Mercurial > hg > CbC > CbC_llvm
diff lld/ELF/LinkerScript.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lld/ELF/LinkerScript.cpp Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,1211 @@ +//===- LinkerScript.cpp ---------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the parser/evaluator of the linker script. +// +//===----------------------------------------------------------------------===// + +#include "LinkerScript.h" +#include "Config.h" +#include "InputSection.h" +#include "OutputSections.h" +#include "SymbolTable.h" +#include "Symbols.h" +#include "SyntheticSections.h" +#include "Target.h" +#include "Writer.h" +#include "lld/Common/Memory.h" +#include "lld/Common/Strings.h" +#include "lld/Common/Threads.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/BinaryFormat/ELF.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Path.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <limits> +#include <string> +#include <vector> + +using namespace llvm; +using namespace llvm::ELF; +using namespace llvm::object; +using namespace llvm::support::endian; + +namespace lld { +namespace elf { +LinkerScript *script; + +static uint64_t getOutputSectionVA(SectionBase *sec) { + OutputSection *os = sec->getOutputSection(); + assert(os && "input section has no output section assigned"); + return os ? os->addr : 0; +} + +uint64_t ExprValue::getValue() const { + if (sec) + return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), + alignment); + return alignTo(val, alignment); +} + +uint64_t ExprValue::getSecAddr() const { + if (sec) + return sec->getOffset(0) + getOutputSectionVA(sec); + return 0; +} + +uint64_t ExprValue::getSectionOffset() const { + // If the alignment is trivial, we don't have to compute the full + // value to know the offset. This allows this function to succeed in + // cases where the output section is not yet known. + if (alignment == 1 && !sec) + return val; + return getValue() - getSecAddr(); +} + +OutputSection *LinkerScript::createOutputSection(StringRef name, + StringRef location) { + OutputSection *&secRef = nameToOutputSection[name]; + OutputSection *sec; + if (secRef && secRef->location.empty()) { + // There was a forward reference. + sec = secRef; + } else { + sec = make<OutputSection>(name, SHT_PROGBITS, 0); + if (!secRef) + secRef = sec; + } + sec->location = std::string(location); + return sec; +} + +OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { + OutputSection *&cmdRef = nameToOutputSection[name]; + if (!cmdRef) + cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); + return cmdRef; +} + +// Expands the memory region by the specified size. +static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, + StringRef regionName, StringRef secName) { + memRegion->curPos += size; + uint64_t newSize = memRegion->curPos - memRegion->origin; + if (newSize > memRegion->length) + error("section '" + secName + "' will not fit in region '" + regionName + + "': overflowed by " + Twine(newSize - memRegion->length) + " bytes"); +} + +void LinkerScript::expandMemoryRegions(uint64_t size) { + if (ctx->memRegion) + expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, + ctx->outSec->name); + // Only expand the LMARegion if it is different from memRegion. + if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) + expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, + ctx->outSec->name); +} + +void LinkerScript::expandOutputSection(uint64_t size) { + ctx->outSec->size += size; + expandMemoryRegions(size); +} + +void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { + uint64_t val = e().getValue(); + if (val < dot && inSec) + error(loc + ": unable to move location counter backward for: " + + ctx->outSec->name); + + // Update to location counter means update to section size. + if (inSec) + expandOutputSection(val - dot); + + dot = val; +} + +// Used for handling linker symbol assignments, for both finalizing +// their values and doing early declarations. Returns true if symbol +// should be defined from linker script. +static bool shouldDefineSym(SymbolAssignment *cmd) { + if (cmd->name == ".") + return false; + + if (!cmd->provide) + return true; + + // If a symbol was in PROVIDE(), we need to define it only + // when it is a referenced undefined symbol. + Symbol *b = symtab->find(cmd->name); + if (b && !b->isDefined()) + return true; + return false; +} + +// Called by processSymbolAssignments() to assign definitions to +// linker-script-defined symbols. +void LinkerScript::addSymbol(SymbolAssignment *cmd) { + if (!shouldDefineSym(cmd)) + return; + + // Define a symbol. + ExprValue value = cmd->expression(); + SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; + uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; + + // When this function is called, section addresses have not been + // fixed yet. So, we may or may not know the value of the RHS + // expression. + // + // For example, if an expression is `x = 42`, we know x is always 42. + // However, if an expression is `x = .