diff lld/ELF/Symbols.h @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lld/ELF/Symbols.h	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,562 @@
+//===- Symbols.h ------------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various types of Symbols.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLD_ELF_SYMBOLS_H
+#define LLD_ELF_SYMBOLS_H
+
+#include "InputFiles.h"
+#include "InputSection.h"
+#include "lld/Common/LLVM.h"
+#include "lld/Common/Strings.h"
+#include "llvm/Object/Archive.h"
+#include "llvm/Object/ELF.h"
+
+namespace lld {
+std::string toString(const elf::Symbol &);
+
+// There are two different ways to convert an Archive::Symbol to a string:
+// One for Microsoft name mangling and one for Itanium name mangling.
+// Call the functions toCOFFString and toELFString, not just toString.
+std::string toELFString(const llvm::object::Archive::Symbol &);
+
+namespace elf {
+class CommonSymbol;
+class Defined;
+class InputFile;
+class LazyArchive;
+class LazyObject;
+class SharedSymbol;
+class Symbol;
+class Undefined;
+
+// This is a StringRef-like container that doesn't run strlen().
+//
+// ELF string tables contain a lot of null-terminated strings. Most of them
+// are not necessary for the linker because they are names of local symbols,
+// and the linker doesn't use local symbol names for name resolution. So, we
+// use this class to represents strings read from string tables.
+struct StringRefZ {
+  StringRefZ(const char *s) : data(s), size(-1) {}
+  StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
+
+  const char *data;
+  const uint32_t size;
+};
+
+// The base class for real symbol classes.
+class Symbol {
+public:
+  enum Kind {
+    PlaceholderKind,
+    DefinedKind,
+    CommonKind,
+    SharedKind,
+    UndefinedKind,
+    LazyArchiveKind,
+    LazyObjectKind,
+  };
+
+  Kind kind() const { return static_cast<Kind>(symbolKind); }
+
+  // The file from which this symbol was created.
+  InputFile *file;
+
+protected:
+  const char *nameData;
+  mutable uint32_t nameSize;
+
+public:
+  uint32_t dynsymIndex = 0;
+  uint32_t gotIndex = -1;
+  uint32_t pltIndex = -1;
+
+  uint32_t globalDynIndex = -1;
+
+  // This field is a index to the symbol's version definition.
+  uint32_t verdefIndex = -1;
+
+  // Version definition index.
+  uint16_t versionId;
+
+  // Symbol binding. This is not overwritten by replace() to track
+  // changes during resolution. In particular:
+  //  - An undefined weak is still weak when it resolves to a shared library.
+  //  - An undefined weak will not fetch archive members, but we have to
+  //    remember it is weak.
+  uint8_t binding;
+
+  // The following fields have the same meaning as the ELF symbol attributes.
+  uint8_t type;    // symbol type
+  uint8_t stOther; // st_other field value
+
+  uint8_t symbolKind;
+
+  // Symbol visibility. This is the computed minimum visibility of all
+  // observed non-DSO symbols.
+  uint8_t visibility : 2;
+
+  // True if the symbol was used for linking and thus need to be added to the
+  // output file's symbol table. This is true for all symbols except for
+  // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
+  // are unreferenced except by other bitcode objects.
+  uint8_t isUsedInRegularObj : 1;
+
+  // Used by a Defined symbol with protected or default visibility, to record
+  // whether it is required to be exported into .dynsym. This is set when any of
+  // the following conditions hold:
+  //
+  // - If there is an interposable symbol from a DSO.
+  // - If -shared or --export-dynamic is specified, any symbol in an object
+  //   file/bitcode sets this property, unless suppressed by LTO
+  //   canBeOmittedFromSymbolTable().
+  uint8_t exportDynamic : 1;
+
+  // True if the symbol is in the --dynamic-list file. A Defined symbol with
+  // protected or default visibility with this property is required to be
+  // exported into .dynsym.
+  uint8_t inDynamicList : 1;
+
+  // False if LTO shouldn't inline whatever this symbol points to. If a symbol
+  // is overwritten after LTO, LTO shouldn't inline the symbol because it
+  // doesn't know the final contents of the symbol.
+  uint8_t canInline : 1;
+
+  // Used by Undefined and SharedSymbol to track if there has been at least one
+  // undefined reference to the symbol. The binding may change to STB_WEAK if
+  // the first undefined reference from a non-shared object is weak.
+  uint8_t referenced : 1;
+
+  // True if this symbol is specified by --trace-symbol option.
