Mercurial > hg > CbC > CbC_llvm
diff polly/lib/Support/ISLTools.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/polly/lib/Support/ISLTools.cpp Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,870 @@ +//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Tools, utilities, helpers and extensions useful in conjunction with the +// Integer Set Library (isl). +// +//===----------------------------------------------------------------------===// + +#include "polly/Support/ISLTools.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <vector> + +using namespace polly; + +namespace { +/// Create a map that shifts one dimension by an offset. +/// +/// Example: +/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) +/// = { [i0, i1] -> [i0, i1 - 1] } +/// +/// @param Space The map space of the result. Must have equal number of in- and +/// out-dimensions. +/// @param Pos Position to shift. +/// @param Amount Value added to the shifted dimension. +/// +/// @return An isl_multi_aff for the map with this shifted dimension. +isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { + auto Identity = isl::multi_aff::identity(Space); + if (Amount == 0) + return Identity; + auto ShiftAff = Identity.get_aff(Pos); + ShiftAff = ShiftAff.set_constant_si(Amount); + return Identity.set_aff(Pos, ShiftAff); +} + +/// Construct a map that swaps two nested tuples. +/// +/// @param FromSpace1 { Space1[] } +/// @param FromSpace2 { Space2[] } +/// +/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } +isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, + isl::space FromSpace2) { + // Fast-path on out-of-quota. + if (!FromSpace1 || !FromSpace2) + return {}; + + assert(FromSpace1.is_set()); + assert(FromSpace2.is_set()); + + unsigned Dims1 = FromSpace1.dim(isl::dim::set); + unsigned Dims2 = FromSpace2.dim(isl::dim::set); + + isl::space FromSpace = + FromSpace1.map_from_domain_and_range(FromSpace2).wrap(); + isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap(); + isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace); + + isl::basic_map Result = isl::basic_map::universe(MapSpace); + for (unsigned i = 0u; i < Dims1; i += 1) + Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i); + for (unsigned i = 0u; i < Dims2; i += 1) { + Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i); + } + + return Result; +} + +/// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns +/// an isl_map. +isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { + isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2); + return isl::map(BMapResult); +} +} // anonymous namespace + +isl::map polly::beforeScatter(isl::map Map, bool Strict) { + isl::space RangeSpace = Map.get_space().range(); + isl::map ScatterRel = + Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace); + return Map.apply_range(ScatterRel); +} + +isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { + isl::union_map Result = isl::union_map::empty(UMap.get_space()); + + for (isl::map Map : UMap.get_map_list()) { + isl::map After = beforeScatter(Map, Strict); + Result = Result.add_map(After); + } + + return Result; +} + +isl::map polly::afterScatter(isl::map Map, bool Strict) { + isl::space RangeSpace = Map.get_space().range(); + isl::map ScatterRel = + Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace); + return Map.apply_range(ScatterRel); +} + +isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { + isl::union_map Result = isl::union_map::empty(UMap.get_space()); + for (isl::map Map : UMap.get_map_list()) { + isl::map After = afterScatter(Map, Strict); + Result = Result.add_map(After); + } + return Result; +} + +isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, + bool InclTo) { + isl::map AfterFrom = afterScatter(From, !InclFrom); + isl::map BeforeTo = beforeScatter(To, !InclTo); + + return AfterFrom.intersect(BeforeTo); +} + +isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, + bool InclFrom, bool InclTo) { + isl::union_map AfterFrom = afterScatter(From, !InclFrom); + isl::union_map BeforeTo = beforeScatter(To, !InclTo); + + return AfterFrom.intersect(BeforeTo); +} + +isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { + if (!UMap) + return nullptr; + + if (isl_union_map_n_map(UMap.get()) == 0) + return isl::map::empty(ExpectedSpace); + + isl::map Result = isl::map::from_union_map(UMap); + assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); + + return