diff lld/ELF/LinkerScript.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lld/ELF/LinkerScript.cpp	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,1211 @@
+//===- LinkerScript.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the parser/evaluator of the linker script.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LinkerScript.h"
+#include "Config.h"
+#include "InputSection.h"
+#include "OutputSections.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "Writer.h"
+#include "lld/Common/Memory.h"
+#include "lld/Common/Strings.h"
+#include "lld/Common/Threads.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+namespace lld {
+namespace elf {
+LinkerScript *script;
+
+static uint64_t getOutputSectionVA(SectionBase *sec) {
+  OutputSection *os = sec->getOutputSection();
+  assert(os && "input section has no output section assigned");
+  return os ? os->addr : 0;
+}
+
+uint64_t ExprValue::getValue() const {
+  if (sec)
+    return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
+                   alignment);
+  return alignTo(val, alignment);
+}
+
+uint64_t ExprValue::getSecAddr() const {
+  if (sec)
+    return sec->getOffset(0) + getOutputSectionVA(sec);
+  return 0;
+}
+
+uint64_t ExprValue::getSectionOffset() const {
+  // If the alignment is trivial, we don't have to compute the full
+  // value to know the offset. This allows this function to succeed in
+  // cases where the output section is not yet known.
+  if (alignment == 1 && !sec)
+    return val;
+  return getValue() - getSecAddr();
+}
+
+OutputSection *LinkerScript::createOutputSection(StringRef name,
+                                                 StringRef location) {
+  OutputSection *&secRef = nameToOutputSection[name];
+  OutputSection *sec;
+  if (secRef && secRef->location.empty()) {
+    // There was a forward reference.
+    sec = secRef;
+  } else {
+    sec = make<OutputSection>(name, SHT_PROGBITS, 0);
+    if (!secRef)
+      secRef = sec;
+  }
+  sec->location = std::string(location);
+  return sec;
+}
+
+OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
+  OutputSection *&cmdRef = nameToOutputSection[name];
+  if (!cmdRef)
+    cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
+  return cmdRef;
+}
+
+// Expands the memory region by the specified size.
+static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
+                               StringRef regionName, StringRef secName) {
+  memRegion->curPos += size;
+  uint64_t newSize = memRegion->curPos - memRegion->origin;
+  if (newSize > memRegion->length)
+    error("section '" + secName + "' will not fit in region '" + regionName +
+          "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
+}
+
+void LinkerScript::expandMemoryRegions(uint64_t size) {
+  if (ctx->memRegion)
+    expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
+                       ctx->outSec->name);
+  // Only expand the LMARegion if it is different from memRegion.
+  if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
+    expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
+                       ctx->outSec->name);
+}
+
+void LinkerScript::expandOutputSection(uint64_t size) {
+  ctx->outSec->size += size;
+  expandMemoryRegions(size);
+}
+
+void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
+  uint64_t val = e().getValue();
+  if (val < dot && inSec)
+    error(loc + ": unable to move location counter backward for: " +
+          ctx->outSec->name);
+
+  // Update to location counter means update to section size.
+  if (inSec)
+    expandOutputSection(val - dot);
+
+  dot = val;
+}
+
+// Used for handling linker symbol assignments, for both finalizing
+// their values and doing early declarations. Returns true if symbol
+// should be defined from linker script.
+static bool shouldDefineSym(SymbolAssignment *cmd) {
+  if (cmd->name == ".")
+    return false;
+
+  if (!cmd->provide)
+    return true;
+
+  // If a symbol was in PROVIDE(), we need to define it only
+  // when it is a referenced undefined symbol.
+  Symbol *b = symtab->find(cmd->name);
+  if (b && !b->isDefined())
+    return true;
+  return false;
+}
+
+// Called by processSymbolAssignments() to assign definitions to
+// linker-script-defined symbols.
+void LinkerScript::addSymbol(SymbolAssignment *cmd) {
+  if (!shouldDefineSym(cmd))
+    return;
+
+  // Define a symbol.
+  ExprValue value = cmd->expression();
+  SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
+  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
+
+  // When this function is called, section addresses have not been
+  // fixed yet. So, we may or may not know the value of the RHS
+  // expression.
+  //
+  // For example, if an expression is `x = 42`, we know x is always 42.
+  // However, if an expression is `x = .`, there's no way to know its
+  // value at the moment.
+  //
+  // We want to set symbol values early if we can. This allows us to
+  // use symbols as variables in linker scripts. Doing so allows us to
+  // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
+  uint64_t symValue = value.sec ? 0 : value.getValue();
+
+  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
+                 symValue, 0, sec);
+
+  Symbol *sym = symtab->insert(cmd->name);
+  sym->mergeProperties(newSym);
+  sym->replace(newSym);
+  cmd->sym = cast<Defined>(sym);
+}
+
+// This function is called from LinkerScript::declareSymbols.
+// It creates a placeholder symbol if needed.
