) + fatal(toString(this) + ": invalid sh_info in symbol table"); + + elfSyms = reinterpret_cast<const void *>(eSyms.data()); + numELFSyms = eSyms.size(); + stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); +} + +template <class ELFT> +uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { + return CHECK( + this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), + this); +} + +template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { + if (this->symbols.empty()) + return {}; + return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); +} + +template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { + return makeArrayRef(this->symbols).slice(this->firstGlobal); +} + +template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { + // Read a section table. justSymbols is usually false. + if (this->justSymbols) + initializeJustSymbols(); + else + initializeSections(ignoreComdats); + + // Read a symbol table. + initializeSymbols(); +} + +// Sections with SHT_GROUP and comdat bits define comdat section groups. +// They are identified and deduplicated by group name. This function +// returns a group name. +template <class ELFT> +StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, + const Elf_Shdr &sec) { + typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); + if (sec.sh_info >= symbols.size()) + fatal(toString(this) + ": invalid symbol index"); + const typename ELFT::Sym &sym = symbols[sec.sh_info]; + StringRef signature = CHECK(sym.getName(this->stringTable), this); + + // As a special case, if a symbol is a section symbol and has no name, + // we use a section name as a signature. + // + // Such SHT_GROUP sections are invalid from the perspective of the ELF + // standard, but GNU gold 1.14 (the newest version as of July 2017) or + // older produce such sections as outputs for the -r option, so we need + // a bug-compatibility. + if (signature.empty() && sym.getType() == STT_SECTION) + return getSectionName(sec); + return signature; +} + +template <class ELFT> +bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { + // On a regular link we don't merge sections if -O0 (default is -O1). This + // sometimes makes the linker significantly faster, although the output will + // be bigger. + // + // Doing the same for -r would create a problem as it would combine sections + // with different sh_entsize. One option would be to just copy every SHF_MERGE + // section as is to the output. While this would produce a valid ELF file with + // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when + // they see two .debug_str. We could have separate logic for combining + // SHF_MERGE sections based both on their name and sh_entsize, but that seems + // to be more trouble than it is worth. Instead, we just use the regular (-O1) + // logic for -r. + if (config->optimize == 0 && !config->relocatable) + return false; + + // A mergeable section with size 0 is useless because they don't have + // any data to merge. A mergeable string section with size 0 can be + // argued as invalid because it doesn't end with a null character. + // We'll avoid a mess by handling them as if they were non-mergeable. + if (sec.sh_size == 0) + return false; + + // Check for sh_entsize. The ELF spec is not clear about the zero + // sh_entsize. It says that "the member [sh_entsize] contains 0 if + // the section does not hold a table of fixed-size entries". We know + // that Rust 1.13 produces a string mergeable section with a zero + // sh_entsize. Here we just accept it rather than being picky about it. + uint64_t entSize = sec.sh_entsize; + if (entSize == 0) + return false; + if (sec.sh_size % entSize) + fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + + Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + + Twine(entSize) + ")"); + + uint64_t flags = sec.sh_flags; + if (!(flags & SHF_MERGE)) + return false; + if (flags & SHF_WRITE) + fatal(toString(this) + ":(" + name + + "): writable SHF_MERGE section is not supported"); + + return true; +} + +// This is for --just-symbols. +// +// --just-symbols is a very minor feature that allows you to link your +// output against other existing program, so that if you load both your +// program and the other program into memory, your output can refer the +// other program's symbols. +// +// When the option is given, we link "just symbols". The section table is +// initialized with null pointers. +template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { + ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); + this->sections.resize(sections.size()); +} + +// An ELF object file may contain a `.deplibs` section. If it exists, the +// section contains a list of library specifiers such as `m` for libm. This +// function resolves a given name by finding the first matching library checking +// the various ways that a library can be specified to LLD. This ELF extension +// is a form of autolinking and is called `dependent libraries`. It is currently +// unique to LLVM and lld. +static void addDependentLibrary(StringRef specifier, const InputFile *f) { + if (!config->dependentLibraries) + return; + if (fs::exists(specifier)) + driver->addFile(specifier, /*withLOption=*/false); + else if (Optional<std::string> s = findFromSearchPaths(specifier)) + driver->addFile(*s, /*withLOption=*/true); + else if (Optional<std::string> s = searchLibraryBaseName(specifier)) + driver->addFile(*s, /*withLOption=*/true); + else + error(toString(f) + + ": unable to find library from dependent library specifier: " + + specifier); +} + +// Record the membership of a section group so that in the garbage collection +// pass, section group members are kept or discarded