+  uint8_t traced : 1;
+
+  inline void replace(const Symbol &newSym);
+
+  bool includeInDynsym() const;
+  uint8_t computeBinding() const;
+  bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
+
+  bool isUndefined() const { return symbolKind == UndefinedKind; }
+  bool isCommon() const { return symbolKind == CommonKind; }
+  bool isDefined() const { return symbolKind == DefinedKind; }
+  bool isShared() const { return symbolKind == SharedKind; }
+  bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
+
+  bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
+
+  bool isLazy() const {
+    return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
+  }
+
+  // True if this is an undefined weak symbol. This only works once
+  // all input files have been added.
+  bool isUndefWeak() const {
+    // See comment on lazy symbols for details.
+    return isWeak() && (isUndefined() || isLazy());
+  }
+
+  StringRef getName() const {
+    if (nameSize == (uint32_t)-1)
+      nameSize = strlen(nameData);
+    return {nameData, nameSize};
+  }
+
+  void setName(StringRef s) {
+    nameData = s.data();
+    nameSize = s.size();
+  }
+
+  void parseSymbolVersion();
+
+  bool isInGot() const { return gotIndex != -1U; }
+  bool isInPlt() const { return pltIndex != -1U; }
+
+  uint64_t getVA(int64_t addend = 0) const;
+
+  uint64_t getGotOffset() const;
+  uint64_t getGotVA() const;
+  uint64_t getGotPltOffset() const;
+  uint64_t getGotPltVA() const;
+  uint64_t getPltVA() const;
+  uint64_t getSize() const;
+  OutputSection *getOutputSection() const;
+
+  // The following two functions are used for symbol resolution.
+  //
+  // You are expected to call mergeProperties for all symbols in input
+  // files so that attributes that are attached to names rather than
+  // indivisual symbol (such as visibility) are merged together.
+  //
+  // Every time you read a new symbol from an input, you are supposed
+  // to call resolve() with the new symbol. That function replaces
+  // "this" object as a result of name resolution if the new symbol is
+  // more appropriate to be included in the output.
+  //
+  // For example, if "this" is an undefined symbol and a new symbol is
+  // a defined symbol, "this" is replaced with the new symbol.
+  void mergeProperties(const Symbol &other);
+  void resolve(const Symbol &other);
+
+  // If this is a lazy symbol, fetch an input file and add the symbol
+  // in the file to the symbol table. Calling this function on
+  // non-lazy object causes a runtime error.
+  void fetch() const;
+
+private:
+  static bool isExportDynamic(Kind k, uint8_t visibility) {
+    if (k == SharedKind)
+      return visibility == llvm::ELF::STV_DEFAULT;
+    return config->shared || config->exportDynamic;
+  }
+
+  void resolveUndefined(const Undefined &other);
+  void resolveCommon(const CommonSymbol &other);
+  void resolveDefined(const Defined &other);
+  template <class LazyT> void resolveLazy(const LazyT &other);
+  void resolveShared(const SharedSymbol &other);
+
+  int compare(const Symbol *other) const;
+
+  inline size_t getSymbolSize() const;
+
+protected:
+  Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
+         uint8_t stOther, uint8_t type)
+      : file(file), nameData(name.data), nameSize(name.size), binding(binding),
+        type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
+        isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
+        exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
+        canInline(false), referenced(false), traced(false), needsPltAddr(false),
+        isInIplt(false), gotInIgot(false), isPreemptible(false),
+        used(!config->gcSections), needsTocRestore(false),
+        scriptDefined(false) {}
+
+public:
+  // True the symbol should point to its PLT entry.
+  // For SharedSymbol only.
+  uint8_t needsPltAddr : 1;
+
+  // True if this symbol is in the Iplt sub-section of the Plt and the Igot
+  // sub-section of the .got.plt or .got.
+  uint8_t isInIplt : 1;
+
+  // True if this symbol needs a GOT entry and its GOT entry is actually in
+  // Igot. This will be true only for certain non-preemptible ifuncs.
+  uint8_t gotInIgot : 1;
+
+  // True if this symbol is preemptible at load time.
+  uint8_t isPreemptible : 1;
+
+  // True if an undefined or shared symbol is used from a live section.
+  uint8_t used : 1;
+
+  // True if a call to this symbol needs to be followed by a restore of the
+  // PPC64 toc pointer.
+  uint8_t needsTocRestore : 1;
+
+  // True if this symbol is defined by a linker script.
+  uint8_t scriptDefined : 1;
+
+  // The partition whose dynamic symbol table contains this symbol's definition.
+  uint8_t partition = 1;
+
+  bool isSection() const { return type == llvm::ELF::STT_SECTION; }
+  bool isTls() const { return type == llvm::ELF::STT_TLS; }
+  bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
+  bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
+  bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
+  bool isFile() const { return type == llvm::ELF::STT_FILE; }
+};
+
+// Represents a symbol that is defined in the current output file.
