diff polly/lib/Support/SCEVValidator.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 2e18cbf3894f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/polly/lib/Support/SCEVValidator.cpp	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,812 @@
+
+#include "polly/Support/SCEVValidator.h"
+#include "polly/ScopDetection.h"
+#include "llvm/Analysis/RegionInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+using namespace polly;
+
+#define DEBUG_TYPE "polly-scev-validator"
+
+namespace SCEVType {
+/// The type of a SCEV
+///
+/// To check for the validity of a SCEV we assign to each SCEV a type. The
+/// possible types are INT, PARAM, IV and INVALID. The order of the types is
+/// important. The subexpressions of SCEV with a type X can only have a type
+/// that is smaller or equal than X.
+enum TYPE {
+  // An integer value.
+  INT,
+
+  // An expression that is constant during the execution of the Scop,
+  // but that may depend on parameters unknown at compile time.
+  PARAM,
+
+  // An expression that may change during the execution of the SCoP.
+  IV,
+
+  // An invalid expression.
+  INVALID
+};
+} // namespace SCEVType
+
+/// The result the validator returns for a SCEV expression.
+class ValidatorResult {
+  /// The type of the expression
+  SCEVType::TYPE Type;
+
+  /// The set of Parameters in the expression.
+  ParameterSetTy Parameters;
+
+public:
+  /// The copy constructor
+  ValidatorResult(const ValidatorResult &Source) {
+    Type = Source.Type;
+    Parameters = Source.Parameters;
+  }
+
+  /// Construct a result with a certain type and no parameters.
+  ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
+    assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
+  }
+
+  /// Construct a result with a certain type and a single parameter.
+  ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
+    Parameters.insert(Expr);
+  }
+
+  /// Get the type of the ValidatorResult.
+  SCEVType::TYPE getType() { return Type; }
+
+  /// Is the analyzed SCEV constant during the execution of the SCoP.
+  bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
+
+  /// Is the analyzed SCEV valid.
+  bool isValid() { return Type != SCEVType::INVALID; }
+
+  /// Is the analyzed SCEV of Type IV.
+  bool isIV() { return Type == SCEVType::IV; }
+
+  /// Is the analyzed SCEV of Type INT.
+  bool isINT() { return Type == SCEVType::INT; }
+
+  /// Is the analyzed SCEV of Type PARAM.
+  bool isPARAM() { return Type == SCEVType::PARAM; }
+
+  /// Get the parameters of this validator result.
+  const ParameterSetTy &getParameters() { return Parameters; }
+
+  /// Add the parameters of Source to this result.
+  void addParamsFrom(const ValidatorResult &Source) {
+    Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
+  }
+
+  /// Merge a result.
+  ///
+  /// This means to merge the parameters and to set the Type to the most
+  /// specific Type that matches both.
+  void merge(const ValidatorResult &ToMerge) {
+    Type = std::max(Type, ToMerge.Type);
+    addParamsFrom(ToMerge);
+  }
+
+  void print(raw_ostream &OS) {
+    switch (Type) {
+    case SCEVType::INT:
+      OS << "SCEVType::INT";
+      break;
+    case SCEVType::PARAM:
+      OS << "SCEVType::PARAM";
+      break;
+    case SCEVType::IV:
+      OS << "SCEVType::IV";
+      break;
+    case SCEVType::INVALID:
+      OS << "SCEVType::INVALID";
+      break;
+    }
+  }
+};
+
+raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
+  VR.print(OS);
+  return OS;
+}
+
+bool polly::isConstCall(llvm::CallInst *Call) {
+  if (Call->mayReadOrWriteMemory())
+    return false;
+
+  for (auto &Operand : Call->arg_operands())
+    if (!isa<ConstantInt>(&Operand))
+      return false;
+
+  return true;
+}
+
+/// Check if a SCEV is valid in a SCoP.
+struct SCEVValidator
+    : public SCEVVisitor<SCEVValidator, class ValidatorResult> {
+private:
+  const Region *R;
+  Loop *Scope;
+  ScalarEvolution &SE;
+  InvariantLoadsSetTy *ILS;
+
+public:
+  SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
+                InvariantLoadsSetTy *ILS)
+      : R(R), Scope(Scope), SE(SE), ILS(ILS) {}
+
+  class ValidatorResult visitConstant(const SCEVConstant *Constant) {
+    return ValidatorResult(SCEVType::INT);
+  }
+
+  class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
+                                                      const SCEV *Operand) {
+    ValidatorResult Op = visit(Operand);
+    auto Type = Op.getType();
+
+    // If unsigned operations are allowed return the operand, otherwise
+    // check if we can model the expression without unsigned assumptions.