`, there's no way to know its + // value at the moment. + // + // We want to set symbol values early if we can. This allows us to + // use symbols as variables in linker scripts. Doing so allows us to + // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. + uint64_t symValue = value.sec ? 0 : value.getValue(); + + Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, + symValue, 0, sec); + + Symbol *sym = symtab->insert(cmd->name); + sym->mergeProperties(newSym); + sym->replace(newSym); + cmd->sym = cast<Defined>(sym); +} + +// This function is called from LinkerScript::declareSymbols. +// It creates a placeholder symbol if needed. +static void declareSymbol(SymbolAssignment *cmd) { + if (!shouldDefineSym(cmd)) + return; + + uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; + Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, + nullptr); + + // We can't calculate final value right now. + Symbol *sym = symtab->insert(cmd->name); + sym->mergeProperties(newSym); + sym->replace(newSym); + + cmd->sym = cast<Defined>(sym); + cmd->provide = false; + sym->scriptDefined = true; +} + +using SymbolAssignmentMap = + DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; + +// Collect section/value pairs of linker-script-defined symbols. This is used to +// check whether symbol values converge. +static SymbolAssignmentMap +getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { + SymbolAssignmentMap ret; + for (BaseCommand *base : sectionCommands) { + if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { + if (cmd->sym) // sym is nullptr for dot. + ret.try_emplace(cmd->sym, + std::make_pair(cmd->sym->section, cmd->sym->value)); + continue; + } + for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) + if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) + if (cmd->sym) + ret.try_emplace(cmd->sym, + std::make_pair(cmd->sym->section, cmd->sym->value)); + } + return ret; +} + +// Returns the lexicographical smallest (for determinism) Defined whose +// section/value has changed. +static const Defined * +getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { + const Defined *changed = nullptr; + for (auto &it : oldValues) { + const Defined *sym = it.first; + if (std::make_pair(sym->section, sym->value) != it.second && + (!changed || sym->getName() < changed->getName())) + changed = sym; + } + return changed; +} + +// Process INSERT [AFTER|BEFORE] commands. For each command, we move the +// specified output section to the designated place. +void LinkerScript::processInsertCommands() { + for (const InsertCommand &cmd : insertCommands) { + // If cmd.os is empty, it may have been discarded by + // adjustSectionsBeforeSorting(). We do not handle such output sections. + auto from = llvm::find(sectionCommands, cmd.os); + if (from == sectionCommands.end()) + continue; + sectionCommands.erase(from); + + auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { + auto *to = dyn_cast<OutputSection>(base); + return to != nullptr && to->name == cmd.where; + }); + if (insertPos == sectionCommands.end()) { + error("unable to insert " + cmd.os->name + + (cmd.isAfter ? " after " : " before ") + cmd.where); + } else { + if (cmd.isAfter) + ++insertPos; + sectionCommands.insert(insertPos, cmd.os); + } + } +} + +// Symbols defined in script should not be inlined by LTO. At the same time +// we don't know their final values until late stages of link. Here we scan +// over symbol assignment commands and create placeholder symbols if needed. +void LinkerScript::declareSymbols() { + assert(!ctx); + for (BaseCommand *base : sectionCommands) { + if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { + declareSymbol(cmd); + continue; + } + + // If the output section directive has constraints, + // we can't say for sure if it is going to be included or not. + // Skip such sections for now. Improve the checks if we ever + // need symbols from that sections to be declared early. + auto *sec = cast<OutputSection>(base); + if (sec->constraint != ConstraintKind::NoConstraint) + continue; + for (BaseCommand *base2 : sec->sectionCommands) + if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) + declareSymbol(cmd); + } +} + +// This function is called from assignAddresses, while we are +// fixing the output section addresses. This function is supposed +// to set the final value for a given symbol assignment. +void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { + if (cmd->name == ".") { + setDot(cmd->expression, cmd->location, inSec); + return; + } + + if (!cmd->sym) + return; + + ExprValue v = cmd->expression(); + if (v.isAbsolute()) { + cmd->sym->section = nullptr; + cmd->sym->value = v.getValue(); + } else { + cmd->sym->section = v.sec; + cmd->sym->value = v.getSectionOffset(); + } +} + +static std::string getFilename(InputFile *file) { + if (!file) + return ""; + if (file->archiveName.empty()) + return std::string(file->getName()); + return (file->archiveName + "(" + file->getName() + ")").str(); +} + +bool LinkerScript::shouldKeep(InputSectionBase *s) { + if (keptSections.empty()) + return false; + std::string filename = getFilename(s->file); + for (InputSectionDescription *id : keptSections) + if (id->filePat.match(filename)) + for (SectionPattern &p : id->sectionPatterns) + if (p.sectionPat.match(s->name) && + (s->flags & id->withFlags) == id->withFlags && + (s->flags & id->withoutFlags) == 0) + return true; + return false; +} + +// A helper function for the SORT() command. +static bool matchConstraints(ArrayRef<InputSectionBase *> sections, + ConstraintKind kind) { + if (kind == ConstraintKind::NoConstraint) + return true; + + bool isRW = llvm::any_of( + sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); + + return (isRW && kind == ConstraintKind::ReadWrite) || + (!isRW && kind == ConstraintKind::ReadOnly); +} + +static void sortSections(MutableArrayRef<InputSectionBase *> vec, + SortSectionPolicy k) { + auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { + // ">" is not a mistake. Sections with larger alignments are placed + // before sections with smaller alignments in order to reduce the + // amount of padding necessary. This is compatible with GNU. + return a->alignment > b->alignment; + }; + auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { + return a->name < b->name; + }; + auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { + return getPriority(a->name) < getPriority(b->name); + }; + + switch (k) { + case SortSectionPolicy::Default: + case SortSectionPolicy::None: + return; + case SortSectionPolicy::Alignment: + return llvm::stable_sort(vec, alignmentComparator); + case SortSectionPolicy::Name: + return llvm::stable_sort(vec, nameComparator); + case SortSectionPolicy::Priority: + return llvm::stable_sort(vec, priorityComparator); + } +} + +// Sort sections as instructed by SORT-family commands and --sort-section +// option. Because SORT-family commands can be nested at most two depth +// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command +// line option is respected even if a SORT command is given, the exact +// behavior we have here is a bit complicated. Here are the rules. +// +// 1. If two SORT commands are given, --sort-section is ignored. +// 2. If one SORT command is given, and if it is not SORT_NONE, +// --sort-section is handled as an inner SORT command. +// 3. If one SORT command is given, and if it is SORT_NONE, don't sort. +// 4. If no SORT command is given, sort according to --sort-section. +static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, + const SectionPattern &pat) { + if (pat.sortOuter == SortSectionPolicy::None) + return; + + if (pat.sortInner == SortSectionPolicy::Default) + sortSections(vec, config->sortSection); + else + sortSections(vec, pat.sortInner); + sortSections(vec, pat.sortOuter); +} + +// Compute and remember which sections the InputSectionDescription matches. +std::vector<InputSectionBase *> +LinkerScript::computeInputSections(const InputSectionDescription *cmd) { + std::vector<InputSectionBase *> ret; + + // Collects all sections that satisfy constraints of Cmd. + for (const SectionPattern &pat : cmd->sectionPatterns) { + size_t sizeBefore = ret.size(); + + for (InputSectionBase *sec : inputSections) { + if (!sec->isLive() || sec->parent) + continue; + + // For -emit-relocs we have to ignore entries like + // .rela.dyn : { *(.rela.data) } + // which are common because they are in the default bfd script. + // We do not ignore SHT_REL[A] linker-synthesized sections here because + // want to support scripts that do custom layout for them. + if (isa<InputSection>(sec) && + cast<InputSection>(sec)->getRelocatedSection()) + continue; + + // Check the name early to improve performance in the common case. + if (!pat.sectionPat.match(sec->name)) + continue; + + std::string filename = getFilename(sec->file); + if (!cmd->filePat.match(filename) || + pat.excludedFilePat.match(filename) || + (sec->flags & cmd->withFlags) != cmd->withFlags || + (sec->flags & cmd->withoutFlags) != 0) + continue; + + ret.push_back(sec); + } + + sortInputSections( + MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat); + } + return ret; +} + +void LinkerScript::discard(InputSectionBase *s) { + if (s == in.shStrTab || s == mainPart->relrDyn) + error("discarding " + s->name + " section is not allowed"); + + // You can discard .hash and .gnu.hash sections by linker scripts. Since + // they are synthesized sections, we need to handle them differently than + // other regular sections. + if (s == mainPart->gnuHashTab) + mainPart->gnuHashTab = nullptr; + if (s == mainPart->hashTab) + mainPart->hashTab = nullptr; + + s->markDead(); + s->parent = nullptr; + for (InputSection *ds : s->dependentSections) + discard(ds); +} + +std::vector<InputSectionBase *> +LinkerScript::createInputSectionList(OutputSection &outCmd) { + std::vector<InputSectionBase *> ret; + + for (BaseCommand *base : outCmd.sectionCommands) { + if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { + cmd->sectionBases = computeInputSections(cmd); + for (InputSectionBase *s : cmd->sectionBases) + s->parent = &outCmd; + ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); + } + } + return ret; +} + +// Create output sections described by SECTIONS commands. +void LinkerScript::processSectionCommands() { + size_t i = 0; + for (BaseCommand *base : sectionCommands) { + if (auto *sec = dyn_cast<OutputSection>(base)) { + std::vector<InputSectionBase *> v = createInputSectionList(*sec); + + // The output section name `/DISCARD/' is special. + // Any input section assigned to it is discarded. + if (sec->name == "/DISCARD/") { + for (InputSectionBase *s : v) + discard(s); + sec->sectionCommands.clear(); + continue; + } + + // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive + // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input + // sections satisfy a given constraint. If not, a directive is handled + // as if it wasn't present from the beginning. + // + // Because we'll iterate over SectionCommands many more times, the easy + // way to "make it as if it wasn't present" is to make it empty. + if (!matchConstraints(v, sec->constraint)) { + for (InputSectionBase *s : v) + s->parent = nullptr; + sec->sectionCommands.clear(); + continue; + } + + // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign + // is given, input sections are aligned to that value, whether the + // given value is larger or smaller than the original section alignment. + if (sec->subalignExpr) { + uint32_t subalign = sec->subalignExpr().getValue(); + for (InputSectionBase *s : v) + s->alignment = subalign; + } + + // Set the partition field the same way OutputSection::recordSection() + // does. Partitions cannot be used with the SECTIONS command, so this is + // always 1. + sec->partition = 1; + + sec->sectionIndex = i++; + } + } +} + +void LinkerScript::processSymbolAssignments() { + // Dot outside an output section still represents a relative address, whose + // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section + // that fills the void outside a section. It has an index of one, which is + // indistinguishable from any other regular section index. + aether = make<OutputSection>("", 0, SHF_ALLOC); + aether->sectionIndex = 1; + + // ctx captures the local AddressState and makes it accessible deliberately. + // This is needed as there are some cases where we cannot just thread the + // current state through to a lambda function created by the script parser. + AddressState state; + ctx = &state; + ctx->outSec = aether; + + for (BaseCommand *base : sectionCommands) { + if (auto *cmd = dyn_cast<SymbolAssignment>(base)) + addSymbol(cmd); + else + for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) + if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) + addSymbol(cmd); + } + + ctx = nullptr; +} + +static OutputSection *findByName(ArrayRef<BaseCommand *> vec, + StringRef name) { + for (BaseCommand *base : vec) + if (auto *sec = dyn_cast<OutputSection>(base)) + if (sec->name == name) + return sec; + return nullptr; +} + +static OutputSection *createSection(InputSectionBase *isec, + StringRef outsecName) { + OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); + sec->recordSection(isec); + return sec; +} + +static OutputSection * +addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, + InputSectionBase *isec, StringRef outsecName) { + // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r + // option is given. A section with SHT_GROUP defines a "section group", and + // its members have SHF_GROUP attribute. Usually these flags have already been + // stripped by InputFiles.cpp as section groups are processed and uniquified. + // However, for the -r option, we want to pass through all section groups + // as-is because adding/removing members or merging them with other groups + // change their semantics. + if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) + return createSection(isec, outsecName); + + // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have + // relocation sections .rela.foo and .rela.bar for example. Most tools do + // not allow multiple REL[A] sections for output section. Hence we + // should combine these relocation sections into single output. + // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any + // other REL[A] sections created by linker itself. + if (!isa<SyntheticSection>(isec) && + (isec->type == SHT_REL || isec->type == SHT_RELA)) { + auto *sec = cast<InputSection>(isec); + OutputSection *out = sec->getRelocatedSection()->getOutputSection(); + + if (out->relocationSection) { + out->relocationSection->recordSection(sec); + return nullptr; + } + + out->relocationSection = createSection(isec, outsecName); + return out->relocationSection; + } + + // The ELF spec just says + // ---------------------------------------------------------------- + // In the first phase, input sections that match in name, type and + // attribute flags should be concatenated into single sections. + // ---------------------------------------------------------------- + // + // However, it is clear that at least some flags have to be ignored for + // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be + // ignored. We should not have two output .text sections just because one was + // in a group and another was not for example. + // + // It also seems that wording was a late addition and didn't get the + // necessary scrutiny. + // + // Merging sections