Mercurial > hg > CbC > CbC_llvm
diff lld/ELF/Symbols.h @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lld/ELF/Symbols.h Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,562 @@ +//===- Symbols.h ------------------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines various types of Symbols. +// +//===----------------------------------------------------------------------===// + +#ifndef LLD_ELF_SYMBOLS_H +#define LLD_ELF_SYMBOLS_H + +#include "InputFiles.h" +#include "InputSection.h" +#include "lld/Common/LLVM.h" +#include "lld/Common/Strings.h" +#include "llvm/Object/Archive.h" +#include "llvm/Object/ELF.h" + +namespace lld { +std::string toString(const elf::Symbol &); + +// There are two different ways to convert an Archive::Symbol to a string: +// One for Microsoft name mangling and one for Itanium name mangling. +// Call the functions toCOFFString and toELFString, not just toString. +std::string toELFString(const llvm::object::Archive::Symbol &); + +namespace elf { +class CommonSymbol; +class Defined; +class InputFile; +class LazyArchive; +class LazyObject; +class SharedSymbol; +class Symbol; +class Undefined; + +// This is a StringRef-like container that doesn't run strlen(). +// +// ELF string tables contain a lot of null-terminated strings. Most of them +// are not necessary for the linker because they are names of local symbols, +// and the linker doesn't use local symbol names for name resolution. So, we +// use this class to represents strings read from string tables. +struct StringRefZ { + StringRefZ(const char *s) : data(s), size(-1) {} + StringRefZ(StringRef s) : data(s.data()), size(s.size()) {} + + const char *data; + const uint32_t size; +}; + +// The base class for real symbol classes. +class Symbol { +public: + enum Kind { + PlaceholderKind, + DefinedKind, + CommonKind, + SharedKind, + UndefinedKind, + LazyArchiveKind, + LazyObjectKind, + }; + + Kind kind() const { return static_cast<Kind>(symbolKind); } + + // The file from which this symbol was created. + InputFile *file; + +protected: + const char *nameData; + mutable uint32_t nameSize; + +public: + uint32_t dynsymIndex = 0; + uint32_t gotIndex = -1; + uint32_t pltIndex = -1; + + uint32_t globalDynIndex = -1; + + // This field is a index to the symbol's version definition. + uint32_t verdefIndex = -1; + + // Version definition index. + uint16_t versionId; + + // Symbol binding. This is not overwritten by replace() to track + // changes during resolution. In particular: + // - An undefined weak is still weak when it resolves to a shared library. + // - An undefined weak will not fetch archive members, but we have to + // remember it is weak. + uint8_t binding; + + // The following fields have the same meaning as the ELF symbol attributes. + uint8_t type; // symbol type + uint8_t stOther; // st_other field value + + uint8_t symbolKind; + + // Symbol visibility. This is the computed minimum visibility of all + // observed non-DSO symbols. + uint8_t visibility : 2; + + // True if the symbol was used for linking and thus need to be added to the + // output file's symbol table. This is true for all symbols except for + // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that + // are unreferenced except by other bitcode objects. + uint8_t isUsedInRegularObj : 1; + + // Used by a Defined symbol with protected or default visibility, to record + // whether it is required to be exported into .dynsym. This is set when any of + // the following conditions hold: + // + // - If there is an interposable symbol from a DSO. + // - If -shared or --export-dynamic is specified, any symbol in an object + // file/bitcode sets this property, unless suppressed by LTO + // canBeOmittedFromSymbolTable(). + uint8_t exportDynamic : 1; + + // True if the symbol is in the --dynamic-list file. A Defined symbol with + // protected or default visibility with this property is required to be + // exported into .dynsym. + uint8_t inDynamicList : 1; + + // False if LTO shouldn't inline whatever this symbol points to. If a symbol + // is overwritten after LTO, LTO shouldn't inline the symbol because it + // doesn't know the final contents of the symbol. + uint8_t canInline : 1; + + // Used by Undefined and SharedSymbol to track if there has been at least one + // undefined reference to the symbol. The binding may change to STB_WEAK if + // the first undefined reference from a non-shared object is weak. + uint8_t referenced : 1; + + // True if this symbol is specified by --trace-symbol option. + uint8_t traced : 1; + + inline void replace(const Symbol &newSym); + + bool includeInDynsym() const; + uint8_t computeBinding() const; + bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } + + bool isUndefined() const { return symbolKind == UndefinedKind; } + bool isCommon() const { return symbolKind == CommonKind; } + bool isDefined() const { return symbolKind == DefinedKind; } + bool