+    if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
+      return Op;
+
+    if (Type == SCEVType::IV)
+      return ValidatorResult(SCEVType::INVALID);
+    return ValidatorResult(SCEVType::PARAM, Expr);
+  }
+
+  class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
+    return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
+  }
+
+  class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
+    return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
+  }
+
+  class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
+    return visit(Expr->getOperand());
+  }
+
+  class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
+    ValidatorResult Return(SCEVType::INT);
+
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+      Return.merge(Op);
+
+      // Early exit.
+      if (!Return.isValid())
+        break;
+    }
+
+    return Return;
+  }
+
+  class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
+    ValidatorResult Return(SCEVType::INT);
+
+    bool HasMultipleParams = false;
+
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+
+      if (Op.isINT())
+        continue;
+
+      if (Op.isPARAM() && Return.isPARAM()) {
+        HasMultipleParams = true;
+        continue;
+      }
+
+      if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
+        LLVM_DEBUG(
+            dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
+                   << "\tExpr: " << *Expr << "\n"
+                   << "\tPrevious expression type: " << Return << "\n"
+                   << "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
+                   << "\n");
+
+        return ValidatorResult(SCEVType::INVALID);
+      }
+
+      Return.merge(Op);
+    }
+
+    if (HasMultipleParams && Return.isValid())
+      return ValidatorResult(SCEVType::PARAM, Expr);
+
+    return Return;
+  }
+
+  class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+    if (!Expr->isAffine()) {
+      LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    ValidatorResult Start = visit(Expr->getStart());
+    ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
+
+    if (!Start.isValid())
+      return Start;
+
+    if (!Recurrence.isValid())
+      return Recurrence;
+
+    auto *L = Expr->getLoop();
+    if (R->contains(L) && (!Scope || !L->contains(Scope))) {
+      LLVM_DEBUG(
+          dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
+                    "non-affine subregion or has a non-synthesizable exit "
+                    "value.");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    if (R->contains(L)) {
+      if (Recurrence.isINT()) {
+        ValidatorResult Result(SCEVType::IV);
+        Result.addParamsFrom(Start);
+        return Result;
+      }
+
+      LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
+                           "recurrence part");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
+
+    // Directly generate ValidatorResult for Expr if 'start' is zero.
+    if (Expr->getStart()->isZero())
+      return ValidatorResult(SCEVType::PARAM, Expr);
+
+    // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
+    // if 'start' is not zero.
+    const SCEV *ZeroStartExpr = SE.getAddRecExpr(
+        SE.getConstant(Expr->getStart()->getType(), 0),
+        Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
+
+    ValidatorResult ZeroStartResult =
+        ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
+    ZeroStartResult.addParamsFrom(Start);
+
+    return ZeroStartResult;
+  }
+
+  class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
+    ValidatorResult Return(SCEVType::INT);
+
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+
+      if (!Op.isValid())
+        return Op;
+
+      Return.merge(Op);
+    }
+
+    return Return;
+  }
+
+  class ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
+    ValidatorResult Return(SCEVType::INT);
+
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+
+      if (!Op.isValid())
+        return Op;
+
+      Return.merge(Op);
+    }
+
+    return Return;
+  }
+
+  class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
+    // We do not support unsigned max operations. If 'Expr' is constant during
+    // Scop execution we treat this as a parameter, otherwise we bail out.
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+
+      if (!Op.isConstant()) {
+        LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
+        return ValidatorResult(SCEVType::INVALID);
+      }
+    }
+
+    return ValidatorResult(SCEVType::PARAM, Expr);
+  }
+
+  class ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
+    // We do not support unsigned min operations. If 'Expr' is constant during
+    // Scop execution we treat this as a parameter, otherwise we bail out.
