diff utils/shuffle_select_fuzz_tester.py @ 171:66f3bfe93da9

git version 2c4ca6832fa6b306ee6a7010bfb80a3f2596f824
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 25 May 2020 11:07:02 +0900
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/utils/shuffle_select_fuzz_tester.py	Mon May 25 11:07:02 2020 +0900
@@ -0,0 +1,405 @@
+#!/usr/bin/env python
+
+"""A shuffle-select vector fuzz tester.
+
+This is a python program to fuzz test the LLVM shufflevector and select
+instructions. It generates a function with a random sequnece of shufflevectors
+while optionally attaching it with a select instruction (regular or zero merge),
+maintaining the element mapping accumulated across the function. It then
+generates a main function which calls it with a different value in each element
+and checks that the result matches the expected mapping.
+
+Take the output IR printed to stdout, compile it to an executable using whatever
+set of transforms you want to test, and run the program. If it crashes, it found
+a bug (an error message with the expected and actual result is printed).
+"""
+from __future__ import print_function
+
+import random
+import uuid
+import argparse
+
+# Possibility of one undef index in generated mask for shufflevector instruction
+SHUF_UNDEF_POS = 0.15
+
+# Possibility of one undef index in generated mask for select instruction
+SEL_UNDEF_POS = 0.15
+
+# Possibility of adding a select instruction to the result of a shufflevector
+ADD_SEL_POS = 0.4
+
+# If we are adding a select instruction, this is the possibility of a
+# merge-select instruction (1 - MERGE_SEL_POS = possibility of zero-merge-select
+# instruction.
+MERGE_SEL_POS = 0.5
+
+
+test_template = r'''
+define internal fastcc {ty} @test({inputs}) noinline nounwind {{
+entry:
+{instructions}
+  ret {ty} {last_name}
+}}
+'''
+
+error_template = r'''@error.{lane} = private unnamed_addr global [64 x i8] c"FAIL: lane {lane}, expected {exp}, found %d\0A{padding}"'''
+
+main_template = r'''
+define i32 @main() {{
+entry:
+  ; Create a scratch space to print error messages.
+  %str = alloca [64 x i8]
+  %str.ptr = getelementptr inbounds [64 x i8], [64 x i8]* %str, i32 0, i32 0
+
+  ; Build the input vector and call the test function.
+  %v = call fastcc {ty} @test({inputs})
+  br label %test.0
+
+  {check_die}
+}}
+
+declare i32 @strlen(i8*)
+declare i32 @write(i32, i8*, i32)
+declare i32 @sprintf(i8*, i8*, ...)
+declare void @llvm.trap() noreturn nounwind
+'''
+
+check_template = r'''
+test.{lane}:
+  %v.{lane} = extractelement {ty} %v, i32 {lane}
+  %cmp.{lane} = {i_f}cmp {ordered}ne {scalar_ty} %v.{lane}, {exp}
+  br i1 %cmp.{lane}, label %die.{lane}, label %test.{n_lane}
+'''
+
+undef_check_template = r'''
+test.{lane}:
+; Skip this lane, its value is undef.
+  br label %test.{n_lane}
+'''
+
+die_template = r'''
+die.{lane}:
+; Capture the actual value and print an error message.
+  call i32 (i8*, i8*, ...) @sprintf(i8* %str.ptr, i8* getelementptr inbounds ([64 x i8], [64 x i8]* @error.{lane}, i32 0, i32 0), {scalar_ty} %v.{lane})
+  %length.{lane} = call i32 @strlen(i8* %str.ptr)
+  call i32 @write(i32 2, i8* %str.ptr, i32 %length.{lane})
+  call void @llvm.trap()
+  unreachable
+'''
+
+class Type:
+  def __init__(self, is_float, elt_width, elt_num):
+    self.is_float = is_float        # Boolean
+    self.elt_width = elt_width      # Integer
+    self.elt_num = elt_num          # Integer
+
+  def dump(self):
+    if self.is_float:
+      str_elt = 'float' if self.elt_width == 32 else 'double'
+    else:
+      str_elt = 'i' + str(self.elt_width)
+
+    if self.elt_num == 1:
+      return str_elt
+    else:
+      return '<' + str(self.elt_num) + ' x ' + str_elt + '>'
+
+  def get_scalar_type(self):
+    return Type(self.is_float, self.elt_width, 1)
+
+
+
+# Class to represent any value (variable) that can be used.
+class Value:
+  def __init__(self, name, ty, value = None):
+    self.ty = ty                  # Type
+    self.name = name              # String
+    self.value = value            # list of integers or floating points
+
+
+# Class to represent an IR instruction (shuffle/select).