as a unit. +template <class ELFT> +static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, + ArrayRef<typename ELFT::Word> entries) { + bool hasAlloc = false; + for (uint32_t index : entries.slice(1)) { + if (index >= sections.size()) + return; + if (InputSectionBase *s = sections[index]) + if (s != &InputSection::discarded && s->flags & SHF_ALLOC) + hasAlloc = true; + } + + // If any member has the SHF_ALLOC flag, the whole group is subject to garbage + // collection. See the comment in markLive(). This rule retains .debug_types + // and .rela.debug_types. + if (!hasAlloc) + return; + + // Connect the members in a circular doubly-linked list via + // nextInSectionGroup. + InputSectionBase *head; + InputSectionBase *prev = nullptr; + for (uint32_t index : entries.slice(1)) { + InputSectionBase *s = sections[index]; + if (!s || s == &InputSection::discarded) + continue; + if (prev) + prev->nextInSectionGroup = s; + else + head = s; + prev = s; + } + if (prev) + prev->nextInSectionGroup = head; +} + +template <class ELFT> +void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { + const ELFFile<ELFT> &obj = this->getObj(); + + ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); + uint64_t size = objSections.size(); + this->sections.resize(size); + this->sectionStringTable = + CHECK(obj.getSectionStringTable(objSections), this); + + std::vector<ArrayRef<Elf_Word>> selectedGroups; + + for (size_t i = 0, e = objSections.size(); i < e; ++i) { + if (this->sections[i] == &InputSection::discarded) + continue; + const Elf_Shdr &sec = objSections[i]; + + if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) + cgProfile = + check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); + + // SHF_EXCLUDE'ed sections are discarded by the linker. However, + // if -r is given, we'll let the final link discard such sections. + // This is compatible with GNU. + if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { + if (sec.sh_type == SHT_LLVM_ADDRSIG) { + // We ignore the address-significance table if we know that the object + // file was created by objcopy or ld -r. This is because these tools + // will reorder the symbols in the symbol table, invalidating the data + // in the address-significance table, which refers to symbols by index. + if (sec.sh_link != 0) + this->addrsigSec = &sec; + else if (config->icf == ICFLevel::Safe) + warn(toString(this) + ": --icf=safe is incompatible with object " + "files created using objcopy or ld -r"); + } + this->sections[i] = &InputSection::discarded; + continue; + } + + switch (sec.sh_type) { + case SHT_GROUP: { + // De-duplicate section groups by their signatures. + StringRef signature = getShtGroupSignature(objSections, sec); + this->sections[i] = &InputSection::discarded; + + + ArrayRef<Elf_Word> entries = + CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); + if (entries.empty()) + fatal(toString(this) + ": empty SHT_GROUP"); + + // The first word of a SHT_GROUP section contains flags. Currently, + // the standard defines only "GRP_COMDAT" flag for the COMDAT group. + // An group with the empty flag doesn't define anything; such sections + // are just skipped. + if (entries[0] == 0) + continue; + + if (entries[0] != GRP_COMDAT) + fatal(toString(this) + ": unsupported SHT_GROUP format"); + + bool isNew = + ignoreComdats || + symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) + .second; + if (isNew) { + if (config->relocatable) + this->sections[i] = createInputSection(sec); + selectedGroups.push_back(entries); + continue; + } + + // Otherwise, discard group members. + for (uint32_t secIndex : entries.slice(1)) { + if (secIndex >= size) + fatal(toString(this) + + ": invalid section index in group: " + Twine(secIndex)); + this->sections[secIndex] = &InputSection::discarded; + } + break; + } + case SHT_SYMTAB_SHNDX: + shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); + break; + case SHT_SYMTAB: + case SHT_STRTAB: + case SHT_NULL: + break; + default: + this->sections[i] = createInputSection(sec); + } + } + + // This block handles SHF_LINK_ORDER. + for (size_t i = 0, e = objSections.size(); i < e; ++i) { + if (this->sections[i] == &InputSection::discarded) + continue; + const Elf_Shdr &sec = objSections[i]; + if (!(sec.sh_flags & SHF_LINK_ORDER)) + continue; + + // .ARM.exidx sections have a reverse dependency on the InputSection they + // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. + InputSectionBase *linkSec = nullptr; + if (sec.sh_link < this->sections.size()) + linkSec = this->sections[sec.sh_link]; + if (!linkSec) + fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); + + InputSection *isec = cast<InputSection>(this->sections[i]); + linkSec->dependentSections.push_back(isec); + if (!isa<InputSection>(linkSec)) + error("a section " + isec->name + + " with SHF_LINK_ORDER should not refer a non-regular section: " + + toString(linkSec)); + } + + for (ArrayRef<Elf_Word> entries : selectedGroups) + handleSectionGroup<ELFT>(this->sections, entries); +} + +// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD +// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how +// the input objects have been compiled. +static void updateARMVFPArgs(const ARMAttributeParser &attributes, + const InputFile *f) { + if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) + // If an ABI tag isn't present then it is implicitly given the value of 0 + // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, + // including some in glibc that don't use FP args (and should have value 3) + // don't have the attribute so we do not consider an implicit value of 0 + // as a clash. + return; + + unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); + ARMVFPArgKind