+static void declareSymbol(SymbolAssignment *cmd) {
+  if (!shouldDefineSym(cmd))
+    return;
+
+  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
+  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
+                 nullptr);
+
+  // We can't calculate final value right now.
+  Symbol *sym = symtab->insert(cmd->name);
+  sym->mergeProperties(newSym);
+  sym->replace(newSym);
+
+  cmd->sym = cast<Defined>(sym);
+  cmd->provide = false;
+  sym->scriptDefined = true;
+}
+
+using SymbolAssignmentMap =
+    DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
+
+// Collect section/value pairs of linker-script-defined symbols. This is used to
+// check whether symbol values converge.
+static SymbolAssignmentMap
+getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
+  SymbolAssignmentMap ret;
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+      if (cmd->sym) // sym is nullptr for dot.
+        ret.try_emplace(cmd->sym,
+                        std::make_pair(cmd->sym->section, cmd->sym->value));
+      continue;
+    }
+    for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
+      if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
+        if (cmd->sym)
+          ret.try_emplace(cmd->sym,
+                          std::make_pair(cmd->sym->section, cmd->sym->value));
+  }
+  return ret;
+}
+
+// Returns the lexicographical smallest (for determinism) Defined whose
+// section/value has changed.
+static const Defined *
+getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
+  const Defined *changed = nullptr;
+  for (auto &it : oldValues) {
+    const Defined *sym = it.first;
+    if (std::make_pair(sym->section, sym->value) != it.second &&
+        (!changed || sym->getName() < changed->getName()))
+      changed = sym;
+  }
+  return changed;
+}
+
+// Process INSERT [AFTER|BEFORE] commands. For each command, we move the
+// specified output section to the designated place.
+void LinkerScript::processInsertCommands() {
+  for (const InsertCommand &cmd : insertCommands) {
+    // If cmd.os is empty, it may have been discarded by
+    // adjustSectionsBeforeSorting(). We do not handle such output sections.
+    auto from = llvm::find(sectionCommands, cmd.os);
+    if (from == sectionCommands.end())
+      continue;
+    sectionCommands.erase(from);
+
+    auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
+      auto *to = dyn_cast<OutputSection>(base);
+      return to != nullptr && to->name == cmd.where;
+    });
+    if (insertPos == sectionCommands.end()) {
+      error("unable to insert " + cmd.os->name +
+            (cmd.isAfter ? " after " : " before ") + cmd.where);
+    } else {
+      if (cmd.isAfter)
+        ++insertPos;
+      sectionCommands.insert(insertPos, cmd.os);
+    }
+  }
+}
+
+// Symbols defined in script should not be inlined by LTO. At the same time
+// we don't know their final values until late stages of link. Here we scan
+// over symbol assignment commands and create placeholder symbols if needed.
+void LinkerScript::declareSymbols() {
+  assert(!ctx);
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+      declareSymbol(cmd);
+      continue;
+    }
+
+    // If the output section directive has constraints,
+    // we can't say for sure if it is going to be included or not.
+    // Skip such sections for now. Improve the checks if we ever
+    // need symbols from that sections to be declared early.
+    auto *sec = cast<OutputSection>(base);
+    if (sec->constraint != ConstraintKind::NoConstraint)
+      continue;
+    for (BaseCommand *base2 : sec->sectionCommands)
+      if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
+        declareSymbol(cmd);
+  }
+}
+
+// This function is called from assignAddresses, while we are
+// fixing the output section addresses. This function is supposed
+// to set the final value for a given symbol assignment.
+void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
+  if (cmd->name == ".") {
+    setDot(cmd->expression, cmd->location, inSec);
+    return;
+  }
+
+  if (!cmd->sym)
+    return;
+
+  ExprValue v = cmd->expression();
+  if (v.isAbsolute()) {
+    cmd->sym->section = nullptr;
+    cmd->sym->value = v.getValue();
+  } else {
+    cmd->sym->section = v.sec;
+    cmd->sym->value = v.getSectionOffset();
+  }
+}
+
+static std::string getFilename(InputFile *file) {
+  if (!file)
+    return "";
+  if (file->archiveName.empty())
+    return std::string(file->getName());
+  return (file->archiveName + "(" + file->getName() + ")").str();
+}
+
+bool LinkerScript::shouldKeep(InputSectionBase *s) {
+  if (keptSections.empty())
+    return false;
+  std::string filename = getFilename(s->file);
+  for (InputSectionDescription *id : keptSections)
+    if (id->filePat.match(filename))
+      for (SectionPattern &p : id->sectionPatterns)
+        if (p.sectionPat.match(s->name) &&
+            (s->flags & id->withFlags) == id->withFlags &&
+            (s->flags & id->withoutFlags) == 0)
+          return true;
+  return false;
+}
+
+// A helper function for the SORT() command.