+class Defined : public Symbol {
+public:
+  Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
+          uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
+      : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
+        size(size), section(section) {}
+
+  static bool classof(const Symbol *s) { return s->isDefined(); }
+
+  uint64_t value;
+  uint64_t size;
+  SectionBase *section;
+};
+
+// Represents a common symbol.
+//
+// On Unix, it is traditionally allowed to write variable definitions
+// without initialization expressions (such as "int foo;") to header
+// files. Such definition is called "tentative definition".
+//
+// Using tentative definition is usually considered a bad practice
+// because you should write only declarations (such as "extern int
+// foo;") to header files. Nevertheless, the linker and the compiler
+// have to do something to support bad code by allowing duplicate
+// definitions for this particular case.
+//
+// Common symbols represent variable definitions without initializations.
+// The compiler creates common symbols when it sees variable definitions
+// without initialization (you can suppress this behavior and let the
+// compiler create a regular defined symbol by -fno-common).
+//
+// The linker allows common symbols to be replaced by regular defined
+// symbols. If there are remaining common symbols after name resolution is
+// complete, they are converted to regular defined symbols in a .bss
+// section. (Therefore, the later passes don't see any CommonSymbols.)
+class CommonSymbol : public Symbol {
+public:
+  CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
+               uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
+      : Symbol(CommonKind, file, name, binding, stOther, type),
+        alignment(alignment), size(size) {}
+
+  static bool classof(const Symbol *s) { return s->isCommon(); }
+
+  uint32_t alignment;
+  uint64_t size;
+};
+
+class Undefined : public Symbol {
+public:
+  Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
+            uint8_t type, uint32_t discardedSecIdx = 0)
+      : Symbol(UndefinedKind, file, name, binding, stOther, type),
+        discardedSecIdx(discardedSecIdx) {}
+
+  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
+
+  // The section index if in a discarded section, 0 otherwise.
+  uint32_t discardedSecIdx;
+};
+
+class SharedSymbol : public Symbol {
+public:
+  static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
+
+  SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
+               uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
+               uint32_t alignment, uint32_t verdefIndex)
+      : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
+        size(size), alignment(alignment) {
+    this->verdefIndex = verdefIndex;
+    // GNU ifunc is a mechanism to allow user-supplied functions to
+    // resolve PLT slot values at load-time. This is contrary to the
+    // regular symbol resolution scheme in which symbols are resolved just
+    // by name. Using this hook, you can program how symbols are solved
+    // for you program. For example, you can make "memcpy" to be resolved
+    // to a SSE-enabled version of memcpy only when a machine running the
+    // program supports the SSE instruction set.
+    //
+    // Naturally, such symbols should always be called through their PLT
+    // slots. What GNU ifunc symbols point to are resolver functions, and
+    // calling them directly doesn't make sense (unless you are writing a
+    // loader).
+    //
+    // For DSO symbols, we always call them through PLT slots anyway.
+    // So there's no difference between GNU ifunc and regular function
+    // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
+    if (this->type == llvm::ELF::STT_GNU_IFUNC)
+      this->type = llvm::ELF::STT_FUNC;
+  }
+
+  SharedFile &getFile() const { return *cast<SharedFile>(file); }
+
+  uint64_t value; // st_value
+  uint64_t size;  // st_size
+  uint32_t alignment;
+};
+
+// LazyArchive and LazyObject represent a symbols that is not yet in the link,
+// but we know where to find it if needed. If the resolver finds both Undefined
+// and Lazy for the same name, it will ask the Lazy to load a file.
+//
+// A special complication is the handling of weak undefined symbols. They should
+// not load a file, but we have to remember we have seen both the weak undefined
+// and the lazy. We represent that with a lazy symbol with a weak binding. This
+// means that code looking for undefined symbols normally also has to take lazy
+// symbols into consideration.
+
+// This class represents a symbol defined in an archive file. It is
+// created from an archive file header, and it knows how to load an
+// object file from an archive to replace itself with a defined
+// symbol.
+class LazyArchive : public Symbol {
+public:
+  LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
+      : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
+               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
+        sym(s) {}
+
+  static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
+
+  MemoryBufferRef getMemberBuffer();
+
+  const llvm::object::Archive::Symbol sym;
+};
+
+// LazyObject symbols represents symbols in object files between
+// --start-lib and --end-lib options.
+class LazyObject : public Symbol {
+public:
+  LazyObject(InputFile &file, StringRef name)
+      : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
+               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
+
+  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
+};
+
+// Some linker-generated symbols need to be created as
+// Defined symbols.