isShared() const { return symbolKind == SharedKind; } + bool isPlaceholder() const { return symbolKind == PlaceholderKind; } + + bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } + + bool isLazy() const { + return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind; + } + + // True if this is an undefined weak symbol. This only works once + // all input files have been added. + bool isUndefWeak() const { + // See comment on lazy symbols for details. + return isWeak() && (isUndefined() || isLazy()); + } + + StringRef getName() const { + if (nameSize == (uint32_t)-1) + nameSize = strlen(nameData); + return {nameData, nameSize}; + } + + void setName(StringRef s) { + nameData = s.data(); + nameSize = s.size(); + } + + void parseSymbolVersion(); + + bool isInGot() const { return gotIndex != -1U; } + bool isInPlt() const { return pltIndex != -1U; } + + uint64_t getVA(int64_t addend = 0) const; + + uint64_t getGotOffset() const; + uint64_t getGotVA() const; + uint64_t getGotPltOffset() const; + uint64_t getGotPltVA() const; + uint64_t getPltVA() const; + uint64_t getSize() const; + OutputSection *getOutputSection() const; + + // The following two functions are used for symbol resolution. + // + // You are expected to call mergeProperties for all symbols in input + // files so that attributes that are attached to names rather than + // indivisual symbol (such as visibility) are merged together. + // + // Every time you read a new symbol from an input, you are supposed + // to call resolve() with the new symbol. That function replaces + // "this" object as a result of name resolution if the new symbol is + // more appropriate to be included in the output. + // + // For example, if "this" is an undefined symbol and a new symbol is + // a defined symbol, "this" is replaced with the new symbol. + void mergeProperties(const Symbol &other); + void resolve(const Symbol &other); + + // If this is a lazy symbol, fetch an input file and add the symbol + // in the file to the symbol table. Calling this function on + // non-lazy object causes a runtime error. + void fetch() const; + +private: + static bool isExportDynamic(Kind k, uint8_t visibility) { + if (k == SharedKind) + return visibility == llvm::ELF::STV_DEFAULT; + return config->shared || config->exportDynamic; + } + + void resolveUndefined(const Undefined &other); + void resolveCommon(const CommonSymbol &other); + void resolveDefined(const Defined &other); + template <class LazyT> void resolveLazy(const LazyT &other); + void resolveShared(const SharedSymbol &other); + + int compare(const Symbol *other) const; + + inline size_t getSymbolSize() const; + +protected: + Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding, + uint8_t stOther, uint8_t type) + : file(file), nameData(name.data), nameSize(name.size), binding(binding), + type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3), + isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind), + exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false), + canInline(false), referenced(false), traced(false), needsPltAddr(false), + isInIplt(false), gotInIgot(false), isPreemptible(false), + used(!config->gcSections), needsTocRestore(false), + scriptDefined(false) {} + +public: + // True the symbol should point to its PLT entry. + // For SharedSymbol only. + uint8_t needsPltAddr : 1; + + // True if this symbol is in the Iplt sub-section of the Plt and the Igot + // sub-section of the .got.plt or .got. + uint8_t isInIplt : 1; + + // True if this symbol needs a GOT entry and its GOT entry is actually in + // Igot. This will be true only for certain non-preemptible ifuncs. + uint8_t gotInIgot : 1; + + // True if this symbol is preemptible at load time. + uint8_t isPreemptible : 1; + + // True if an undefined or shared symbol is used from a live section. + uint8_t used : 1; + + // True if a call to this symbol needs to be followed by a restore of the + // PPC64 toc pointer. + uint8_t needsTocRestore : 1; + + // True if this symbol is defined by a linker script. + uint8_t scriptDefined : 1; + + // The partition whose dynamic symbol table contains this symbol's definition. + uint8_t partition = 1; + + bool isSection() const { return type == llvm::ELF::STT_SECTION; } + bool isTls() const { return type == llvm::ELF::STT_TLS; } + bool isFunc() const { return type == llvm::ELF::STT_FUNC; } + bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } + bool isObject() const { return type == llvm::ELF::STT_OBJECT; } + bool isFile() const { return type == llvm::ELF::STT_FILE; } +}; + +// Represents a symbol that is defined in the current output file. +class Defined : public Symbol { +public: + Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, + uint8_t type, uint64_t value, uint64_t size, SectionBase *section) + : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), + size(size), section(section) {} + + static bool classof(const Symbol *s) { return s->isDefined(); } + + uint64_t value; + uint64_t size; + SectionBase *section; +}; + +// Represents a common symbol. +// +// On Unix, it is traditionally allowed to write variable definitions +// without initialization expressions (such as "int foo;") to header +// files. Such definition is called "tentative definition". +// +// Using tentative definition is usually considered a bad practice +// because you should write only declarations (such as "extern int +// foo;") to header files. Nevertheless, the linker and the compiler +// have to do something to support bad code by allowing duplicate +// definitions for this particular case. +// +// Common symbols represent variable definitions without initializations. +// The compiler creates common symbols when it sees variable definitions +// without initialization (you can suppress this behavior and let the +// compiler create a regular defined symbol by -fno-common). +// +// The linker allows common symbols to be replaced by regular defined +// symbols. If there are remaining common symbols after name resolution is +// complete, they are converted to regular defined symbols in a .bss +// section. (Therefore, the later passes don't see any CommonSymbols.) +class CommonSymbol : public Symbol { +public: + CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding, + uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) + : Symbol(CommonKind, file, name, binding, stOther, type), + alignment(alignment), size(size) {} + + static bool classof(const Symbol *s) { return s->isCommon(); } + + uint32_t alignment; + uint64_t size; +}; + +class Undefined : public Symbol { +public: + Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther, + uint8_t type, uint32_t discardedSecIdx = 0) + : Symbol(UndefinedKind, file, name, binding, stOther, type), + discardedSecIdx(discardedSecIdx) {} + + static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } + + // The section index if in a discarded section, 0 otherwise. + uint32_t discardedSecIdx; +}; + +class SharedSymbol : public Symbol { +public: + static bool classof(const Symbol *s) { return s->kind() == SharedKind; } + + SharedSymbol(InputFile &file, StringRef name, uint8_t binding, + uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, + uint32_t alignment, uint32_t verdefIndex) + : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), + size(size), alignment(alignment) { + this->verdefIndex = verdefIndex; + // GNU ifunc is a mechanism to allow user-supplied functions to + // resolve PLT slot values at load-time. This is contrary to the + // regular symbol resolution scheme in which symbols are resolved just + // by name. Using this hook, you can program how symbols are solved + // for you program. For example, you can make "memcpy" to be resolved + // to a SSE-enabled version of memcpy only when a machine running the + // program supports the SSE instruction set. + // + // Naturally, such symbols should always be called through their PLT + // slots. What GNU ifunc symbols point to are resolver functions, and + // calling them directly doesn't make sense (unless you are writing a + // loader). + // + // For DSO symbols, we always call them through PLT slots anyway. + // So there's no difference between GNU ifunc and regular function + // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. + if (this->type == llvm::ELF::STT_GNU_IFUNC) + this->type = llvm::ELF::STT_FUNC; + } + + SharedFile &getFile() const { return *cast<SharedFile>(file); } + + uint64_t value; // st_value + uint64_t size; // st_size + uint32_t alignment; +}; + +// LazyArchive and LazyObject represent a symbols that is not yet in the link, +// but we know where to find it if needed. If the resolver finds both Undefined +// and Lazy for the same name, it will ask the Lazy to load a file. +// +// A special complication is the handling of weak undefined symbols. They should +// not load a file, but we have to remember we have seen both the weak undefined +// and the lazy. We represent that with a lazy symbol with a weak binding. This +// means that code looking for undefined symbols normally also has to take lazy +// symbols into consideration. + +// This class represents a symbol defined in an archive file. It is +// created from an archive file header, and it knows how to load an +// object file from an archive to replace itself with a defined +// symbol. +class LazyArchive : public Symbol { +public: + LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s) + : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL, + llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE), + sym(s) {} + + static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; } + + MemoryBufferRef getMemberBuffer(); + + const llvm::object::Archive::Symbol sym; +}; + +// LazyObject symbols represents symbols in object files between +// --start-lib and --end-lib options. +class LazyObject : public