+static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
+                             ConstraintKind kind) {
+  if (kind == ConstraintKind::NoConstraint)
+    return true;
+
+  bool isRW = llvm::any_of(
+      sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
+
+  return (isRW && kind == ConstraintKind::ReadWrite) ||
+         (!isRW && kind == ConstraintKind::ReadOnly);
+}
+
+static void sortSections(MutableArrayRef<InputSectionBase *> vec,
+                         SortSectionPolicy k) {
+  auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
+    // ">" is not a mistake. Sections with larger alignments are placed
+    // before sections with smaller alignments in order to reduce the
+    // amount of padding necessary. This is compatible with GNU.
+    return a->alignment > b->alignment;
+  };
+  auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
+    return a->name < b->name;
+  };
+  auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
+    return getPriority(a->name) < getPriority(b->name);
+  };
+
+  switch (k) {
+  case SortSectionPolicy::Default:
+  case SortSectionPolicy::None:
+    return;
+  case SortSectionPolicy::Alignment:
+    return llvm::stable_sort(vec, alignmentComparator);
+  case SortSectionPolicy::Name:
+    return llvm::stable_sort(vec, nameComparator);
+  case SortSectionPolicy::Priority:
+    return llvm::stable_sort(vec, priorityComparator);
+  }
+}
+
+// Sort sections as instructed by SORT-family commands and --sort-section
+// option. Because SORT-family commands can be nested at most two depth
+// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
+// line option is respected even if a SORT command is given, the exact
+// behavior we have here is a bit complicated. Here are the rules.
+//
+// 1. If two SORT commands are given, --sort-section is ignored.
+// 2. If one SORT command is given, and if it is not SORT_NONE,
+//    --sort-section is handled as an inner SORT command.
+// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
+// 4. If no SORT command is given, sort according to --sort-section.
+static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
+                              const SectionPattern &pat) {
+  if (pat.sortOuter == SortSectionPolicy::None)
+    return;
+
+  if (pat.sortInner == SortSectionPolicy::Default)
+    sortSections(vec, config->sortSection);
+  else
+    sortSections(vec, pat.sortInner);
+  sortSections(vec, pat.sortOuter);
+}
+
+// Compute and remember which sections the InputSectionDescription matches.
+std::vector<InputSectionBase *>
+LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
+  std::vector<InputSectionBase *> ret;
+
+  // Collects all sections that satisfy constraints of Cmd.
+  for (const SectionPattern &pat : cmd->sectionPatterns) {
+    size_t sizeBefore = ret.size();
+
+    for (InputSectionBase *sec : inputSections) {
+      if (!sec->isLive() || sec->parent)
+        continue;
+
+      // For -emit-relocs we have to ignore entries like
+      //   .rela.dyn : { *(.rela.data) }
+      // which are common because they are in the default bfd script.
+      // We do not ignore SHT_REL[A] linker-synthesized sections here because
+      // want to support scripts that do custom layout for them.
+      if (isa<InputSection>(sec) &&
+          cast<InputSection>(sec)->getRelocatedSection())
+        continue;
+
+      // Check the name early to improve performance in the common case.
+      if (!pat.sectionPat.match(sec->name))
+        continue;
+
+      std::string filename = getFilename(sec->file);
+      if (!cmd->filePat.match(filename) ||
+          pat.excludedFilePat.match(filename) ||
+          (sec->flags & cmd->withFlags) != cmd->withFlags ||
+          (sec->flags & cmd->withoutFlags) != 0)
+        continue;
+
+      ret.push_back(sec);
+    }
+
+    sortInputSections(
+        MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
+  }
+  return ret;
+}
+
+void LinkerScript::discard(InputSectionBase *s) {
+  if (s == in.shStrTab || s == mainPart->relrDyn)
+    error("discarding " + s->name + " section is not allowed");
+
+  // You can discard .hash and .gnu.hash sections by linker scripts. Since
+  // they are synthesized sections, we need to handle them differently than
+  // other regular sections.
+  if (s == mainPart->gnuHashTab)
+    mainPart->gnuHashTab = nullptr;
+  if (s == mainPart->hashTab)
+    mainPart->hashTab = nullptr;
+
+  s->markDead();
+  s->parent = nullptr;
+  for (InputSection *ds : s->dependentSections)
+    discard(ds);
+}
+
+std::vector<InputSectionBase *>
+LinkerScript::createInputSectionList(OutputSection &outCmd) {
+  std::vector<InputSectionBase *> ret;
+
+  for (BaseCommand *base : outCmd.sectionCommands) {
+    if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
+      cmd->sectionBases = computeInputSections(cmd);
+      for (InputSectionBase *s : cmd->sectionBases)
+        s->parent = &outCmd;
+      ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
+    }
+  }
+  return ret;
+}
+
+// Create output sections described by SECTIONS commands.
+void LinkerScript::processSectionCommands() {
+  size_t i = 0;
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *sec = dyn_cast<OutputSection>(base)) {
+      std::vector<InputSectionBase *> v = createInputSectionList(*sec);
+
+      // The output section name `/DISCARD/' is special.