+struct ElfSym {
+  // __bss_start
+  static Defined *bss;
+
+  // etext and _etext
+  static Defined *etext1;
+  static Defined *etext2;
+
+  // edata and _edata
+  static Defined *edata1;
+  static Defined *edata2;
+
+  // end and _end
+  static Defined *end1;
+  static Defined *end2;
+
+  // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
+  // be at some offset from the base of the .got section, usually 0 or
+  // the end of the .got.
+  static Defined *globalOffsetTable;
+
+  // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
+  static Defined *mipsGp;
+  static Defined *mipsGpDisp;
+  static Defined *mipsLocalGp;
+
+  // __rel{,a}_iplt_{start,end} symbols.
+  static Defined *relaIpltStart;
+  static Defined *relaIpltEnd;
+
+  // __global_pointer$ for RISC-V.
+  static Defined *riscvGlobalPointer;
+
+  // _TLS_MODULE_BASE_ on targets that support TLSDESC.
+  static Defined *tlsModuleBase;
+};
+
+// A buffer class that is large enough to hold any Symbol-derived
+// object. We allocate memory using this class and instantiate a symbol
+// using the placement new.
+union SymbolUnion {
+  alignas(Defined) char a[sizeof(Defined)];
+  alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
+  alignas(Undefined) char c[sizeof(Undefined)];
+  alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
+  alignas(LazyArchive) char e[sizeof(LazyArchive)];
+  alignas(LazyObject) char f[sizeof(LazyObject)];
+};
+
+// It is important to keep the size of SymbolUnion small for performance and
+// memory usage reasons. 80 bytes is a soft limit based on the size of Defined
+// on a 64-bit system.
+static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
+
+template <typename T> struct AssertSymbol {
+  static_assert(std::is_trivially_destructible<T>(),
+                "Symbol types must be trivially destructible");
+  static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
+  static_assert(alignof(T) <= alignof(SymbolUnion),
+                "SymbolUnion not aligned enough");
+};
+
+static inline void assertSymbols() {
+  AssertSymbol<Defined>();
+  AssertSymbol<CommonSymbol>();
+  AssertSymbol<Undefined>();
+  AssertSymbol<SharedSymbol>();
+  AssertSymbol<LazyArchive>();
+  AssertSymbol<LazyObject>();
+}
+
+void printTraceSymbol(const Symbol *sym);
+
+size_t Symbol::getSymbolSize() const {
+  switch (kind()) {
+  case CommonKind:
+    return sizeof(CommonSymbol);
+  case DefinedKind:
+    return sizeof(Defined);
+  case LazyArchiveKind:
+    return sizeof(LazyArchive);
+  case LazyObjectKind:
+    return sizeof(LazyObject);
+  case SharedKind:
+    return sizeof(SharedSymbol);
+  case UndefinedKind:
+    return sizeof(Undefined);
+  case PlaceholderKind:
+    return sizeof(Symbol);
+  }
+  llvm_unreachable("unknown symbol kind");
+}
+
+// replace() replaces "this" object with a given symbol by memcpy'ing
+// it over to "this". This function is called as a result of name
+// resolution, e.g. to replace an undefind symbol with a defined symbol.
+void Symbol::replace(const Symbol &newSym) {
+  using llvm::ELF::STT_TLS;
+
+  // Symbols representing thread-local variables must be referenced by
+  // TLS-aware relocations, and non-TLS symbols must be reference by
+  // non-TLS relocations, so there's a clear distinction between TLS
+  // and non-TLS symbols. It is an error if the same symbol is defined
+  // as a TLS symbol in one file and as a non-TLS symbol in other file.
+  if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() &&
+      (type == STT_TLS) != (newSym.type == STT_TLS))
+    error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
+          toString(newSym.file) + "\n>>> defined in " + toString(file));
+
+  Symbol old = *this;
+  memcpy(this, &newSym, newSym.getSymbolSize());
+
+  // old may be a placeholder. The referenced fields must be initialized in
+  // SymbolTable::insert.
+  versionId = old.versionId;
+  visibility = old.visibility;
+  isUsedInRegularObj = old.isUsedInRegularObj;
+  exportDynamic = old.exportDynamic;
+  inDynamicList = old.inDynamicList;
+  canInline = old.canInline;
+  referenced = old.referenced;
+  traced = old.traced;
+  isPreemptible = old.isPreemptible;
+  scriptDefined = old.scriptDefined;
+  partition = old.partition;
+
+  // Symbol length is computed lazily. If we already know a symbol length,
+  // propagate it.
+  if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
+    nameSize = old.nameSize;
+
+  // Print out a log message if --trace-symbol was specified.
+  // This is for debugging.
+  if (traced)
+    printTraceSymbol(this);
+}
+
+void maybeWarnUnorderableSymbol(const Symbol *sym);
+bool computeIsPreemptible(const Symbol &sym);
+
+} // namespace elf
+} // namespace lld
+
+#endif