Symbol { +public: + LazyObject(InputFile &file, StringRef name) + : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL, + llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} + + static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; } +}; + +// Some linker-generated symbols need to be created as +// Defined symbols. +struct ElfSym { + // __bss_start + static Defined *bss; + + // etext and _etext + static Defined *etext1; + static Defined *etext2; + + // edata and _edata + static Defined *edata1; + static Defined *edata2; + + // end and _end + static Defined *end1; + static Defined *end2; + + // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to + // be at some offset from the base of the .got section, usually 0 or + // the end of the .got. + static Defined *globalOffsetTable; + + // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. + static Defined *mipsGp; + static Defined *mipsGpDisp; + static Defined *mipsLocalGp; + + // __rel{,a}_iplt_{start,end} symbols. + static Defined *relaIpltStart; + static Defined *relaIpltEnd; + + // __global_pointer$ for RISC-V. + static Defined *riscvGlobalPointer; + + // _TLS_MODULE_BASE_ on targets that support TLSDESC. + static Defined *tlsModuleBase; +}; + +// A buffer class that is large enough to hold any Symbol-derived +// object. We allocate memory using this class and instantiate a symbol +// using the placement new. +union SymbolUnion { + alignas(Defined) char a[sizeof(Defined)]; + alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; + alignas(Undefined) char c[sizeof(Undefined)]; + alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; + alignas(LazyArchive) char e[sizeof(LazyArchive)]; + alignas(LazyObject) char f[sizeof(LazyObject)]; +}; + +// It is important to keep the size of SymbolUnion small for performance and +// memory usage reasons. 80 bytes is a soft limit based on the size of Defined +// on a 64-bit system. +static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large"); + +template <typename T> struct AssertSymbol { + static_assert(std::is_trivially_destructible<T>(), + "Symbol types must be trivially destructible"); + static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); + static_assert(alignof(T) <= alignof(SymbolUnion), + "SymbolUnion not aligned enough"); +}; + +static inline void assertSymbols() { + AssertSymbol<Defined>(); + AssertSymbol<CommonSymbol>(); + AssertSymbol<Undefined>(); + AssertSymbol<SharedSymbol>(); + AssertSymbol<LazyArchive>(); + AssertSymbol<LazyObject>(); +} + +void printTraceSymbol(const Symbol *sym); + +size_t Symbol::getSymbolSize() const { + switch (kind()) { + case CommonKind: + return sizeof(CommonSymbol); + case DefinedKind: + return sizeof(Defined); + case LazyArchiveKind: + return sizeof(LazyArchive); + case LazyObjectKind: + return sizeof(LazyObject); + case SharedKind: + return sizeof(SharedSymbol); + case UndefinedKind: + return sizeof(Undefined); + case PlaceholderKind: + return sizeof(Symbol); + } + llvm_unreachable("unknown symbol kind"); +} + +// replace() replaces "this" object with a given symbol by memcpy'ing +// it over to "this". This function is called as a result of name +// resolution, e.g. to replace an undefind symbol with a defined symbol. +void Symbol::replace(const Symbol &newSym) { + using llvm::ELF::STT_TLS; + + // Symbols representing thread-local variables must be referenced by + // TLS-aware relocations, and non-TLS symbols must be reference by + // non-TLS relocations, so there's a clear distinction between TLS + // and non-TLS symbols. It is an error if the same symbol is defined + // as a TLS symbol in one file and as a non-TLS symbol in other file. + if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() && + (type == STT_TLS) != (newSym.type == STT_TLS)) + error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " + + toString(newSym.file) + "\n>>> defined in " + toString(file)); + + Symbol old = *this; + memcpy(this, &newSym, newSym.getSymbolSize()); + + // old may be a placeholder. The referenced fields must be initialized in + // SymbolTable::insert. + versionId = old.versionId; + visibility = old.visibility; + isUsedInRegularObj = old.isUsedInRegularObj; + exportDynamic = old.exportDynamic; + inDynamicList = old.inDynamicList; + canInline = old.canInline; + referenced = old.referenced; + traced = old.traced; + isPreemptible = old.isPreemptible; + scriptDefined = old.scriptDefined; + partition = old.partition; + + // Symbol length is computed lazily. If we already know a symbol length, + // propagate it. + if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0) + nameSize = old.nameSize; + + // Print out a log message if --trace-symbol was specified. + // This is for debugging. + if (traced) + printTraceSymbol(this); +} + +void maybeWarnUnorderableSymbol(const Symbol *sym); +bool computeIsPreemptible(const Symbol &sym); + +} // namespace elf +} // namespace lld + +#endif