Result; +} + +isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { + if (!USet) + return nullptr; + + if (isl_union_set_n_set(USet.get()) == 0) + return isl::set::empty(ExpectedSpace); + + isl::set Result(USet); + assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); + + return Result; +} + +unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { + unsigned Dims = 0; + for (isl::map Map : Schedule.get_map_list()) + Dims = std::max(Dims, Map.dim(isl::dim::out)); + return Dims; +} + +isl::space polly::getScatterSpace(const isl::union_map &Schedule) { + if (!Schedule) + return nullptr; + unsigned Dims = getNumScatterDims(Schedule); + isl::space ScatterSpace = Schedule.get_space().set_from_params(); + return ScatterSpace.add_dims(isl::dim::set, Dims); +} + +isl::union_map polly::makeIdentityMap(const isl::union_set &USet, + bool RestrictDomain) { + isl::union_map Result = isl::union_map::empty(USet.get_space()); + for (isl::set Set : USet.get_set_list()) { + isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set()); + if (RestrictDomain) + IdentityMap = IdentityMap.intersect_domain(Set); + Result = Result.add_map(IdentityMap); + } + return Result; +} + +isl::map polly::reverseDomain(isl::map Map) { + isl::space DomSpace = Map.get_space().domain().unwrap(); + isl::space Space1 = DomSpace.domain(); + isl::space Space2 = DomSpace.range(); + isl::map Swap = makeTupleSwapMap(Space1, Space2); + return Map.apply_domain(Swap); +} + +isl::union_map polly::reverseDomain(const isl::union_map &UMap) { + isl::union_map Result = isl::union_map::empty(UMap.get_space()); + for (isl::map Map : UMap.get_map_list()) { + auto Reversed = reverseDomain(std::move(Map)); + Result = Result.add_map(Reversed); + } + return Result; +} + +isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { + int NumDims = Set.dim(isl::dim::set); + if (Pos < 0) + Pos = NumDims + Pos; + assert(Pos < NumDims && "Dimension index must be in range"); + isl::space Space = Set.get_space(); + Space = Space.map_from_domain_and_range(Space); + isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); + isl::map TranslatorMap = isl::map::from_multi_aff(Translator); + return Set.apply(TranslatorMap); +} + +isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { + isl::union_set Result = isl::union_set::empty(USet.get_space()); + for (isl::set Set : USet.get_set_list()) { + isl::set Shifted = shiftDim(Set, Pos, Amount); + Result = Result.add_set(Shifted); + } + return Result; +} + +isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { + int NumDims = Map.dim(Dim); + if (Pos < 0) + Pos = NumDims + Pos; + assert(Pos < NumDims && "Dimension index must be in range"); + isl::space Space = Map.get_space(); + switch (Dim) { + case isl::dim::in: + Space = Space.domain(); + break; + case isl::dim::out: + Space = Space.range(); + break; + default: + llvm_unreachable("Unsupported value for 'dim'"); + } + Space = Space.map_from_domain_and_range(Space); + isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); + isl::map TranslatorMap = isl::map::from_multi_aff(Translator); + switch (Dim) { + case isl::dim::in: + return Map.apply_domain(TranslatorMap); + case isl::dim::out: + return Map.apply_range(TranslatorMap); + default: + llvm_unreachable("Unsupported value for 'dim'"); + } +} + +isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, + int Amount) { + isl::union_map Result = isl::union_map::empty(UMap.get_space()); + + for (isl::map Map : UMap.get_map_list()) { + isl::map Shifted = shiftDim(Map, Dim, Pos, Amount); + Result = Result.add_map(Shifted); + } + return Result; +} + +void polly::simplify(isl::set &Set) { + Set = isl::manage(isl_set_compute_divs(Set.copy())); + Set = Set.detect_equalities(); + Set = Set.coalesce(); +} + +void polly::simplify(isl::union_set &USet) { + USet = isl::manage(isl_union_set_compute_divs(USet.copy())); + USet = USet.detect_equalities(); + USet = USet.coalesce(); +} + +void polly::simplify(isl::map &Map) { + Map = isl::manage(isl_map_compute_divs(Map.copy())); + Map = Map.detect_equalities(); + Map = Map.coalesce(); +} + +void polly::simplify(isl::union_map &UMap) { + UMap = isl::manage(isl_union_map_compute_divs(UMap.copy())); + UMap = UMap.detect_equalities(); + UMap = UMap.coalesce(); +} + +isl::union_map polly::computeReachingWrite(isl::union_map Schedule, + isl::union_map Writes, bool Reverse, + bool InclPrevDef, bool InclNextDef) { + + // { Scatter[] } + isl::space ScatterSpace = getScatterSpace(Schedule); + + // { ScatterRead[] -> ScatterWrite[] } + isl::map Relation; + if (Reverse) + Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) + : isl::map::lex_le(ScatterSpace); + else + Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) + : isl::map::lex_ge(ScatterSpace); + + // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } + isl::map RelationMap = Relation.range_map().reverse(); + + // { Element[] -> ScatterWrite[] } + isl::union_map WriteAction = Schedule.apply_domain(Writes); + + // { ScatterWrite[] -> Element[] } + isl::union_map WriteActionRev = WriteAction.reverse(); + + // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } + isl::union_map DefSchedRelation = + isl::union_map(RelationMap).apply_domain(WriteActionRev); + + // For each element, at every point in time, map to the times of previous + // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } + isl::union_map ReachableWrites = DefSchedRelation.uncurry(); + if (Reverse) + ReachableWrites = ReachableWrites.lexmin(); + else + ReachableWrites = ReachableWrites.lexmax(); + + // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } + isl::union_map SelfUse = WriteAction.range_map(); + + if (InclPrevDef && InclNextDef) { + // Add the Def itself to the solution. + ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); + } else if (!InclPrevDef && !InclNextDef) { + // Remove Def itself from the solution. + ReachableWrites = ReachableWrites.subtract(SelfUse); + } + + // { [Element[] -> ScatterRead[]] -> Domain[] } + return ReachableWrites.apply_range(Schedule.reverse()); +} + +isl::union_map +polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, + isl::union_map Reads, bool ReadEltInSameInst, + bool IncludeLastRead, bool IncludeWrite) { + // { Element[] -> Scatter[] } + isl::union_map ReadActions = Schedule.apply_domain(Reads); + isl::union_map WriteActions = Schedule.apply_domain(Writes); + + // { [Element[] -> DomainWrite[]] -> Scatter[] } + isl::union_map EltDomWrites = + Writes.reverse().range_map().apply_range(Schedule); + + // { [Element[] -> Scatter[]] -> DomainWrite[] } + isl::union_map ReachingOverwrite = computeReachingWrite( + Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); + + // { [Element[] -> Scatter[]] -> DomainWrite[] } + isl::union_map ReadsOverwritten = + ReachingOverwrite.intersect_domain(ReadActions.wrap()); + + // { [Element[] -> DomainWrite[]] -> Scatter[] } + isl::union_map ReadsOverwrittenRotated = + reverseDomain(ReadsOverwritten).curry().reverse(); + isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax(); + + // { [Element[] -> DomainWrite[]] -> Scatter[] } + isl::union_map BetweenLastReadOverwrite = betweenScatter( + LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); + + // { [Element[] -> Scatter[]] -> DomainWrite[] } + isl::union_map ReachingOverwriteZone = computeReachingWrite( + Schedule, Writes, true, IncludeLastRead, IncludeWrite); + + // { [Element[] -> DomainWrite[]] -> Scatter[] } + isl::union_map ReachingOverwriteRotated = + reverseDomain(ReachingOverwriteZone).curry().reverse(); + + // { [Element[] -> DomainWrite[]] -> Scatter[] } + isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( + ReadsOverwrittenRotated.domain()); + + return BetweenLastReadOverwrite.unite(WritesWithoutReads) + .domain_factor_domain(); +} + +isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, + bool InclStart, bool InclEnd) { + if (!InclStart && InclEnd) + return Zone; + + auto ShiftedZone = shiftDim(Zone, -1, -1); + if (InclStart && !InclEnd) + return ShiftedZone; + else if (!InclStart && !InclEnd) + return Zone.intersect(ShiftedZone); + + assert(InclStart && InclEnd); + return Zone.unite(ShiftedZone); +} + +isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, + bool InclStart, bool InclEnd) { + if (!InclStart && InclEnd) + return Zone; + + auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); + if (InclStart && !InclEnd) + return ShiftedZone; + else if (!InclStart && !InclEnd) + return Zone.intersect(ShiftedZone); + + assert(InclStart && InclEnd); + return Zone.unite(ShiftedZone); +} + +isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, + bool InclStart, bool InclEnd) { + if (!InclStart && InclEnd) + return Zone; + + auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); + if (InclStart && !InclEnd) + return ShiftedZone; + else if (!InclStart && !InclEnd) + return Zone.intersect(ShiftedZone); + + assert(InclStart && InclEnd); + return Zone.unite(ShiftedZone); +} + +isl::map polly::distributeDomain(isl::map Map) { + // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { + // Domain[] -> Range2[] } and combine again. We would loose any relation + // between Range1[] and Range2[] that is not also a constraint to Domain[]. + + isl::space Space = Map.get_space(); + isl::space DomainSpace = Space.domain(); + unsigned DomainDims = DomainSpace.dim(isl::dim::set); + isl::space RangeSpace = Space.range().unwrap(); + isl::space Range1Space = RangeSpace.domain(); + unsigned Range1Dims = Range1Space.dim(isl::dim::set); + isl::space Range2Space = RangeSpace.range(); + unsigned Range2Dims = Range2Space.dim(isl::dim::set); + + isl::space OutputSpace = + DomainSpace.map_from_domain_and_range(Range1Space) + .wrap() + .map_from_domain_and_range( + DomainSpace.map_from_domain_and_range(Range2Space).wrap()); + + isl::basic_map Translator = isl::basic_map::universe( + Space.wrap().map_from_domain_and_range(OutputSpace.wrap())); + + for (unsigned i = 0; i < DomainDims; i += 1) { + Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i); + Translator = Translator.equate(isl::dim::in, i, isl::dim::out, + DomainDims + Range1Dims + i); + } + for (unsigned i = 0; i < Range1Dims; i += 1) + Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out, + DomainDims + i); + for (unsigned i = 0; i < Range2Dims; i += 1) + Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i, + isl::dim::out, + DomainDims + Range1Dims + DomainDims + i); + + return Map.wrap().apply(Translator).unwrap(); +} + +isl::union_map polly::distributeDomain(isl::union_map UMap) { + isl::union_map Result = isl::union_map::empty(UMap.get_space()); + for (isl::map Map : UMap.get_map_list()) { + auto Distributed = distributeDomain(Map); + Result = Result.add_map(Distributed); + } + return Result; +} + +isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { + + // { Factor[] -> Factor[] } + isl::union_map Factors = makeIdentityMap(Factor, true); + + return Factors.product(UMap); +} + +isl::union_map polly::applyDomainRange(isl::union_map UMap, + isl::union_map Func) { + // This implementation creates unnecessary cross products of the + // DomainDomain[] and Func. An alternative implementation could reverse + // domain+uncurry,apply Func to what now is the domain, then undo the + // preparing transformation. Another alternative implementation could create a + // translator map for each piece. + + // { DomainDomain[] } + isl::union_set DomainDomain = UMap.domain().unwrap().domain(); + + // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] + // } + isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain); + + return UMap.apply_domain(LifetedFunc); +} + +isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { + isl::set RangeSet = Range.extract_set(Map.get_space().range()); + return Map.intersect_range(RangeSet); +} + +isl::map polly::subtractParams(isl::map Map, isl::set Params) { + auto MapSpace = Map.get_space(); + auto ParamsMap = isl::map::universe(MapSpace).intersect_params(Params); + return Map.subtract(ParamsMap); +} + +isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { + assert(!Max || !Min); // Cannot return min and max at the same time. + isl::val Result; + isl::stat Stat = PwAff.foreach_piece( + [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { + if (Result && Result.is_nan()) + return isl::stat::ok(); + + // TODO: If Min/Max, we can also determine a minimum/maximum value if + // Set is constant-bounded. + if (!Aff.is_cst()) { + Result = isl::val::nan(Aff.get_ctx()); + return isl::stat::error(); + } + + isl::val ThisVal = Aff.get_constant_val(); + if (!Result) { + Result = ThisVal; + return isl::stat::ok(); + } + + if (Result.eq(ThisVal)) + return isl::stat::ok(); + + if (Max && ThisVal.gt(Result)) { + Result = ThisVal; + return isl::stat::ok(); + } + + if (Min && ThisVal.lt(Result)) { + Result = ThisVal; + return isl::stat::ok(); + } + + // Not compatible + Result = isl::val::nan(Aff.get_ctx()); + return isl::stat::error(); + }); + + if (Stat.is_error()) + return {}; + + return Result; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +static void foreachPoint(const isl::set &Set, + const std::function<void(isl::point P)> &F) { + Set.foreach_point([&](isl::point P) -> isl::stat { + F(P); + return isl::stat::ok(); + }); +} + +static void foreachPoint(isl::basic_set BSet, + const