+class Instruction(Value):
+  def __init__(self, name, ty, op0, op1, mask):
+    Value.__init__(self, name, ty)
+    self.op0 = op0                # Value
+    self.op1 = op1                # Value
+    self.mask = mask              # list of integers
+
+  def dump(self): pass
+
+  def calc_value(self): pass
+
+
+# Class to represent an IR shuffle instruction
+class ShufInstr(Instruction):
+
+  shuf_template = '  {name} = shufflevector {ty} {op0}, {ty} {op1}, <{num} x i32> {mask}\n'
+
+  def __init__(self, name, ty, op0, op1, mask):
+    Instruction.__init__(self, '%shuf' + name, ty, op0, op1, mask)
+
+  def dump(self):
+    str_mask = [('i32 ' + str(idx)) if idx != -1 else 'i32 undef' for idx in self.mask]
+    str_mask = '<' + (', ').join(str_mask) + '>'
+    return self.shuf_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
+                               op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)
+
+  def calc_value(self):
+    if self.value != None:
+      print('Trying to calculate the value of a shuffle instruction twice')
+      exit(1)
+
+    result = []
+    for i in range(len(self.mask)):
+      index = self.mask[i]
+
+      if index < self.ty.elt_num and index >= 0:
+        result.append(self.op0.value[index])
+      elif index >= self.ty.elt_num:
+        index = index % self.ty.elt_num
+        result.append(self.op1.value[index])
+      else: # -1 => undef
+        result.append(-1)
+
+    self.value = result
+
+
+# Class to represent an IR select instruction
+class SelectInstr(Instruction):
+
+  sel_template = '  {name} = select <{num} x i1> {mask}, {ty} {op0}, {ty} {op1}\n'
+
+  def __init__(self, name, ty, op0, op1, mask):
+    Instruction.__init__(self, '%sel' + name, ty, op0, op1, mask)
+
+  def dump(self):
+    str_mask = [('i1 ' + str(idx)) if idx != -1 else 'i1 undef' for idx in self.mask]
+    str_mask = '<' + (', ').join(str_mask) + '>'
+    return self.sel_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
+                               op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)
+
+  def calc_value(self):
+    if self.value != None:
+      print('Trying to calculate the value of a select instruction twice')
+      exit(1)
+
+    result = []
+    for i in range(len(self.mask)):
+      index = self.mask[i]
+
+      if index == 1:
+        result.append(self.op0.value[i])
+      elif index == 0:
+        result.append(self.op1.value[i])
+      else: # -1 => undef
+        result.append(-1)
+
+    self.value = result
+
+
+# Returns a list of Values initialized with actual numbers according to the
+# provided type
+def gen_inputs(ty, num):
+  inputs = []
+  for i in range(num):
+    inp = []
+    for j in range(ty.elt_num):
+      if ty.is_float:
+        inp.append(float(i*ty.elt_num + j))
+      else:
+        inp.append((i*ty.elt_num + j) % (1 << ty.elt_width))
+    inputs.append(Value('%inp' + str(i), ty, inp))
+
+  return inputs
+
+
+# Returns a random vector type to be tested
+# In case one of the dimensions (scalar type/number of elements) is provided,
+# fill the blank dimension and return appropriate Type object.
+def get_random_type(ty, num_elts):
+  if ty != None:
+    if ty == 'i8':
+      is_float = False
+      width = 8
+    elif ty == 'i16':
+      is_float = False
+      width = 16
+    elif ty == 'i32':
+      is_float = False
+      width = 32
+    elif ty == 'i64':
+      is_float = False
+      width = 64
+    elif ty == 'f32':
+      is_float = True
+      width = 32
+    elif ty == 'f64':
+      is_float = True
+      width = 64
+
+  int_elt_widths = [8, 16, 32, 64]
+  float_elt_widths = [32, 64]
+
+  if num_elts == None:
+    num_elts = random.choice(range(2, 65))
+
+  if ty == None:
+    # 1 for integer type, 0 for floating-point
+    if random.randint(0,1):
+      is_float = False
+      width = random.choice(int_elt_widths)
+    else:
+      is_float = True
+      width = random.choice(float_elt_widths)
+
+  return Type(is_float, width, num_elts)
+
+
+# Generate mask for shufflevector IR instruction, with SHUF_UNDEF_POS possibility
+# of one undef index.
+def gen_shuf_mask(ty):
+  mask = []
+  for i in range(ty.elt_num):
+    if SHUF_UNDEF_POS/ty.elt_num > random.random():
+      mask.append(-1)
+    else:
+      mask.append(random.randint(0, ty.elt_num*2 - 1))
+
+  return mask
+
+
+# Generate mask for select IR instruction, with SEL_UNDEF_POS possibility
+# of one undef index.
+def gen_sel_mask(ty):
+  mask = []
+  for i in range(ty.elt_num):
+    if SEL_UNDEF_POS/ty.elt_num > random.random():
+      mask.append(-1)
+    else:
+      mask.append(random.randint(0, 1))
+
+  return mask
+
+# Generate shuffle instructions with optional select instruction after.
+def gen_insts(inputs, ty):
+  int_zero_init = Value('zeroinitializer', ty, [0]*ty.elt_num)
+  float_zero_init = Value('zeroinitializer', ty, [0.0]*ty.elt_num)
+
+  insts = []
+  name_idx = 0
+  while len(inputs) > 1:
+    # Choose 2 available Values - remove them from inputs list.