+    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+      ValidatorResult Op = visit(Expr->getOperand(i));
+
+      if (!Op.isConstant()) {
+        LLVM_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
+        return ValidatorResult(SCEVType::INVALID);
+      }
+    }
+
+    return ValidatorResult(SCEVType::PARAM, Expr);
+  }
+
+  ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
+    if (R->contains(I)) {
+      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
+                           "within the region\n");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    return ValidatorResult(SCEVType::PARAM, S);
+  }
+
+  ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
+    assert(I->getOpcode() == Instruction::Call && "Call instruction expected");
+
+    if (R->contains(I)) {
+      auto Call = cast<CallInst>(I);
+
+      if (!isConstCall(Call))
+        return ValidatorResult(SCEVType::INVALID, S);
+    }
+    return ValidatorResult(SCEVType::PARAM, S);
+  }
+
+  ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
+    if (R->contains(I) && ILS) {
+      ILS->insert(cast<LoadInst>(I));
+      return ValidatorResult(SCEVType::PARAM, S);
+    }
+
+    return visitGenericInst(I, S);
+  }
+
+  ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
+                                const SCEV *DivExpr,
+                                Instruction *SDiv = nullptr) {
+
+    // First check if we might be able to model the division, thus if the
+    // divisor is constant. If so, check the dividend, otherwise check if
+    // the whole division can be seen as a parameter.
+    if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
+      return visit(Dividend);
+
+    // For signed divisions use the SDiv instruction to check for a parameter
+    // division, for unsigned divisions check the operands.
+    if (SDiv)
+      return visitGenericInst(SDiv, DivExpr);
+
+    ValidatorResult LHS = visit(Dividend);
+    ValidatorResult RHS = visit(Divisor);
+    if (LHS.isConstant() && RHS.isConstant())
+      return ValidatorResult(SCEVType::PARAM, DivExpr);
+
+    LLVM_DEBUG(
+        dbgs() << "INVALID: unsigned division of non-constant expressions");
+    return ValidatorResult(SCEVType::INVALID);
+  }
+
+  ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
+    if (!PollyAllowUnsignedOperations)
+      return ValidatorResult(SCEVType::INVALID);
+
+    auto *Dividend = Expr->getLHS();
+    auto *Divisor = Expr->getRHS();
+    return visitDivision(Dividend, Divisor, Expr);
+  }
+
+  ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
+    assert(SDiv->getOpcode() == Instruction::SDiv &&
+           "Assumed SDiv instruction!");
+
+    auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
+    auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
+    return visitDivision(Dividend, Divisor, Expr, SDiv);
+  }
+
+  ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
+    assert(SRem->getOpcode() == Instruction::SRem &&
+           "Assumed SRem instruction!");
+
+    auto *Divisor = SRem->getOperand(1);
+    auto *CI = dyn_cast<ConstantInt>(Divisor);
+    if (!CI || CI->isZeroValue())
+      return visitGenericInst(SRem, S);
+
+    auto *Dividend = SRem->getOperand(0);
+    auto *DividendSCEV = SE.getSCEV(Dividend);
+    return visit(DividendSCEV);
+  }
+
+  ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
+    Value *V = Expr->getValue();
+
+    if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
+      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    if (isa<UndefValue>(V)) {
+      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
+      return ValidatorResult(SCEVType::INVALID);
+    }
+
+    if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
+      switch (I->getOpcode()) {
+      case Instruction::IntToPtr:
+        return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
+      case Instruction::PtrToInt:
+        return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
+      case Instruction::Load:
+        return visitLoadInstruction(I, Expr);
+      case Instruction::SDiv:
+        return visitSDivInstruction(I, Expr);
+      case Instruction::SRem:
+        return visitSRemInstruction(I, Expr);
+      case Instruction::Call:
+        return visitCallInstruction(I, Expr);
+      default:
+        return visitGenericInst(I, Expr);
+      }
+    }
+
+    return ValidatorResult(SCEVType::PARAM, Expr);
+  }
+};
+
+class SCEVHasIVParams {
+  bool HasIVParams = false;
+
+public:
+  SCEVHasIVParams() {}
+
+  bool follow(const SCEV *S) {
+    const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
+    if (!Unknown)
+      return true;
+
+    CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
+
+    if (!Call)
+      return true;
+
+    if (isConstCall(Call)) {
+      HasIVParams = true;
+      return false;
+    }
+
+    return true;
+  }
+
+  bool isDone() { return HasIVParams; }
+  bool hasIVParams() { return HasIVParams; }
+};
+
+/// Check whether a SCEV refers to an SSA name defined inside a region.