std::function<void(isl::point P)> &F) { + foreachPoint(isl::set(BSet), F); +} + +/// Determine the sorting order of the sets @p A and @p B without considering +/// the space structure. +/// +/// Ordering is based on the lower bounds of the set's dimensions. First +/// dimensions are considered first. +static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { + unsigned ALen = A.dim(isl::dim::set); + unsigned BLen = B.dim(isl::dim::set); + unsigned Len = std::min(ALen, BLen); + + for (unsigned i = 0; i < Len; i += 1) { + isl::basic_set ADim = + A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) + .project_out(isl::dim::set, i + 1, ALen - i - 1) + .project_out(isl::dim::set, 0, i); + isl::basic_set BDim = + B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) + .project_out(isl::dim::set, i + 1, BLen - i - 1) + .project_out(isl::dim::set, 0, i); + + isl::basic_set AHull = isl::set(ADim).convex_hull(); + isl::basic_set BHull = isl::set(BDim).convex_hull(); + + bool ALowerBounded = + bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); + bool BLowerBounded = + bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); + + int BoundedCompare = BLowerBounded - ALowerBounded; + if (BoundedCompare != 0) + return BoundedCompare; + + if (!ALowerBounded || !BLowerBounded) + continue; + + isl::pw_aff AMin = isl::set(ADim).dim_min(0); + isl::pw_aff BMin = isl::set(BDim).dim_min(0); + + isl::val AMinVal = polly::getConstant(AMin, false, true); + isl::val BMinVal = polly::getConstant(BMin, false, true); + + int MinCompare = AMinVal.sub(BMinVal).sgn(); + if (MinCompare != 0) + return MinCompare; + } + + // If all the dimensions' lower bounds are equal or incomparable, sort based + // on the number of dimensions. + return ALen - BLen; +} + +/// Compare the sets @p A and @p B according to their nested space structure. +/// Returns 0 if the structure is considered equal. +/// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are +/// ignored, i.e. a tuple with the same name but different number of dimensions +/// are considered equal. +static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, + bool ConsiderTupleLen) { + int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); + if (WrappingCompare != 0) + return WrappingCompare; + + if (ASpace.is_wrapping() && BSpace.is_wrapping()) { + isl::space AMap = ASpace.unwrap(); + isl::space BMap = BSpace.unwrap(); + + int FirstResult = + structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); + if (FirstResult != 0) + return FirstResult; + + return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); + } + + std::string AName; + if (ASpace.has_tuple_name(isl::dim::set)) + AName = ASpace.get_tuple_name(isl::dim::set); + + std::string BName; + if (BSpace.has_tuple_name(isl::dim::set)) + BName = BSpace.get_tuple_name(isl::dim::set); + + int NameCompare = AName.compare(BName); + if (NameCompare != 0) + return NameCompare; + + if (ConsiderTupleLen) { + int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set); + if (LenCompare != 0) + return LenCompare; + } + + return 0; +} + +/// Compare the sets @p A and @p B according to their nested space structure. If +/// the structure is the same, sort using the dimension lower bounds. +/// Returns an std::sort compatible bool. +static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { + isl::space ASpace = A.get_space(); + isl::space BSpace = B.get_space(); + + // Ignoring number of dimensions first ensures that structures with same tuple + // names, but different number of dimensions are still sorted close together. + int TupleNestingCompare = structureCompare(ASpace, BSpace, false); + if (TupleNestingCompare != 0) + return TupleNestingCompare < 0; + + int TupleCompare = structureCompare(ASpace, BSpace, true); + if (TupleCompare != 0) + return TupleCompare < 0; + + return flatCompare(A, B) < 0; +} + +/// Print a string representation of @p USet to @p OS. +/// +/// The pieces of @p USet are printed in a sorted order. Spaces with equal or +/// similar nesting structure are printed together. Compared to isl's own +/// printing function the uses the structure itself as base of the sorting, not +/// a hash of it. It ensures that e.g. maps spaces with same domain structure +/// are printed together. Set pieces with same structure are printed in order of +/// their lower bounds. +/// +/// @param USet Polyhedra to print. +/// @param OS Target stream. +/// @param Simplify