+      // Any input section assigned to it is discarded.
+      if (sec->name == "/DISCARD/") {
+        for (InputSectionBase *s : v)
+          discard(s);
+        sec->sectionCommands.clear();
+        continue;
+      }
+
+      // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
+      // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
+      // sections satisfy a given constraint. If not, a directive is handled
+      // as if it wasn't present from the beginning.
+      //
+      // Because we'll iterate over SectionCommands many more times, the easy
+      // way to "make it as if it wasn't present" is to make it empty.
+      if (!matchConstraints(v, sec->constraint)) {
+        for (InputSectionBase *s : v)
+          s->parent = nullptr;
+        sec->sectionCommands.clear();
+        continue;
+      }
+
+      // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
+      // is given, input sections are aligned to that value, whether the
+      // given value is larger or smaller than the original section alignment.
+      if (sec->subalignExpr) {
+        uint32_t subalign = sec->subalignExpr().getValue();
+        for (InputSectionBase *s : v)
+          s->alignment = subalign;
+      }
+
+      // Set the partition field the same way OutputSection::recordSection()
+      // does. Partitions cannot be used with the SECTIONS command, so this is
+      // always 1.
+      sec->partition = 1;
+
+      sec->sectionIndex = i++;
+    }
+  }
+}
+
+void LinkerScript::processSymbolAssignments() {
+  // Dot outside an output section still represents a relative address, whose
+  // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
+  // that fills the void outside a section. It has an index of one, which is
+  // indistinguishable from any other regular section index.
+  aether = make<OutputSection>("", 0, SHF_ALLOC);
+  aether->sectionIndex = 1;
+
+  // ctx captures the local AddressState and makes it accessible deliberately.
+  // This is needed as there are some cases where we cannot just thread the
+  // current state through to a lambda function created by the script parser.
+  AddressState state;
+  ctx = &state;
+  ctx->outSec = aether;
+
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
+      addSymbol(cmd);
+    else
+      for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
+        if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
+          addSymbol(cmd);
+  }
+
+  ctx = nullptr;
+}
+
+static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
+                                 StringRef name) {
+  for (BaseCommand *base : vec)
+    if (auto *sec = dyn_cast<OutputSection>(base))
+      if (sec->name == name)
+        return sec;
+  return nullptr;
+}
+
+static OutputSection *createSection(InputSectionBase *isec,
+                                    StringRef outsecName) {
+  OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
+  sec->recordSection(isec);
+  return sec;
+}
+
+static OutputSection *
+addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
+            InputSectionBase *isec, StringRef outsecName) {
+  // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
+  // option is given. A section with SHT_GROUP defines a "section group", and
+  // its members have SHF_GROUP attribute. Usually these flags have already been
+  // stripped by InputFiles.cpp as section groups are processed and uniquified.
+  // However, for the -r option, we want to pass through all section groups
+  // as-is because adding/removing members or merging them with other groups
+  // change their semantics.
+  if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
+    return createSection(isec, outsecName);
+
+  // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
+  // relocation sections .rela.foo and .rela.bar for example. Most tools do
+  // not allow multiple REL[A] sections for output section. Hence we
+  // should combine these relocation sections into single output.
+  // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
+  // other REL[A] sections created by linker itself.
+  if (!isa<SyntheticSection>(isec) &&
+      (isec->type == SHT_REL || isec->type == SHT_RELA)) {
+    auto *sec = cast<InputSection>(isec);
+    OutputSection *out = sec->getRelocatedSection()->getOutputSection();
+
+    if (out->relocationSection) {
+      out->relocationSection->recordSection(sec);
+      return nullptr;
+    }
+
+    out->relocationSection = createSection(isec, outsecName);
+    return out->relocationSection;
+  }
+
+  //  The ELF spec just says
+  // ----------------------------------------------------------------
+  // In the first phase, input sections that match in name, type and
+  // attribute flags should be concatenated into single sections.
+  // ----------------------------------------------------------------
+  //
+  // However, it is clear that at least some flags have to be ignored for
+  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
+  // ignored. We should not have two output .text sections just because one was
+  // in a group and another was not for example.
+  //
+  // It also seems that wording was a late addition and didn't get the
+  // necessary scrutiny.
+  //
+  // Merging sections with different flags is expected by some users. One
+  // reason is that if one file has
+  //
+  // int *const bar __attribute__((section(".foo"))) = (int *)0;
+  //
+  // gcc with -fPIC will produce a read only .foo section. But if another
+  // file has
+  //
+  // int zed;
+  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
+  //
+  // gcc with -fPIC will produce a read write section.
+  //
+  // Last but not least, when using linker script the merge rules are forced by
+  // the script. Unfortunately, linker scripts are name based. This means that
+  // expressions like *(.foo*) can refer to multiple input sections with
+  // different flags. We cannot put them in different output sections or we
+  // would produce wrong results for
+  //
+  // start = .; *(.foo.*) end = .; *(.bar)
+  //
+  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
+  // another. The problem is that there is no way to layout those output
+  // sections such that the .foo sections are the only thing between the start
+  // and end symbols.