arg; + switch (vfpArgs) { + case ARMBuildAttrs::BaseAAPCS: + arg = ARMVFPArgKind::Base; + break; + case ARMBuildAttrs::HardFPAAPCS: + arg = ARMVFPArgKind::VFP; + break; + case ARMBuildAttrs::ToolChainFPPCS: + // Tool chain specific convention that conforms to neither AAPCS variant. + arg = ARMVFPArgKind::ToolChain; + break; + case ARMBuildAttrs::CompatibleFPAAPCS: + // Object compatible with all conventions. + return; + default: + error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); + return; + } + // Follow ld.bfd and error if there is a mix of calling conventions. + if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) + error(toString(f) + ": incompatible Tag_ABI_VFP_args"); + else + config->armVFPArgs = arg; +} + +// The ARM support in lld makes some use of instructions that are not available +// on all ARM architectures. Namely: +// - Use of BLX instruction for interworking between ARM and Thumb state. +// - Use of the extended Thumb branch encoding in relocation. +// - Use of the MOVT/MOVW instructions in Thumb Thunks. +// The ARM Attributes section contains information about the architecture chosen +// at compile time. We follow the convention that if at least one input object +// is compiled with an architecture that supports these features then lld is +// permitted to use them. +static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { + if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) + return; + auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); + switch (arch) { + case ARMBuildAttrs::Pre_v4: + case ARMBuildAttrs::v4: + case ARMBuildAttrs::v4T: + // Architectures prior to v5 do not support BLX instruction + break; + case ARMBuildAttrs::v5T: + case ARMBuildAttrs::v5TE: + case ARMBuildAttrs::v5TEJ: + case ARMBuildAttrs::v6: + case ARMBuildAttrs::v6KZ: + case ARMBuildAttrs::v6K: + config->armHasBlx = true; + // Architectures used in pre-Cortex processors do not support + // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception + // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. + break; + default: + // All other Architectures have BLX and extended branch encoding + config->armHasBlx = true; + config->armJ1J2BranchEncoding = true; + if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) + // All Architectures used in Cortex processors with the exception + // of v6-M and v6S-M have the MOVT and MOVW instructions. + config->armHasMovtMovw = true; + break; + } +} + +// If a source file is compiled with x86 hardware-assisted call flow control +// enabled, the generated object file contains feature flags indicating that +// fact. This function reads the feature flags and returns it. +// +// Essentially we want to read a single 32-bit value in this function, but this +// function is rather complicated because the value is buried deep inside a +// .note.gnu.property section. +// +// The section consists of one or more NOTE records. Each NOTE record consists +// of zero or more type-length-value fields. We want to find a field of a +// certain type. It seems a bit too much to just store a 32-bit value, perhaps +// the ABI is unnecessarily complicated. +template <class ELFT> +static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { + using Elf_Nhdr = typename ELFT::Nhdr; + using Elf_Note = typename ELFT::Note; + + uint32_t featuresSet = 0; + while (!data.empty()) { + // Read one NOTE record. + if (data.size() < sizeof(Elf_Nhdr)) + fatal(toString(obj) + ": .note.gnu.property: section too short"); + + auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); + if (data.size() < nhdr->getSize()) + fatal(toString(obj) + ": .note.gnu.property: section too short"); + + Elf_Note note(*nhdr); + if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { + data = data.slice(nhdr->getSize()); + continue; + } + + uint32_t featureAndType = config->emachine == EM_AARCH64 + ? GNU_PROPERTY_AARCH64_FEATURE_1_AND + : GNU_PROPERTY_X86_FEATURE_1_AND; + + // Read a body of a NOTE record, which consists of type-length-value fields. + ArrayRef<uint8_t> desc = note.getDesc(); + while (!desc.empty()) { + if (desc.size() < 8) + fatal(toString(obj) + ": .note.gnu.property: section too short"); + + uint32_t type = read32le(desc.data()); + uint32_t size = read32le(desc.data() + 4); + + if (type == featureAndType) { + // We found a FEATURE_1_AND field. There may be more than one of these + // in a .note.gnu.property section, for a relocatable object we + // accumulate the bits set. + featuresSet |= read32le(desc.data() + 8); + } + + // On 64-bit, a payload may be followed by a 4-byte padding to make its + // size a multiple of 8. + if (ELFT::Is64Bits) + size = alignTo(size, 8); + + desc = desc.slice(size + 8); // +8 for Type and Size + } + + // Go to next NOTE record to look for more FEATURE_1_AND descriptions. + data = data.slice(nhdr->getSize()); + } + + return featuresSet; +} + +template <class ELFT> +InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { + uint32_t idx = sec.sh_info; + if (idx >= this->sections.size()) + fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); + InputSectionBase *target = this->sections[idx]; + + // Strictly speaking, a relocation section must be included in the + // group of the section it relocates. However, LLVM 3.3 and earlier + // would fail to do so, so we gracefully handle that case. + if (target == &InputSection::discarded) + return nullptr; + + if (!target) + fatal(toString(this) + ": unsupported relocation reference"); + return target; +} + +// Create a regular InputSection class that has the same contents +// as a given section. +static InputSection *toRegularSection(MergeInputSection *sec) { + return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, + sec->data(), sec->name); +} + +template <class ELFT> +InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { + StringRef name = getSectionName(sec); + + switch (sec.sh_type) { + case SHT_ARM_ATTRIBUTES: { + if (config->emachine != EM_ARM) + break; + ARMAttributeParser attributes; + ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); + attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); + updateSupportedARMFeatures(attributes); + updateARMVFPArgs(attributes, this); + + // FIXME: Retain the first attribute section we see. The eglibc ARM + // dynamic loaders require the presence of an attribute section for dlopen + // to work. In a full implementation we would merge all attribute sections. + if (in.armAttributes == nullptr) { + in.armAttributes = make<InputSection>(*this, sec, name); + return in.armAttributes; + } + return &InputSection::discarded; + } + case SHT_LLVM_DEPENDENT_LIBRARIES: { + if (config->relocatable) + break; + ArrayRef<char> data = + CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); + if (!data.empty() && data.back() != '\0') { + error(toString(this) + + ": corrupted dependent libraries section (unterminated string): " + + name); + return &InputSection::discarded; + } + for (const char *d = data.begin(), *e = data.end(); d < e;) { + StringRef s(d); + addDependentLibrary(s, this); + d += s.size() + 1; + } + return &InputSection::discarded; + } + case SHT_RELA: + case SHT_REL: { + // Find a relocation target section and associate this section with that. + // Target may have been discarded if it is in a different section group + // and the group is discarded, even though it's a violation of the + // spec. We handle that situation gracefully by discarding dangling + // relocation sections. + InputSectionBase *target = getRelocTarget(sec); + if (!target) + return nullptr; + + // ELF spec allows mergeable sections with relocations, but they are + // rare, and it is in practice hard to merge such sections by contents, + // because applying relocations at end of linking changes section + // contents. So, we simply handle such sections as non-mergeable ones. + // Degrading like this is acceptable because section merging is optional. + if (auto *ms = dyn_cast<MergeInputSection>(target)) { + target = toRegularSection(ms); + this->sections[sec.sh_info] = target; + } + + // This section contains relocation information. + // If -r is given, we do not interpret or apply relocation + // but just copy relocation sections to output. + if (config->relocatable) { + InputSection *relocSec = make<InputSection>(*this, sec, name); + // We want to add a dependency to target, similar like we do for + // -emit-relocs below. This is useful for the case when linker script + // contains the "/DISCARD/". It is perhaps uncommon to use a script with + // -r, but we faced it in the Linux kernel and have to handle such case + // and not to crash. + target->dependentSections.push_back(relocSec); + return relocSec; + } + + if (target->firstRelocation) + fatal(toString(this) + + ": multiple relocation sections to one section are not supported"); + + if (sec.sh_type == SHT_RELA) { + ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); + target->firstRelocation = rels.begin(); + target->numRelocations = rels.size(); + target->areRelocsRela = true; + } else { + ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); + target->firstRelocation = rels.begin(); + target->numRelocations = rels.size(); + target->areRelocsRela = false; + } + assert(isUInt<31>(target->numRelocations)); + + // Relocation sections processed by the linker are usually removed + // from the output, so returning `nullptr` for the normal case. + // However, if -emit-relocs is given, we need to leave them in the output. + // (Some post link analysis tools need this information.) + if (config->emitRelocs) { + InputSection *relocSec = make<InputSection>(*this, sec, name); + // We will not emit relocation section if target was discarded. + target->dependentSections.push_back(relocSec); + return relocSec; + } + return nullptr; + } + } + + // The GNU linker uses .note.GNU-stack section as a marker indicating + // that the code in the object file does not expect that the stack is + // executable (in terms of NX bit). If all input files have the marker, + // the GNU linker adds a PT_GNU_STACK segment to tells the loader to + // make the stack non-executable. Most object files have this section as + // of 2017. + // + // But making the stack non-executable is a norm today for security + // reasons. Failure to do so may result in a serious security issue. + // Therefore, we make LLD always add PT_GNU_STACK unless it is + // explicitly told to do otherwise (by -z execstack). Because the stack + // executable-ness is controlled solely by command line options, + // .note.GNU-stack sections are simply ignored. + if (name == ".note.GNU-stack") + return &InputSection::discarded; + + // Object files that use processor features such as Intel Control-Flow + // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a + // .note.gnu.property section containing a bitfield of feature bits like the + // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. + // + // Since we merge bitmaps from multiple object files to create a new + // .note.gnu.property containing a single AND'ed bitmap, we discard an input + // file's .note.gnu.property section. + if (name == ".note.gnu.property") { + ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); + this->andFeatures = readAndFeatures(this, contents); + return &InputSection::discarded; + } + + // Split stacks is a feature to