+class SCEVInRegionDependences {
+  const Region *R;
+  Loop *Scope;
+  const InvariantLoadsSetTy &ILS;
+  bool AllowLoops;
+  bool HasInRegionDeps = false;
+
+public:
+  SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
+                          const InvariantLoadsSetTy &ILS)
+      : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
+
+  bool follow(const SCEV *S) {
+    if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
+      Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
+
+      CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
+
+      if (Call && isConstCall(Call))
+        return false;
+
+      if (Inst) {
+        // When we invariant load hoist a load, we first make sure that there
+        // can be no dependences created by it in the Scop region. So, we should
+        // not consider scalar dependences to `LoadInst`s that are invariant
+        // load hoisted.
+        //
+        // If this check is not present, then we create data dependences which
+        // are strictly not necessary by tracking the invariant load as a
+        // scalar.
+        LoadInst *LI = dyn_cast<LoadInst>(Inst);
+        if (LI && ILS.count(LI) > 0)
+          return false;
+      }
+
+      // Return true when Inst is defined inside the region R.
+      if (!Inst || !R->contains(Inst))
+        return true;
+
+      HasInRegionDeps = true;
+      return false;
+    }
+
+    if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+      if (AllowLoops)
+        return true;
+
+      auto *L = AddRec->getLoop();
+      if (R->contains(L) && !L->contains(Scope)) {
+        HasInRegionDeps = true;
+        return false;
+      }
+    }
+
+    return true;
+  }
+  bool isDone() { return false; }
+  bool hasDependences() { return HasInRegionDeps; }
+};
+
+namespace polly {
+/// Find all loops referenced in SCEVAddRecExprs.
+class SCEVFindLoops {
+  SetVector<const Loop *> &Loops;
+
+public:
+  SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
+
+  bool follow(const SCEV *S) {
+    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
+      Loops.insert(AddRec->getLoop());
+    return true;
+  }
+  bool isDone() { return false; }
+};
+
+void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
+  SCEVFindLoops FindLoops(Loops);
+  SCEVTraversal<SCEVFindLoops> ST(FindLoops);
+  ST.visitAll(Expr);
+}
+
+/// Find all values referenced in SCEVUnknowns.
+class SCEVFindValues {
+  ScalarEvolution &SE;
+  SetVector<Value *> &Values;
+
+public:
+  SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
+      : SE(SE), Values(Values) {}
+
+  bool follow(const SCEV *S) {
+    const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
+    if (!Unknown)
+      return true;
+
+    Values.insert(Unknown->getValue());
+    Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
+    if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
+                  Inst->getOpcode() != Instruction::SDiv))
+      return false;
+
+    auto *Dividend = SE.getSCEV(Inst->getOperand(1));
+    if (!isa<SCEVConstant>(Dividend))
+      return false;
+
+    auto *Divisor = SE.getSCEV(Inst->getOperand(0));
+    SCEVFindValues FindValues(SE, Values);
+    SCEVTraversal<SCEVFindValues> ST(FindValues);
+    ST.visitAll(Dividend);
+    ST.visitAll(Divisor);
+
+    return false;
+  }
+  bool isDone() { return false; }
+};
+
+void findValues(const SCEV *Expr, ScalarEvolution &SE,
+                SetVector<Value *> &Values) {
+  SCEVFindValues FindValues(SE, Values);
+  SCEVTraversal<SCEVFindValues> ST(FindValues);
+  ST.visitAll(Expr);
+}
+
+bool hasIVParams(const SCEV *Expr) {
+  SCEVHasIVParams HasIVParams;
+  SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
+  ST.visitAll(Expr);
+  return HasIVParams.hasIVParams();
+}
+
+bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
+                               llvm::Loop *Scope, bool AllowLoops,
+                               const InvariantLoadsSetTy &ILS) {
+  SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
+  SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
+  ST.visitAll(Expr);
+  return InRegionDeps.hasDependences();
+}
+
+bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
+                  ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
+  if (isa<SCEVCouldNotCompute>(Expr))
+    return false;
+
+  SCEVValidator Validator(R, Scope, SE, ILS);
+  LLVM_DEBUG({
+    dbgs() << "\n";
+    dbgs() << "Expr: " << *Expr << "\n";
+    dbgs() << "Region: " << R->getNameStr() << "\n";
+    dbgs() << " -> ";
+  });
+
+  ValidatorResult Result = Validator.visit(Expr);
+
+  LLVM_DEBUG({
+    if (Result.isValid())
+      dbgs() << "VALID\n";
+    dbgs() << "\n";
+  });
+
+  return Result.isValid();
+}
+
+static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
+                         ScalarEvolution &SE, ParameterSetTy &Params) {
+  auto *E = SE.getSCEV(V);
+  if (isa<SCEVCouldNotCompute>(E))
+    return false;