+  //
+  // Given the above issues, we instead merge sections by name and error on
+  // incompatible types and flags.
+  TinyPtrVector<OutputSection *> &v = map[outsecName];
+  for (OutputSection *sec : v) {
+    if (sec->partition != isec->partition)
+      continue;
+
+    if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
+      // Merging two SHF_LINK_ORDER sections with different sh_link fields will
+      // change their semantics, so we only merge them in -r links if they will
+      // end up being linked to the same output section. The casts are fine
+      // because everything in the map was created by the orphan placement code.
+      auto *firstIsec = cast<InputSectionBase>(
+          cast<InputSectionDescription>(sec->sectionCommands[0])
+              ->sectionBases[0]);
+      if (firstIsec->getLinkOrderDep()->getOutputSection() !=
+          isec->getLinkOrderDep()->getOutputSection())
+        continue;
+    }
+
+    sec->recordSection(isec);
+    return nullptr;
+  }
+
+  OutputSection *sec = createSection(isec, outsecName);
+  v.push_back(sec);
+  return sec;
+}
+
+// Add sections that didn't match any sections command.
+void LinkerScript::addOrphanSections() {
+  StringMap<TinyPtrVector<OutputSection *>> map;
+  std::vector<OutputSection *> v;
+
+  std::function<void(InputSectionBase *)> add;
+  add = [&](InputSectionBase *s) {
+    if (s->isLive() && !s->parent) {
+      StringRef name = getOutputSectionName(s);
+
+      if (config->orphanHandling == OrphanHandlingPolicy::Error)
+        error(toString(s) + " is being placed in '" + name + "'");
+      else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
+        warn(toString(s) + " is being placed in '" + name + "'");
+
+      if (OutputSection *sec = findByName(sectionCommands, name)) {
+        sec->recordSection(s);
+      } else {
+        if (OutputSection *os = addInputSec(map, s, name))
+          v.push_back(os);
+        assert(isa<MergeInputSection>(s) ||
+               s->getOutputSection()->sectionIndex == UINT32_MAX);
+      }
+    }
+
+    if (config->relocatable)
+      for (InputSectionBase *depSec : s->dependentSections)
+        if (depSec->flags & SHF_LINK_ORDER)
+          add(depSec);
+  };
+
+  // For futher --emit-reloc handling code we need target output section
+  // to be created before we create relocation output section, so we want
+  // to create target sections first. We do not want priority handling
+  // for synthetic sections because them are special.
+  for (InputSectionBase *isec : inputSections) {
+    // In -r links, SHF_LINK_ORDER sections are added while adding their parent
+    // sections because we need to know the parent's output section before we
+    // can select an output section for the SHF_LINK_ORDER section.
+    if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
+      continue;
+
+    if (auto *sec = dyn_cast<InputSection>(isec))
+      if (InputSectionBase *rel = sec->getRelocatedSection())
+        if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
+          add(relIS);
+    add(isec);
+  }
+
+  // If no SECTIONS command was given, we should insert sections commands
+  // before others, so that we can handle scripts which refers them,
+  // for example: "foo = ABSOLUTE(ADDR(.text)));".
+  // When SECTIONS command is present we just add all orphans to the end.
+  if (hasSectionsCommand)
+    sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
+  else
+    sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
+}
+
+uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
+  bool isTbss =
+      (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
+  uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
+  start = alignTo(start, alignment);
+  uint64_t end = start + size;
+
+  if (isTbss)
+    ctx->threadBssOffset = end - dot;
+  else
+    dot = end;
+  return end;
+}
+
+void LinkerScript::output(InputSection *s) {
+  assert(ctx->outSec == s->getParent());
+  uint64_t before = advance(0, 1);
+  uint64_t pos = advance(s->getSize(), s->alignment);
+  s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
+
+  // Update output section size after adding each section. This is so that
+  // SIZEOF works correctly in the case below:
+  // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
+  expandOutputSection(pos - before);
+}
+
+void LinkerScript::switchTo(OutputSection *sec) {
+  ctx->outSec = sec;
+
+  uint64_t before = advance(0, 1);
+  ctx->outSec->addr = advance(0, ctx->outSec->alignment);
+  expandMemoryRegions(ctx->outSec->addr - before);
+}
+
+// This function searches for a memory region to place the given output
+// section in. If found, a pointer to the appropriate memory region is
+// returned. Otherwise, a nullptr is returned.
+MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
+  // If a memory region name was specified in the output section command,
+  // then try to find that region first.
+  if (!sec->memoryRegionName.empty()) {
+    if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
+      return m;
+    error("memory region '" + sec->memoryRegionName + "' not declared");
+    return nullptr;
+  }
+
+  // If at least one memory region is defined, all sections must
+  // belong to some memory region. Otherwise, we don't need to do
+  // anything for memory regions.