support a discontiguous stack, + // commonly used in the programming language Go. For the details, + // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled + // for split stack will include a .note.GNU-split-stack section. + if (name == ".note.GNU-split-stack") { + if (config->relocatable) { + error("cannot mix split-stack and non-split-stack in a relocatable link"); + return &InputSection::discarded; + } + this->splitStack = true; + return &InputSection::discarded; + } + + // An object file cmpiled for split stack, but where some of the + // functions were compiled with the no_split_stack_attribute will + // include a .note.GNU-no-split-stack section. + if (name == ".note.GNU-no-split-stack") { + this->someNoSplitStack = true; + return &InputSection::discarded; + } + + // The linkonce feature is a sort of proto-comdat. Some glibc i386 object + // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce + // sections. Drop those sections to avoid duplicate symbol errors. + // FIXME: This is glibc PR20543, we should remove this hack once that has been + // fixed for a while. + if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || + name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") + return &InputSection::discarded; + + // If we are creating a new .build-id section, strip existing .build-id + // sections so that the output won't have more than one .build-id. + // This is not usually a problem because input object files normally don't + // have .build-id sections, but you can create such files by + // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. + if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) + return &InputSection::discarded; + + // The linker merges EH (exception handling) frames and creates a + // .eh_frame_hdr section for runtime. So we handle them with a special + // class. For relocatable outputs, they are just passed through. + if (name == ".eh_frame" && !config->relocatable) + return make<EhInputSection>(*this, sec, name); + + if (shouldMerge(sec, name)) + return make<MergeInputSection>(*this, sec, name); + return make<InputSection>(*this, sec, name); +} + +template <class ELFT> +StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { + return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); +} + +// Initialize this->Symbols. this->Symbols is a parallel array as +// its corresponding ELF symbol table. +template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { + ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); + this->symbols.resize(eSyms.size()); + + // Our symbol table may have already been partially initialized + // because of LazyObjFile. + for (size_t i = 0, end = eSyms.size(); i != end; ++i) + if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) + this->symbols[i] = + symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); + + // Fill this->Symbols. A symbol is either local or global. + for (size_t i = 0, end = eSyms.size(); i != end; ++i) { + const Elf_Sym &eSym = eSyms[i]; + + // Read symbol attributes. + uint32_t secIdx = getSectionIndex(eSym); + if (secIdx >= this->sections.size()) + fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); + + InputSectionBase *sec = this->sections[secIdx]; + uint8_t binding = eSym.getBinding(); + uint8_t stOther = eSym.st_other; + uint8_t type = eSym.getType(); + uint64_t value = eSym.st_value; + uint64_t size = eSym.st_size; + StringRefZ name = this->stringTable.data() + eSym.st_name; + + // Handle local symbols. Local symbols are not added to the symbol + // table because they are not visible from other object files. We + // allocate symbol instances and add their pointers to Symbols. + if (binding == STB_LOCAL) { + if (eSym.getType() == STT_FILE) + sourceFile = CHECK(eSym.getName(this->stringTable), this); + + if (this->stringTable.size() <= eSym.st_name) + fatal(toString(this) + ": invalid symbol name offset"); + + if (eSym.st_shndx == SHN_UNDEF) + this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); + else if (sec == &InputSection::discarded) + this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, + /*DiscardedSecIdx=*/secIdx); + else + this->symbols[i] = + make<Defined>(this, name, binding, stOther, type, value, size, sec); + continue; + } + + // Handle global undefined symbols. + if (eSym.st_shndx == SHN_UNDEF) { + this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); + this->symbols[i]->referenced = true; + continue; + } + + // Handle global common symbols. + if (eSym.st_shndx == SHN_COMMON) { + if (value == 0 || value >= UINT32_MAX) + fatal(toString(this) + ": common symbol '" + StringRef(name.data) + + "' has invalid alignment: " + Twine(value)); + this->symbols[i]->resolve( + CommonSymbol{this, name, binding, stOther, type, value, size}); + continue; + } + + // If a defined symbol is in a discarded section, handle it as if it + // were an undefined symbol. Such symbol doesn't comply with the + // standard, but in practice, a .eh_frame often directly refer + // COMDAT member sections, and if a comdat group is discarded, some + // defined symbol in a .eh_frame becomes dangling symbols. + if (sec == &InputSection::discarded) { + this->symbols[i]->resolve( + Undefined{this, name, binding, stOther, type, secIdx}); + continue; + } + + // Handle global defined symbols. + if (binding == STB_GLOBAL || binding == STB_WEAK || + binding == STB_GNU_UNIQUE) { + this->symbols[i]->resolve( + Defined{this, name, binding, stOther, type, value, size, sec}); + continue; + } + + fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); + } +} + +ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) + : InputFile(ArchiveKind, file->getMemoryBufferRef()), + file(std::move(file)) {} + +void