Whether to simplify the polyhedron before printing. +/// @param IsMap Whether @p USet is a wrapped map. If true, sets are +/// unwrapped before printing to again appear as a map. +static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, + bool Simplify, bool IsMap) { + if (!USet) { + OS << "<null>\n"; + return; + } + + if (Simplify) + simplify(USet); + + // Get all the polyhedra. + std::vector<isl::basic_set> BSets; + + for (isl::set Set : USet.get_set_list()) { + for (isl::basic_set BSet : Set.get_basic_set_list()) { + BSets.push_back(BSet); + } + } + + if (BSets.empty()) { + OS << "{\n}\n"; + return; + } + + // Sort the polyhedra. + llvm::sort(BSets, orderComparer); + + // Print the polyhedra. + bool First = true; + for (const isl::basic_set &BSet : BSets) { + std::string Str; + if (IsMap) + Str = isl::map(BSet.unwrap()).to_str(); + else + Str = isl::set(BSet).to_str(); + size_t OpenPos = Str.find_first_of('{'); + assert(OpenPos != std::string::npos); + size_t ClosePos = Str.find_last_of('}'); + assert(ClosePos != std::string::npos); + + if (First) + OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; + else + OS << ";\n "; + + OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); + First = false; + } + assert(!First); + OS << "\n}\n"; +} + +static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { + int Dims = BSet.dim(isl::dim::set); + if (Dim >= Dims) { + Expanded = Expanded.unite(BSet); + return; + } + + isl::basic_set DimOnly = + BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) + .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) + .project_out(isl::dim::set, 0, Dim); + if (!DimOnly.is_bounded()) { + recursiveExpand(BSet, Dim + 1, Expanded); + return; + } + + foreachPoint(DimOnly, [&, Dim](isl::point P) { + isl::val Val = P.get_coordinate_val(isl::dim::set, 0); + isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); + recursiveExpand(FixBSet, Dim + 1, Expanded); + }); +} + +/// Make each point of a set explicit. +/// +/// "Expanding" makes each point a set contains explicit. That is, the result is +/// a set of singleton polyhedra. Unbounded dimensions are not expanded. +/// +/// Example: +/// { [i] : 0 <= i < 2 } +/// is expanded to: +/// { [0]; [1] } +static isl::set expand(const isl::set &Set) { + isl::set Expanded = isl::set::empty(Set.get_space()); + for (isl::basic_set BSet : Set.get_basic_set_list()) + recursiveExpand(BSet, 0, Expanded); + return Expanded; +} + +/// Expand all points of a union set explicit. +/// +/// @see expand(const isl::set) +static isl::union_set expand(const isl::union_set &USet) { + isl::union_set Expanded = isl::union_set::empty(USet.get_space()); + for (isl::set Set : USet.get_set_list()) { + isl::set SetExpanded = expand(Set); + Expanded = Expanded.add_set(SetExpanded); + } + return Expanded; +} + +LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { + printSortedPolyhedra(Set, llvm::errs(), true, false); +} + +LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { + printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); +} + +LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { + printSortedPolyhedra(USet, llvm::errs(), true, false); +} + +LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { + printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); +} + +LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { + dumpPw(isl::manage_copy(Set)); +} + +LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { + dumpPw(isl::manage_copy(Map)); +} + +LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { + dumpPw(isl::manage_copy(USet)); +} + +LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { + dumpPw(isl::manage_copy(UMap)); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { + printSortedPolyhedra(expand(Set), llvm::errs(), false, false); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { + printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { + printSortedPolyhedra(expand(USet), llvm::errs(), false, false); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { + printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { + dumpExpanded(isl::manage_copy(Set)); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { + dumpExpanded(isl::manage_copy(Map)); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { + dumpExpanded(isl::manage_copy(USet)); +} + +LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { + dumpExpanded(isl::manage_copy(UMap)); +} +#endif