+  if (memoryRegions.empty())
+    return nullptr;
+
+  // See if a region can be found by matching section flags.
+  for (auto &pair : memoryRegions) {
+    MemoryRegion *m = pair.second;
+    if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
+      return m;
+  }
+
+  // Otherwise, no suitable region was found.
+  if (sec->flags & SHF_ALLOC)
+    error("no memory region specified for section '" + sec->name + "'");
+  return nullptr;
+}
+
+static OutputSection *findFirstSection(PhdrEntry *load) {
+  for (OutputSection *sec : outputSections)
+    if (sec->ptLoad == load)
+      return sec;
+  return nullptr;
+}
+
+// This function assigns offsets to input sections and an output section
+// for a single sections command (e.g. ".text { *(.text); }").
+void LinkerScript::assignOffsets(OutputSection *sec) {
+  if (!(sec->flags & SHF_ALLOC))
+    dot = 0;
+
+  ctx->memRegion = sec->memRegion;
+  ctx->lmaRegion = sec->lmaRegion;
+  if (ctx->memRegion)
+    dot = ctx->memRegion->curPos;
+
+  if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
+    setDot(sec->addrExpr, sec->location, false);
+
+  // If the address of the section has been moved forward by an explicit
+  // expression so that it now starts past the current curPos of the enclosing
+  // region, we need to expand the current region to account for the space
+  // between the previous section, if any, and the start of this section.
+  if (ctx->memRegion && ctx->memRegion->curPos < dot)
+    expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
+                       ctx->memRegion->name, sec->name);
+
+  switchTo(sec);
+
+  ctx->lmaOffset = 0;
+
+  if (sec->lmaExpr)
+    ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
+  if (MemoryRegion *mr = sec->lmaRegion)
+    ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
+
+  // If neither AT nor AT> is specified for an allocatable section, the linker
+  // will set the LMA such that the difference between VMA and LMA for the
+  // section is the same as the preceding output section in the same region
+  // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
+  // This, however, should only be done by the first "non-header" section
+  // in the segment.
+  if (PhdrEntry *l = ctx->outSec->ptLoad)
+    if (sec == findFirstSection(l))
+      l->lmaOffset = ctx->lmaOffset;
+
+  // We can call this method multiple times during the creation of
+  // thunks and want to start over calculation each time.
+  sec->size = 0;
+
+  // We visited SectionsCommands from processSectionCommands to
+  // layout sections. Now, we visit SectionsCommands again to fix
+  // section offsets.
+  for (BaseCommand *base : sec->sectionCommands) {
+    // This handles the assignments to symbol or to the dot.
+    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+      cmd->addr = dot;
+      assignSymbol(cmd, true);
+      cmd->size = dot - cmd->addr;
+      continue;
+    }
+
+    // Handle BYTE(), SHORT(), LONG(), or QUAD().
+    if (auto *cmd = dyn_cast<ByteCommand>(base)) {
+      cmd->offset = dot - ctx->outSec->addr;
+      dot += cmd->size;
+      expandOutputSection(cmd->size);
+      continue;
+    }
+
+    // Handle a single input section description command.
+    // It calculates and assigns the offsets for each section and also
+    // updates the output section size.
+    for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
+      output(sec);
+  }
+}
+
+static bool isDiscardable(OutputSection &sec) {
+  if (sec.name == "/DISCARD/")
+    return true;
+
+  // We do not remove empty sections that are explicitly
+  // assigned to any segment.
+  if (!sec.phdrs.empty())
+    return false;
+
+  // We do not want to remove OutputSections with expressions that reference
+  // symbols even if the OutputSection is empty. We want to ensure that the
+  // expressions can be evaluated and report an error if they cannot.
+  if (sec.expressionsUseSymbols)
+    return false;
+
+  // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
+  // as an empty Section can has a valid VMA and LMA we keep the OutputSection
+  // to maintain the integrity of the other Expression.
+  if (sec.usedInExpression)
+    return false;
+
+  for (BaseCommand *base : sec.sectionCommands) {
+    if (auto cmd = dyn_cast<SymbolAssignment>(base))
+      // Don't create empty output sections just for unreferenced PROVIDE
+      // symbols.
+      if (cmd->name != "." && !cmd->sym)
+        continue;
+
+    if (!isa<InputSectionDescription>(*base))
+      return false;
+  }
+  return true;
+}
+
+void LinkerScript::adjustSectionsBeforeSorting() {
+  // If the output section contains only symbol assignments, create a
+  // corresponding output section. The issue is what to do with linker script
+  // like ".foo : { symbol = 42; }". One option would be to convert it to
+  // "symbol = 42;". That is, move the symbol out of the empty section
+  // description. That seems to be what bfd does for this simple case. The
+  // problem is that this is not completely general. bfd will give up and
+  // create a dummy section too if there is a ". = . + 1" inside the section
+  // for example.