with different flags is expected by some users. One + // reason is that if one file has + // + // int *const bar __attribute__((section(".foo"))) = (int *)0; + // + // gcc with -fPIC will produce a read only .foo section. But if another + // file has + // + // int zed; + // int *const bar __attribute__((section(".foo"))) = (int *)&zed; + // + // gcc with -fPIC will produce a read write section. + // + // Last but not least, when using linker script the merge rules are forced by + // the script. Unfortunately, linker scripts are name based. This means that + // expressions like *(.foo*) can refer to multiple input sections with + // different flags. We cannot put them in different output sections or we + // would produce wrong results for + // + // start = .; *(.foo.*) end = .; *(.bar) + // + // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to + // another. The problem is that there is no way to layout those output + // sections such that the .foo sections are the only thing between the start + // and end symbols. + // + // Given the above issues, we instead merge sections by name and error on + // incompatible types and flags. + TinyPtrVector<OutputSection *> &v = map[outsecName]; + for (OutputSection *sec : v) { + if (sec->partition != isec->partition) + continue; + + if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { + // Merging two SHF_LINK_ORDER sections with different sh_link fields will + // change their semantics, so we only merge them in -r links if they will + // end up being linked to the same output section. The casts are fine + // because everything in the map was created by the orphan placement code. + auto *firstIsec = cast<InputSectionBase>( + cast<InputSectionDescription>(sec->sectionCommands[0]) + ->sectionBases[0]); + if (firstIsec->getLinkOrderDep()->getOutputSection() != + isec->getLinkOrderDep()->getOutputSection()) + continue; + } + + sec->recordSection(isec); + return nullptr; + } + + OutputSection *sec = createSection(isec, outsecName); + v.push_back(sec); + return sec; +} + +// Add sections that didn't match any sections command. +void LinkerScript::addOrphanSections() { + StringMap<TinyPtrVector<OutputSection *>> map; + std::vector<OutputSection *> v; + + std::function<void(InputSectionBase *)> add; + add = [&](InputSectionBase *s) { + if (s->isLive() && !s->parent) { + StringRef name = getOutputSectionName(s); + + if (config->orphanHandling == OrphanHandlingPolicy::Error) + error(toString(s) + " is being placed in '" + name + "'"); + else if (config->orphanHandling == OrphanHandlingPolicy::Warn) + warn(toString(s) + " is being placed in '" + name + "'"); + + if (OutputSection *sec = findByName(sectionCommands, name)) { + sec->recordSection(s); + } else { + if (OutputSection *os = addInputSec(map, s, name)) + v.push_back(os); + assert(isa<MergeInputSection>(s) || + s->getOutputSection()->sectionIndex == UINT32_MAX); + } + } + + if (config->relocatable) + for (InputSectionBase *depSec : s->dependentSections) + if (depSec->flags & SHF_LINK_ORDER) + add(depSec); + }; + + // For futher --emit-reloc handling code we need target output section + // to be created before we create relocation output section, so we want + // to create target sections first. We do not want priority handling + // for synthetic sections because them are special. + for (InputSectionBase *isec : inputSections) { + // In -r links, SHF_LINK_ORDER sections are added while adding their parent + // sections because we need to know the parent's output section before we + // can select an output section for the SHF_LINK_ORDER section. + if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) + continue; + + if (auto *sec = dyn_cast<InputSection>(isec)) + if (InputSectionBase *rel = sec->getRelocatedSection()) + if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) + add(relIS); + add(isec); + } + + // If no SECTIONS command was given, we should insert sections commands + // before others, so that we can handle scripts which refers them, + // for example: "foo = ABSOLUTE(ADDR(.text)));". + // When SECTIONS command is present we just add all orphans to the end. + if (hasSectionsCommand) + sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); + else + sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); +} + +uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { + bool isTbss = + (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; + uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; + start = alignTo(start, alignment); + uint64_t end = start + size; + + if (isTbss) + ctx->threadBssOffset = end - dot; + else + dot = end; + return end; +} + +void LinkerScript::output(InputSection *s) { + assert(ctx->outSec == s->getParent()); + uint64_t before = advance(0, 1); + uint64_t pos = advance(s->getSize(), s->alignment); + s->outSecOff = pos - s->getSize() - ctx->outSec->addr; + + // Update output section size after adding each section. This is so that + // SIZEOF works correctly in the case below: + // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } + expandOutputSection(pos - before); +} + +void