ArchiveFile::parse() { + for (const Archive::Symbol &sym : file->symbols()) + symtab->addSymbol(LazyArchive{*this, sym}); +} + +// Returns a buffer pointing to a member file containing a given symbol. +void ArchiveFile::fetch(const Archive::Symbol &sym) { + Archive::Child c = + CHECK(sym.getMember(), toString(this) + + ": could not get the member for symbol " + + toELFString(sym)); + + if (!seen.insert(c.getChildOffset()).second) + return; + + MemoryBufferRef mb = + CHECK(c.getMemoryBufferRef(), + toString(this) + + ": could not get the buffer for the member defining symbol " + + toELFString(sym)); + + if (tar && c.getParent()->isThin()) + tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); + + InputFile *file = createObjectFile( + mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); + file->groupId = groupId; + parseFile(file); +} + +unsigned SharedFile::vernauxNum; + +// Parse the version definitions in the object file if present, and return a +// vector whose nth element contains a pointer to the Elf_Verdef for version +// identifier n. Version identifiers that are not definitions map to nullptr. +template <typename ELFT> +static std::vector<const void *> parseVerdefs(const uint8_t *base, + const typename ELFT::Shdr *sec) { + if (!sec) + return {}; + + // We cannot determine the largest verdef identifier without inspecting + // every Elf_Verdef, but both bfd and gold assign verdef identifiers + // sequentially starting from 1, so we predict that the largest identifier + // will be verdefCount. + unsigned verdefCount = sec->sh_info; + std::vector<const void *> verdefs(verdefCount + 1); + + // Build the Verdefs array by following the chain of Elf_Verdef objects + // from the start of the .gnu.version_d section. + const uint8_t *verdef = base + sec->sh_offset; + for (unsigned i = 0; i != verdefCount; ++i) { + auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); + verdef += curVerdef->vd_next; + unsigned verdefIndex = curVerdef->vd_ndx; + verdefs.resize(verdefIndex + 1); + verdefs[verdefIndex] = curVerdef; + } + return verdefs; +} + +// We do not usually care about alignments of data in shared object +// files because the loader takes care of it. However, if we promote a +// DSO symbol to point to .bss due to copy relocation, we need to keep +// the original alignment requirements. We infer it in this function. +template <typename ELFT> +static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, + const typename ELFT::Sym &sym) { + uint64_t ret = UINT64_MAX; + if (sym.st_value) + ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); + if (0 < sym.st_shndx && sym.st_shndx < sections.size()) + ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); + return (ret > UINT32_MAX) ? 0 : ret; +} + +// Fully parse the shared object file. +// +// This function parses symbol versions. If a DSO has version information, +// the file has a ".gnu.version_d" section which contains symbol version +// definitions. Each symbol is associated to one version through a table in +// ".gnu.version" section. That table is a parallel array for the symbol +// table, and each table entry contains an index in ".gnu.version_d". +// +// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for +// VER_NDX_GLOBAL. There's no table entry for these special versions in +// ".gnu.version_d". +// +// The file format for symbol versioning is perhaps a bit more complicated +// than necessary, but you can easily understand the code if you wrap your +// head around the data structure described above. +template <class ELFT> void SharedFile::parse() { + using Elf_Dyn = typename ELFT::Dyn; + using Elf_Shdr = typename ELFT::Shdr; + using Elf_Sym = typename ELFT::Sym; + using Elf_Verdef = typename ELFT::Verdef; + using Elf_Versym = typename ELFT::Versym; + + ArrayRef<Elf_Dyn> dynamicTags; + const ELFFile<ELFT> obj = this->getObj<ELFT>(); + ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); + + const Elf_Shdr *versymSec = nullptr; + const Elf_Shdr *verdefSec = nullptr; + + // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. + for (const Elf_Shdr &sec : sections) { + switch (sec.sh_type) { + default: + continue; + case SHT_DYNAMIC: + dynamicTags = + CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); + break; + case SHT_GNU_versym: + versymSec = &sec; + break; + case SHT_GNU_verdef: + verdefSec = &sec; + break; + } + } + + if (versymSec && numELFSyms == 0) { + error("SHT_GNU_versym should be associated with symbol table"); + return; + } + + // Search for a DT_SONAME tag to initialize this->soName. + for (const Elf_Dyn &dyn : dynamicTags) { + if (dyn.d_tag == DT_NEEDED) { + uint64_t val = dyn.getVal(); + if (val >= this->stringTable.size()) + fatal(toString(this) + ": invalid DT_NEEDED entry"); + dtNeeded.push_back(this->stringTable.data() + val); + } else if (dyn.d_tag == DT_SONAME) { + uint64_t val = dyn.getVal(); + if (val >= this->stringTable.size()) + fatal(toString(this) + ": invalid DT_SONAME entry"); + soName = this->stringTable.data() + val; + } + } + + // DSOs are uniquified not by filename but by soname. + DenseMap<StringRef, SharedFile *>::iterator it; + bool wasInserted; + std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); + + // If a DSO appears more than once on the command line with and without + // --as-needed, --no-as-needed takes precedence over --as-needed because a + // user can add an extra DSO with --no-as-needed to force it to be added to + // the dependency list. + it->second->isNeeded |= isNeeded; + if (!wasInserted) + return; + + sharedFiles.push_back(this); + + verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); + + // Parse ".gnu.version" section