+    [idx0, idx1] = sorted(random.sample(range(len(inputs)), 2))
+    op0 = inputs[idx0]
+    op1 = inputs[idx1]
+
+    # Create the shuffle instruction.
+    shuf_mask = gen_shuf_mask(ty)
+    shuf_inst = ShufInstr(str(name_idx), ty, op0, op1, shuf_mask)
+    shuf_inst.calc_value()
+
+    # Add the new shuffle instruction to the list of instructions.
+    insts.append(shuf_inst)
+
+    # Optionally, add select instruction with the result of the previous shuffle.
+    if random.random() < ADD_SEL_POS:
+      #  Either blending with a random Value or with an all-zero vector.
+      if random.random() < MERGE_SEL_POS:
+        op2 = random.choice(inputs)
+      else:
+        op2 = float_zero_init if ty.is_float else int_zero_init
+
+      select_mask = gen_sel_mask(ty)
+      select_inst = SelectInstr(str(name_idx), ty, shuf_inst, op2, select_mask)
+      select_inst.calc_value()
+
+      # Add the select instructions to the list of instructions and to the available Values.
+      insts.append(select_inst)
+      inputs.append(select_inst)
+    else:
+      # If the shuffle instruction is not followed by select, add it to the available Values.
+      inputs.append(shuf_inst)
+
+    del inputs[idx1]
+    del inputs[idx0]
+    name_idx += 1
+
+  return insts
+
+
+def main():
+  parser = argparse.ArgumentParser(description=__doc__)
+  parser.add_argument('--seed', default=str(uuid.uuid4()),
+                      help='A string used to seed the RNG')
+  parser.add_argument('--max-num-inputs', type=int, default=20,
+          help='Specify the maximum number of vector inputs for the test. (default: 20)')
+  parser.add_argument('--min-num-inputs', type=int, default=10,
+          help='Specify the minimum number of vector inputs for the test. (default: 10)')
+  parser.add_argument('--type', default=None,
+                      help='''
+                          Choose specific type to be tested.
+                          i8, i16, i32, i64, f32 or f64.
+                          (default: random)''')
+  parser.add_argument('--num-elts', default=None, type=int,
+                      help='Choose specific number of vector elements to be tested. (default: random)')
+  args = parser.parse_args()
+
+  print('; The seed used for this test is ' + args.seed)
+
+  assert args.min_num_inputs < args.max_num_inputs , "Minimum value greater than maximum."
+  assert args.type in [None, 'i8', 'i16', 'i32', 'i64', 'f32', 'f64'], "Illegal type."
+  assert args.num_elts == None or args.num_elts > 0, "num_elts must be a positive integer."
+
+  random.seed(args.seed)
+  ty = get_random_type(args.type, args.num_elts)
+  inputs = gen_inputs(ty, random.randint(args.min_num_inputs, args.max_num_inputs))
+  inputs_str = (', ').join([inp.ty.dump() + ' ' + inp.name for inp in inputs])
+  inputs_values = [inp.value for inp in inputs]
+
+  insts = gen_insts(inputs, ty)
+
+  assert len(inputs) == 1, "Only one value should be left after generating phase"
+  res = inputs[0]
+
+  # print the actual test function by dumping the generated instructions.
+  insts_str = ''.join([inst.dump() for inst in insts])
+  print(test_template.format(ty = ty.dump(), inputs = inputs_str,
+                             instructions = insts_str, last_name = res.name))
+
+  # Print the error message templates as global strings
+  for i in range(len(res.value)):
+    pad = ''.join(['\\00']*(31 - len(str(i)) - len(str(res.value[i]))))
+    print(error_template.format(lane = str(i), exp = str(res.value[i]),
+                                padding = pad))
+
+  # Prepare the runtime checks and failure handlers.
+  scalar_ty = ty.get_scalar_type()
+  check_die = ''
+  i_f = 'f' if ty.is_float else 'i'
+  ordered = 'o' if ty.is_float else ''
+  for i in range(len(res.value)):
+    if res.value[i] != -1:
+      # Emit runtime check for each non-undef expected value.
+      check_die += check_template.format(lane = str(i), n_lane = str(i+1),
+                             ty = ty.dump(), i_f = i_f, scalar_ty = scalar_ty.dump(),
+                             exp = str(res.value[i]), ordered = ordered)
+      # Emit failure handler for each runtime check with proper error message
+      check_die += die_template.format(lane = str(i), scalar_ty = scalar_ty.dump())
+    else:
+      # Ignore lanes with undef result
+      check_die += undef_check_template.format(lane = str(i), n_lane = str(i+1))
+
+  check_die += '\ntest.' + str(len(res.value)) + ':\n'
+  check_die += '  ret i32 0'
+
+  # Prepare the input values passed to the test function.
+  inputs_values = [', '.join([scalar_ty.dump() + ' ' + str(i) for i in inp]) for inp in inputs_values]
+  inputs = ', '.join([ty.dump() + ' <' + inp + '>' for inp in inputs_values])
+
+  print(main_template.format(ty = ty.dump(), inputs = inputs, check_die = check_die))
+
+
+if __name__ == '__main__':
+  main()
+
+