LinkerScript::switchTo(OutputSection *sec) { + ctx->outSec = sec; + + uint64_t before = advance(0, 1); + ctx->outSec->addr = advance(0, ctx->outSec->alignment); + expandMemoryRegions(ctx->outSec->addr - before); +} + +// This function searches for a memory region to place the given output +// section in. If found, a pointer to the appropriate memory region is +// returned. Otherwise, a nullptr is returned. +MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { + // If a memory region name was specified in the output section command, + // then try to find that region first. + if (!sec->memoryRegionName.empty()) { + if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) + return m; + error("memory region '" + sec->memoryRegionName + "' not declared"); + return nullptr; + } + + // If at least one memory region is defined, all sections must + // belong to some memory region. Otherwise, we don't need to do + // anything for memory regions. + if (memoryRegions.empty()) + return nullptr; + + // See if a region can be found by matching section flags. + for (auto &pair : memoryRegions) { + MemoryRegion *m = pair.second; + if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) + return m; + } + + // Otherwise, no suitable region was found. + if (sec->flags & SHF_ALLOC) + error("no memory region specified for section '" + sec->name + "'"); + return nullptr; +} + +static OutputSection *findFirstSection(PhdrEntry *load) { + for (OutputSection *sec : outputSections) + if (sec->ptLoad == load) + return sec; + return nullptr; +} + +// This function assigns offsets to input sections and an output section +// for a single sections command (e.g. ".text { *(.text); }"). +void LinkerScript::assignOffsets(OutputSection *sec) { + if (!(sec->flags & SHF_ALLOC)) + dot = 0; + + ctx->memRegion = sec->memRegion; + ctx->lmaRegion = sec->lmaRegion; + if (ctx->memRegion) + dot = ctx->memRegion->curPos; + + if ((sec->flags & SHF_ALLOC) && sec->addrExpr) + setDot(sec->addrExpr, sec->location, false); + + // If the address of the section has been moved forward by an explicit + // expression so that it now starts past the current curPos of the enclosing + // region, we need to expand the current region to account for the space + // between the previous section, if any, and the start of this section. + if (ctx->memRegion && ctx->memRegion->curPos < dot) + expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, + ctx->memRegion->name, sec->name); + + switchTo(sec); + + ctx->lmaOffset = 0; + + if (sec->lmaExpr) + ctx->lmaOffset = sec->lmaExpr().getValue() - dot; + if (MemoryRegion *mr = sec->lmaRegion) + ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; + + // If neither AT nor AT> is specified for an allocatable section, the linker + // will set the LMA such that the difference between VMA and LMA for the + // section is the same as the preceding output section in the same region + // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html + // This, however, should only be done by the first "non-header" section + // in the segment. + if (PhdrEntry *l = ctx->outSec->ptLoad) + if (sec == findFirstSection(l)) + l->lmaOffset = ctx->lmaOffset; + + // We can call this method multiple times during the creation of + // thunks and want to start over calculation each time. + sec->size = 0; + + // We visited SectionsCommands from processSectionCommands to + // layout sections. Now, we visit SectionsCommands again to fix + // section offsets. + for (BaseCommand *base : sec->sectionCommands) { + // This handles the assignments to symbol or to the dot. + if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { + cmd->addr = dot; + assignSymbol(cmd, true); + cmd->size = dot - cmd->addr; + continue; + } + + // Handle BYTE(), SHORT(), LONG(), or QUAD(). + if (auto *cmd = dyn_cast<ByteCommand>(base)) { + cmd->offset = dot - ctx->outSec->addr; + dot += cmd->size; + expandOutputSection(cmd->size); + continue; + } + + // Handle a single input section description command. + // It calculates and assigns the offsets for each section and also + // updates the output section size. + for (InputSection *sec : cast<InputSectionDescription>(base)->sections) + output(sec); + } +} + +static bool isDiscardable(OutputSection &sec) { + if (sec.name == "/DISCARD/") + return true; + + // We do not remove empty sections that are explicitly + // assigned to any segment. + if (!sec.phdrs.empty()) + return false; + + // We do not want to remove OutputSections with expressions that reference + // symbols even if the OutputSection is empty. We want to ensure that the + // expressions can be evaluated and report an error if they cannot. + if (sec.expressionsUseSymbols) + return false; + + // OutputSections may be referenced by name in ADDR and LOADADDR expressions, + // as an empty Section can has a valid VMA and LMA we keep the OutputSection + // to maintain the integrity of the other Expression. + if (sec.usedInExpression) + return false; + + for (BaseCommand *base : sec.sectionCommands) { + if (auto cmd = dyn_cast<SymbolAssignment>(base)) + // Don't create empty output sections just for unreferenced PROVIDE + // symbols. + if (cmd->name != "." && !cmd->sym) + continue; + + if (!isa<InputSectionDescription>(*base)) + return false; + } + return true; +} + +void LinkerScript::adjustSectionsBeforeSorting() { + // If the output section contains only symbol assignments, create a + // corresponding output section. The issue is what to do with linker script + // like ".foo : { symbol = 42; }". One option would be to convert it to + // "symbol = 42;". That is, move the symbol out of the empty section + // description. That seems to be what bfd does for this simple case. The + // problem is that this is not completely general. bfd will give up and + // create a dummy section too if there is a ". = . + 1" inside the section + // for example. + // Given that we want to create the section, we have to worry what impact + // it will have on the link. For example, if we just create a section with + // 0 for flags, it would change which PT_LOADs are created. + // We could remember that particular section is dummy and ignore it in + // other parts of the linker, but unfortunately there are quite a few places + // that would need to change: + // * The program header creation. + // * The orphan section placement. + // * The address assignment. + // The other option is to pick flags that minimize the impact the section + // will have on the rest of the linker. That is why we copy the flags from + // the previous sections. Only a few flags are needed to keep the impact low. + uint64_t flags = SHF_ALLOC; + + for (BaseCommand *&cmd : sectionCommands) { + auto *sec = dyn_cast<OutputSection>(cmd); + if (!sec) + continue; + + // Handle align (e.g. ".foo : ALIGN(16) { ... }"). + if (sec->alignExpr) + sec->alignment = + std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); + + // The input section might have been removed (if it was an empty synthetic + // section), but we at least know the flags. + if (sec->hasInputSections) + flags = sec->flags; + + // We do not want to keep any special flags for output section + // in case it is empty. + bool isEmpty = (getFirstInputSection(sec) == nullptr); + if (isEmpty) + sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | + SHF_WRITE | SHF_EXECINSTR); + + if (isEmpty && isDiscardable(*sec)) { + sec->markDead(); + cmd = nullptr; + } + } + + // It is common practice to use very generic linker scripts. So for any + // given run some of the output sections in the script will be empty. + // We could create corresponding empty output sections, but that would + // clutter the output. + // We instead remove trivially empty sections. The bfd linker seems even + // more aggressive at removing them. + llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); +} + +void LinkerScript::adjustSectionsAfterSorting() { + // Try and find an appropriate memory region to assign offsets in. + for (BaseCommand *base : sectionCommands) { + if (auto *sec = dyn_cast<OutputSection>(base)) { + if (!sec->lmaRegionName.empty()) { + if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) + sec->lmaRegion = m; + else + error("memory region '" + sec->lmaRegionName + "' not declared"); + } + sec->memRegion = findMemoryRegion(sec); + } + } + + // If output section command doesn't specify any segments, + // and we haven't previously assigned any section to segment, + // then we simply assign section to the very first load segment. + // Below is an example of such linker script: + // PHDRS { seg PT_LOAD; } + // SECTIONS { .aaa : { *(.aaa) } } + std::vector<StringRef> defPhdrs; + auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { + return cmd.type == PT_LOAD; + }); + if (firstPtLoad != phdrsCommands.end()) + defPhdrs.push_back(firstPtLoad->name); + + // Walk the commands and propagate the program headers to commands that don't + // explicitly specify them. + for (BaseCommand *base : sectionCommands) { + auto *sec = dyn_cast<OutputSection>(base); + if (!sec) + continue; + + if (sec->phdrs.empty()) { + // To match the bfd linker script behaviour, only propagate program + // headers to sections that are allocated. + if (sec->flags & SHF_ALLOC) + sec->phdrs = defPhdrs; + } else { + defPhdrs = sec->phdrs; + } + } +} + +static uint64_t computeBase(uint64_t min, bool allocateHeaders) { + // If there is no SECTIONS or if the linkerscript is explicit about program + // headers, do our best to allocate them. + if (!script->hasSectionsCommand || allocateHeaders) + return 0; + // Otherwise only allocate program headers if that would not add a page. + return alignDown(min, config->maxPageSize); +} + +// When the SECTIONS command is used, try to find an address for the file and +// program headers output sections, which can be added to the first PT_LOAD +// segment when program headers are created. +// +// We check if the headers fit below the first allocated section. If there isn't +// enough space for these sections, we'll remove them from the PT_LOAD segment, +// and we'll also remove the PT_PHDR segment. +void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { + uint64_t min = std::numeric_limits<uint64_t>::max(); + for (OutputSection *sec : outputSections) + if (sec->flags & SHF_ALLOC) + min = std::min<uint64_t>(min, sec->addr); + + auto it = llvm::find_if( + phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); + if (it == phdrs.end()) + return; + PhdrEntry *firstPTLoad = *it; + + bool hasExplicitHeaders = + llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { + return cmd.hasPhdrs || cmd.hasFilehdr; + }); + bool paged = !config->omagic && !config->nmagic; + uint64_t headerSize = getHeaderSize(); + if ((paged || hasExplicitHeaders) && + headerSize <= min - computeBase(min, hasExplicitHeaders)) { + min = alignDown(min - headerSize, config->maxPageSize); + Out::elfHeader->addr = min; + Out::programHeaders->addr = min + Out::elfHeader->size; + return; + } + + // Error if we were explicitly asked to allocate headers. + if (hasExplicitHeaders) + error("could not allocate headers"); + + Out::elfHeader->ptLoad = nullptr; + Out::programHeaders->ptLoad = nullptr; + firstPTLoad->firstSec = findFirstSection(firstPTLoad); + + llvm::erase_if(phdrs, + [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); +} + +LinkerScript::AddressState::AddressState() { + for (auto &mri : script->memoryRegions) { + MemoryRegion *mr = mri.second; + mr->curPos = mr->origin; + } +} + +// Here we assign addresses as instructed by linker script SECTIONS +// sub-commands. Doing that allows us to use final VA values, so here +// we also handle rest commands like symbol assignments and ASSERTs. +// Returns a symbol that has changed its section or value, or nullptr if no +// symbol has changed. +const Defined *LinkerScript::assignAddresses() { + if (script->hasSectionsCommand) { + // With a linker script, assignment of addresses to headers is covered by + // allocateHeaders(). + dot = config->imageBase.getValueOr(0); + } else { + // Assign addresses to headers right now. + dot = target->getImageBase(); + Out::elfHeader->addr = dot; + Out::programHeaders->addr = dot + Out::elfHeader->size; + dot += getHeaderSize(); + } + + auto deleter = std::make_unique<AddressState>(); + ctx = deleter.get(); + errorOnMissingSection = true; + switchTo(aether); + + SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); + for (BaseCommand *base : sectionCommands) { + if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { + cmd->addr = dot; + assignSymbol(cmd, false); + cmd->size = dot - cmd->addr; + continue; + } + assignOffsets(cast<OutputSection>(base)); + } + + ctx = nullptr; + return getChangedSymbolAssignment(oldValues); +} + +// Creates program headers as instructed by PHDRS linker script command. +std::vector<PhdrEntry *> LinkerScript::createPhdrs() { + std::vector<PhdrEntry *> ret; + + // Process PHDRS and FILEHDR keywords because they are not + // real output sections and cannot be added in the following loop. + for (const PhdrsCommand &cmd : phdrsCommands) { + PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); + + if (cmd.hasFilehdr) + phdr->add(Out::elfHeader); + if (cmd.hasPhdrs) + phdr->add(Out::programHeaders); + + if (cmd.lmaExpr) { + phdr->p_paddr = cmd.lmaExpr().getValue(); + phdr->hasLMA = true; + } + ret.push_back(phdr); + } + + // Add output sections to program headers. + for (OutputSection *sec : outputSections) { + // Assign headers specified by linker script + for (size_t id : getPhdrIndices(sec)) { + ret[id]->add(sec); + if (!phdrsCommands[id].flags.hasValue()) + ret[id]->p_flags |= sec->getPhdrFlags(); + } + } + return ret; +} + +// Returns true if we should emit an .interp section. +// +// We usually do. But if PHDRS commands are given, and +// no PT_INTERP is there, there's no place to emit an +// .interp, so we don't do that in that case. +bool LinkerScript::needsInterpSection() { + if (phdrsCommands.empty()) + return true; + for (PhdrsCommand &cmd : phdrsCommands) + if (cmd.type == PT_INTERP) + return true; + return false; +} + +ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { + if (name == ".") { + if (ctx) + return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; + error(loc + ": unable to get location counter value"); + return 0; + } + + if (Symbol *sym = symtab->find(name)) { + if (auto *ds = dyn_cast<Defined>(sym)) + return {ds->section, false, ds->value, loc}; + if (isa<SharedSymbol>(sym)) + if (!errorOnMissingSection) + return {nullptr, false, 0, loc}; + } + + error(loc + ": symbol not found: " + name); + return 0; +} + +// Returns the index of the segment named Name. +static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, + StringRef name) { + for (size_t i = 0; i < vec.size(); ++i) + if (vec[i].name == name) + return i; + return None; +} + +// Returns indices of ELF headers containing specific section. Each index is a +// zero based number of ELF header listed within PHDRS {} script block. +std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { + std::vector<size_t> ret; + + for (StringRef s : cmd->phdrs) { + if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) + ret.push_back(*idx); + else if (s != "NONE") + error(cmd->location + ": section header '" + s + + "' is not listed in PHDRS"); + } + return ret; +} + +} // namespace elf +} // namespace lld