+
+  SCEVValidator Validator(R, Scope, SE, nullptr);
+  ValidatorResult Result = Validator.visit(E);
+  if (!Result.isValid())
+    return false;
+
+  auto ResultParams = Result.getParameters();
+  Params.insert(ResultParams.begin(), ResultParams.end());
+
+  return true;
+}
+
+bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
+                        ScalarEvolution &SE, ParameterSetTy &Params,
+                        bool OrExpr) {
+  if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
+    return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
+                              true) &&
+           isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
+  } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
+    auto Opcode = BinOp->getOpcode();
+    if (Opcode == Instruction::And || Opcode == Instruction::Or)
+      return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
+                                false) &&
+             isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
+                                false);
+    /* Fall through */
+  }
+
+  if (!OrExpr)
+    return false;
+
+  return isAffineExpr(V, R, Scope, SE, Params);
+}
+
+ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
+                                     const SCEV *Expr, ScalarEvolution &SE) {
+  if (isa<SCEVCouldNotCompute>(Expr))
+    return ParameterSetTy();
+
+  InvariantLoadsSetTy ILS;
+  SCEVValidator Validator(R, Scope, SE, &ILS);
+  ValidatorResult Result = Validator.visit(Expr);
+  assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
+
+  return Result.getParameters();
+}
+
+std::pair<const SCEVConstant *, const SCEV *>
+extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
+  auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
+
+  if (auto *Constant = dyn_cast<SCEVConstant>(S))
+    return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
+
+  auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
+  if (AddRec) {
+    auto *StartExpr = AddRec->getStart();
+    if (StartExpr->isZero()) {
+      auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
+      auto *LeftOverAddRec =
+          SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
+                           AddRec->getNoWrapFlags());
+      return std::make_pair(StepPair.first, LeftOverAddRec);
+    }
+    return std::make_pair(ConstPart, S);
+  }
+
+  if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
+    SmallVector<const SCEV *, 4> LeftOvers;
+    auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
+    auto *Factor = Op0Pair.first;
+    if (SE.isKnownNegative(Factor)) {
+      Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
+      LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
+    } else {
+      LeftOvers.push_back(Op0Pair.second);
+    }
+
+    for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
+      auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
+      // TODO: Use something smarter than equality here, e.g., gcd.
+      if (Factor == OpUPair.first)
+        LeftOvers.push_back(OpUPair.second);
+      else if (Factor == SE.getNegativeSCEV(OpUPair.first))
+        LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
+      else
+        return std::make_pair(ConstPart, S);
+    }
+
+    auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
+    return std::make_pair(Factor, NewAdd);
+  }
+
+  auto *Mul = dyn_cast<SCEVMulExpr>(S);
+  if (!Mul)
+    return std::make_pair(ConstPart, S);
+
+  SmallVector<const SCEV *, 4> LeftOvers;
+  for (auto *Op : Mul->operands())
+    if (isa<SCEVConstant>(Op))
+      ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
+    else
+      LeftOvers.push_back(Op);
+
+  return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
+}
+
+const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R,
+                                 ScalarEvolution &SE, LoopInfo &LI,
+                                 const DominatorTree &DT) {
+  if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
+    Value *V = Unknown->getValue();
+    auto *PHI = dyn_cast<PHINode>(V);
+    if (!PHI)
+      return Expr;
+
+    Value *Final = nullptr;
+
+    for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
+      BasicBlock *Incoming = PHI->getIncomingBlock(i);
+      if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming))
+        continue;
+      if (Final)
+        return Expr;
+      Final = PHI->getIncomingValue(i);
+    }
+
+    if (Final)
+      return SE.getSCEV(Final);
+  }
+  return Expr;
+}
+
+Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI,
+                              const DominatorTree &DT) {
+  Value *V = nullptr;
+  for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
+    BasicBlock *BB = PHI->getIncomingBlock(i);
+    if (!isErrorBlock(*BB, *R, LI, DT)) {
+      if (V)
+        return nullptr;
+      V = PHI->getIncomingValue(i);
+    }
+  }
+
+  return V;
+}
+} // namespace polly