+  // Given that we want to create the section, we have to worry what impact
+  // it will have on the link. For example, if we just create a section with
+  // 0 for flags, it would change which PT_LOADs are created.
+  // We could remember that particular section is dummy and ignore it in
+  // other parts of the linker, but unfortunately there are quite a few places
+  // that would need to change:
+  //   * The program header creation.
+  //   * The orphan section placement.
+  //   * The address assignment.
+  // The other option is to pick flags that minimize the impact the section
+  // will have on the rest of the linker. That is why we copy the flags from
+  // the previous sections. Only a few flags are needed to keep the impact low.
+  uint64_t flags = SHF_ALLOC;
+
+  for (BaseCommand *&cmd : sectionCommands) {
+    auto *sec = dyn_cast<OutputSection>(cmd);
+    if (!sec)
+      continue;
+
+    // Handle align (e.g. ".foo : ALIGN(16) { ... }").
+    if (sec->alignExpr)
+      sec->alignment =
+          std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
+
+    // The input section might have been removed (if it was an empty synthetic
+    // section), but we at least know the flags.
+    if (sec->hasInputSections)
+      flags = sec->flags;
+
+    // We do not want to keep any special flags for output section
+    // in case it is empty.
+    bool isEmpty = (getFirstInputSection(sec) == nullptr);
+    if (isEmpty)
+      sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
+                            SHF_WRITE | SHF_EXECINSTR);
+
+    if (isEmpty && isDiscardable(*sec)) {
+      sec->markDead();
+      cmd = nullptr;
+    }
+  }
+
+  // It is common practice to use very generic linker scripts. So for any
+  // given run some of the output sections in the script will be empty.
+  // We could create corresponding empty output sections, but that would
+  // clutter the output.
+  // We instead remove trivially empty sections. The bfd linker seems even
+  // more aggressive at removing them.
+  llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
+}
+
+void LinkerScript::adjustSectionsAfterSorting() {
+  // Try and find an appropriate memory region to assign offsets in.
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *sec = dyn_cast<OutputSection>(base)) {
+      if (!sec->lmaRegionName.empty()) {
+        if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
+          sec->lmaRegion = m;
+        else
+          error("memory region '" + sec->lmaRegionName + "' not declared");
+      }
+      sec->memRegion = findMemoryRegion(sec);
+    }
+  }
+
+  // If output section command doesn't specify any segments,
+  // and we haven't previously assigned any section to segment,
+  // then we simply assign section to the very first load segment.
+  // Below is an example of such linker script:
+  // PHDRS { seg PT_LOAD; }
+  // SECTIONS { .aaa : { *(.aaa) } }
+  std::vector<StringRef> defPhdrs;
+  auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
+    return cmd.type == PT_LOAD;
+  });
+  if (firstPtLoad != phdrsCommands.end())
+    defPhdrs.push_back(firstPtLoad->name);
+
+  // Walk the commands and propagate the program headers to commands that don't
+  // explicitly specify them.
+  for (BaseCommand *base : sectionCommands) {
+    auto *sec = dyn_cast<OutputSection>(base);
+    if (!sec)
+      continue;
+
+    if (sec->phdrs.empty()) {
+      // To match the bfd linker script behaviour, only propagate program
+      // headers to sections that are allocated.
+      if (sec->flags & SHF_ALLOC)
+        sec->phdrs = defPhdrs;
+    } else {
+      defPhdrs = sec->phdrs;
+    }
+  }
+}
+
+static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
+  // If there is no SECTIONS or if the linkerscript is explicit about program
+  // headers, do our best to allocate them.
+  if (!script->hasSectionsCommand || allocateHeaders)
+    return 0;
+  // Otherwise only allocate program headers if that would not add a page.
+  return alignDown(min, config->maxPageSize);
+}
+
+// When the SECTIONS command is used, try to find an address for the file and
+// program headers output sections, which can be added to the first PT_LOAD
+// segment when program headers are created.
+//
+// We check if the headers fit below the first allocated section. If there isn't
+// enough space for these sections, we'll remove them from the PT_LOAD segment,
+// and we'll also remove the PT_PHDR segment.
+void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
+  uint64_t min = std::numeric_limits<uint64_t>::max();
+  for (OutputSection *sec : outputSections)
+    if (sec->flags & SHF_ALLOC)
+      min = std::min<uint64_t>(min, sec->addr);
+
+  auto it = llvm::find_if(
+      phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
+  if (it == phdrs.end())
+    return;
+  PhdrEntry *firstPTLoad = *it;
+
+  bool hasExplicitHeaders =
+      llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
+        return cmd.hasPhdrs || cmd.hasFilehdr;
+      });
+  bool paged = !config->omagic && !config->nmagic;
+  uint64_t headerSize = getHeaderSize();
+  if ((paged || hasExplicitHeaders) &&
+      headerSize <= min - computeBase(min, hasExplicitHeaders)) {
+    min = alignDown(min - headerSize, config->maxPageSize);
+    Out::elfHeader->addr = min;
+    Out::programHeaders->addr = min + Out::elfHeader->size;
+    return;
+  }
+
+  // Error if we were explicitly asked to allocate headers.