which is a parallel array for the symbol + // table. If a given file doesn't have a ".gnu.version" section, we use + // VER_NDX_GLOBAL. + size_t size = numELFSyms - firstGlobal; + std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); + if (versymSec) { + ArrayRef<Elf_Versym> versym = + CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), + this) + .slice(firstGlobal); + for (size_t i = 0; i < size; ++i) + versyms[i] = versym[i].vs_index; + } + + // System libraries can have a lot of symbols with versions. Using a + // fixed buffer for computing the versions name (foo@ver) can save a + // lot of allocations. + SmallString<0> versionedNameBuffer; + + // Add symbols to the symbol table. + ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); + for (size_t i = 0; i < syms.size(); ++i) { + const Elf_Sym &sym = syms[i]; + + // ELF spec requires that all local symbols precede weak or global + // symbols in each symbol table, and the index of first non-local symbol + // is stored to sh_info. If a local symbol appears after some non-local + // symbol, that's a violation of the spec. + StringRef name = CHECK(sym.getName(this->stringTable), this); + if (sym.getBinding() == STB_LOCAL) { + warn("found local symbol '" + name + + "' in global part of symbol table in file " + toString(this)); + continue; + } + + if (sym.isUndefined()) { + Symbol *s = symtab->addSymbol( + Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); + s->exportDynamic = true; + continue; + } + + // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly + // assigns VER_NDX_LOCAL to this section global symbol. Here is a + // workaround for this bug. + uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; + if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && + name == "_gp_disp") + continue; + + uint32_t alignment = getAlignment<ELFT>(sections, sym); + if (!(versyms[i] & VERSYM_HIDDEN)) { + symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), + sym.st_other, sym.getType(), sym.st_value, + sym.st_size, alignment, idx}); + } + + // Also add the symbol with the versioned name to handle undefined symbols + // with explicit versions. + if (idx == VER_NDX_GLOBAL) + continue; + + if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { + error("corrupt input file: version definition index " + Twine(idx) + + " for symbol " + name + " is out of bounds\n>>> defined in " + + toString(this)); + continue; + } + + StringRef verName = + this->stringTable.data() + + reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; + versionedNameBuffer.clear(); + name = (name + "@" + verName).toStringRef(versionedNameBuffer); + symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), + sym.st_other, sym.getType(), sym.st_value, + sym.st_size, alignment, idx}); + } +} + +static ELFKind getBitcodeELFKind(const Triple &t) { + if (t.isLittleEndian()) + return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; + return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; +} + +static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { + switch (t.getArch()) { + case Triple::aarch64: + return EM_AARCH64; + case Triple::amdgcn: + case Triple::r600: + return EM_AMDGPU; + case Triple::arm: + case Triple::thumb: + return EM_ARM; + case Triple::avr: + return EM_AVR; + case Triple::mips: + case Triple::mipsel: + case Triple::mips64: + case Triple::mips64el: + return EM_MIPS; + case Triple::msp430: + return EM_MSP430; + case Triple::ppc: + return EM_PPC; + case Triple::ppc64: + case Triple::ppc64le: + return EM_PPC64; + case Triple::riscv32: + case Triple::riscv64: + return EM_RISCV; + case Triple::x86: + return t.isOSIAMCU() ? EM_IAMCU : EM_386; + case Triple::x86_64: + return EM_X86_64; + default: + error(path + ": could not infer e_machine from bitcode target triple " + + t.str()); + return EM_NONE; + } +} + +BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, + uint64_t offsetInArchive) + : InputFile(BitcodeKind, mb) { + this->archiveName = std::string(archiveName); + + std::string path = mb.getBufferIdentifier().str(); + if (config->thinLTOIndexOnly) + path = replaceThinLTOSuffix(mb.getBufferIdentifier()); + + // ThinLTO assumes that all MemoryBufferRefs given to it have a unique + // name. If two archives define two members with the same name, this + // causes a collision which result in only one of the objects being taken + // into consideration at LTO time (which very likely causes undefined + // symbols later in the link stage). So we append file offset to make + // filename unique. + StringRef name = archiveName.empty() + ? saver.save(path) + : saver.save(archiveName + "(" + path + " at " + + utostr(offsetInArchive) + ")"); + MemoryBufferRef mbref(mb.getBuffer(), name); + + obj = CHECK(lto::InputFile::create(mbref), this); + + Triple t(obj->getTargetTriple()); + ekind = getBitcodeELFKind(t); + emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); +} + +static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { + switch (gvVisibility) { + case GlobalValue::DefaultVisibility: + return STV_DEFAULT; + case GlobalValue::HiddenVisibility: + return STV_HIDDEN; + case GlobalValue::ProtectedVisibility: + return STV_PROTECTED; + } + llvm_unreachable("unknown visibility"); +} + +template <class ELFT> +static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, + const lto::InputFile::Symbol &objSym, + BitcodeFile &f) { + StringRef name = saver.save(objSym.getName()); + uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; + uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; + uint8_t visibility = mapVisibility(objSym.getVisibility()); + bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); + + int c = objSym.getComdatIndex(); + if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { + Undefined newSym(&f, name, binding, visibility, type); + if (canOmitFromDynSym) + newSym.exportDynamic = false; + Symbol *ret = symtab->addSymbol(newSym); + ret->referenced = true; + return ret; + } + + if (objSym.isCommon()) + return symtab->addSymbol( + CommonSymbol{&f, name, binding, visibility, STT_OBJECT, + objSym.getCommonAlignment(), objSym.getCommonSize()}); + + Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); + if (canOmitFromDynSym) + newSym.exportDynamic = false; + return symtab->addSymbol(newSym); +} + +template <class ELFT> void BitcodeFile::parse() { + std::vector<bool> keptComdats; + for (StringRef s : obj->getComdatTable()) + keptComdats.push_back( + symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); + + for (const lto::InputFile::Symbol &objSym : obj->symbols()) + symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); + + for (auto l : obj->getDependentLibraries()) + addDependentLibrary(l, this); +} + +void BinaryFile::parse() { + ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); + auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, + 8, data, ".data"); + sections.push_back(section); + + // For each input file foo that is embedded to a result as a binary + // blob, we define _binary_foo_{start,end,size} symbols, so that + // user programs can access blobs by name. Non-alphanumeric + // characters in a filename are replaced with underscore. + std::string s = "_binary_" + mb.getBufferIdentifier().str(); + for (size_t i = 0; i < s.size(); ++i) + if (!isAlnum(s[i])) + s[i] = '_'; + + symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, + STV_DEFAULT, STT_OBJECT, 0, 0, section}); + symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, + STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); + symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, + STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); +} + +InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, + uint64_t offsetInArchive) { + if (isBitcode(mb)) + return make<BitcodeFile>(mb, archiveName, offsetInArchive); + + switch (getELFKind(mb, archiveName)) { + case ELF32LEKind: + return make<ObjFile<ELF32LE>>(mb, archiveName); + case ELF32BEKind: + return make<ObjFile<ELF32BE>>(mb, archiveName); + case ELF64LEKind: + return make<ObjFile<ELF64LE>>(mb, archiveName); + case ELF64BEKind: + return make<ObjFile<ELF64BE>>(mb, archiveName); + default: + llvm_unreachable("getELFKind"); + } +} + +void LazyObjFile::fetch() { + if (mb.getBuffer().empty()) + return; + + InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); + file->groupId = groupId; + + mb = {}; + + // Copy symbol vector so that the new InputFile doesn't have to + // insert the same defined symbols to the symbol table again. + file->symbols = std::move(symbols); + + parseFile(file); +} + +template <class ELFT> void LazyObjFile::parse() { + using Elf_Sym = typename ELFT::Sym; + + // A lazy object file wraps either a bitcode file or an ELF file. + if (isBitcode(this->mb)) { + std::unique_ptr<lto::InputFile> obj = + CHECK(lto::InputFile::create(this->mb), this); + for (const lto::InputFile::Symbol &sym : obj->symbols()) { + if (sym.isUndefined()) + continue; + symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); + } + return; + } + + if (getELFKind(this->mb, archiveName) != config->ekind) { + error("incompatible file: " + this->mb.getBufferIdentifier()); + return; + } + + // Find a symbol table. + ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); + ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); + + for (const typename ELFT::Shdr &sec : sections) { + if (sec.sh_type != SHT_SYMTAB) + continue; + + // A symbol table is found. + ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); + uint32_t firstGlobal = sec.sh_info; + StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); + this->symbols.resize(eSyms.size()); + + // Get existing symbols or insert placeholder symbols. + for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) + if (eSyms[i].st_shndx != SHN_UNDEF) + this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); + + // Replace existing symbols with LazyObject symbols. + // + // resolve() may trigger this->fetch() if an existing symbol is an + // undefined symbol. If that happens, this LazyObjFile has served + // its purpose, and we can exit from the loop early. + for (Symbol *sym : this->symbols) { + if (!sym) + continue; + sym->resolve(LazyObject{*this, sym->getName()}); + + // MemoryBuffer is emptied if this file is instantiated as ObjFile. + if (mb.getBuffer().empty()) + return; + } + return; + } +} + +std::string replaceThinLTOSuffix(StringRef path) { + StringRef suffix = config->thinLTOObjectSuffixReplace.first; + StringRef repl = config->thinLTOObjectSuffixReplace.second; + + if (path.consume_back(suffix)) + return (path + repl).str(); + return std::string(path); +} + +template void BitcodeFile::parse<ELF32LE>(); +template void BitcodeFile::parse<ELF32BE>(); +template void BitcodeFile::parse<ELF64LE>(); +template void BitcodeFile::parse<ELF64BE>(); + +template void LazyObjFile::parse<ELF32LE>(); +template void LazyObjFile::parse<ELF32BE>(); +template void LazyObjFile::parse<ELF64LE>(); +template void LazyObjFile::parse<ELF64BE>(); + +template class ObjFile<ELF32LE>; +template class ObjFile<ELF32BE>; +template class ObjFile<ELF64LE>; +template class ObjFile<ELF64BE>; + +template void SharedFile::parse<ELF32LE>(); +template void SharedFile::parse<ELF32BE>(); +template void SharedFile::parse<ELF64LE>(); +template void SharedFile::parse<ELF64BE>(); + +} // namespace elf +} // namespace lld