+  if (hasExplicitHeaders)
+    error("could not allocate headers");
+
+  Out::elfHeader->ptLoad = nullptr;
+  Out::programHeaders->ptLoad = nullptr;
+  firstPTLoad->firstSec = findFirstSection(firstPTLoad);
+
+  llvm::erase_if(phdrs,
+                 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
+}
+
+LinkerScript::AddressState::AddressState() {
+  for (auto &mri : script->memoryRegions) {
+    MemoryRegion *mr = mri.second;
+    mr->curPos = mr->origin;
+  }
+}
+
+// Here we assign addresses as instructed by linker script SECTIONS
+// sub-commands. Doing that allows us to use final VA values, so here
+// we also handle rest commands like symbol assignments and ASSERTs.
+// Returns a symbol that has changed its section or value, or nullptr if no
+// symbol has changed.
+const Defined *LinkerScript::assignAddresses() {
+  if (script->hasSectionsCommand) {
+    // With a linker script, assignment of addresses to headers is covered by
+    // allocateHeaders().
+    dot = config->imageBase.getValueOr(0);
+  } else {
+    // Assign addresses to headers right now.
+    dot = target->getImageBase();
+    Out::elfHeader->addr = dot;
+    Out::programHeaders->addr = dot + Out::elfHeader->size;
+    dot += getHeaderSize();
+  }
+
+  auto deleter = std::make_unique<AddressState>();
+  ctx = deleter.get();
+  errorOnMissingSection = true;
+  switchTo(aether);
+
+  SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
+  for (BaseCommand *base : sectionCommands) {
+    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+      cmd->addr = dot;
+      assignSymbol(cmd, false);
+      cmd->size = dot - cmd->addr;
+      continue;
+    }
+    assignOffsets(cast<OutputSection>(base));
+  }
+
+  ctx = nullptr;
+  return getChangedSymbolAssignment(oldValues);
+}
+
+// Creates program headers as instructed by PHDRS linker script command.
+std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
+  std::vector<PhdrEntry *> ret;
+
+  // Process PHDRS and FILEHDR keywords because they are not
+  // real output sections and cannot be added in the following loop.
+  for (const PhdrsCommand &cmd : phdrsCommands) {
+    PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
+
+    if (cmd.hasFilehdr)
+      phdr->add(Out::elfHeader);
+    if (cmd.hasPhdrs)
+      phdr->add(Out::programHeaders);
+
+    if (cmd.lmaExpr) {
+      phdr->p_paddr = cmd.lmaExpr().getValue();
+      phdr->hasLMA = true;
+    }
+    ret.push_back(phdr);
+  }
+
+  // Add output sections to program headers.
+  for (OutputSection *sec : outputSections) {
+    // Assign headers specified by linker script
+    for (size_t id : getPhdrIndices(sec)) {
+      ret[id]->add(sec);
+      if (!phdrsCommands[id].flags.hasValue())
+        ret[id]->p_flags |= sec->getPhdrFlags();
+    }
+  }
+  return ret;
+}
+
+// Returns true if we should emit an .interp section.
+//
+// We usually do. But if PHDRS commands are given, and
+// no PT_INTERP is there, there's no place to emit an
+// .interp, so we don't do that in that case.
+bool LinkerScript::needsInterpSection() {
+  if (phdrsCommands.empty())
+    return true;
+  for (PhdrsCommand &cmd : phdrsCommands)
+    if (cmd.type == PT_INTERP)
+      return true;
+  return false;
+}
+
+ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
+  if (name == ".") {
+    if (ctx)
+      return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
+    error(loc + ": unable to get location counter value");
+    return 0;
+  }
+
+  if (Symbol *sym = symtab->find(name)) {
+    if (auto *ds = dyn_cast<Defined>(sym))
+      return {ds->section, false, ds->value, loc};
+    if (isa<SharedSymbol>(sym))
+      if (!errorOnMissingSection)
+        return {nullptr, false, 0, loc};
+  }
+
+  error(loc + ": symbol not found: " + name);
+  return 0;
+}
+
+// Returns the index of the segment named Name.
+static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
+                                     StringRef name) {
+  for (size_t i = 0; i < vec.size(); ++i)
+    if (vec[i].name == name)
+      return i;
+  return None;
+}
+
+// Returns indices of ELF headers containing specific section. Each index is a
+// zero based number of ELF header listed within PHDRS {} script block.
+std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
+  std::vector<size_t> ret;
+
+  for (StringRef s : cmd->phdrs) {
+    if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
+      ret.push_back(*idx);
+    else if (s != "NONE")
+      error(cmd->location + ": section header '" + s +
+            "' is not listed in PHDRS");
+  }
+  return ret;
+}
+
+} // namespace elf
+} // namespace lld