Mercurial > hg > CbC > CbC_llvm
diff lib/Target/Hexagon/HexagonBitSimplify.cpp @ 100:7d135dc70f03 LLVM 3.9
LLVM 3.9
author | Miyagi Mitsuki <e135756@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Jan 2016 22:53:40 +0900 |
parents | |
children | 1172e4bd9c6f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/Hexagon/HexagonBitSimplify.cpp Tue Jan 26 22:53:40 2016 +0900 @@ -0,0 +1,2795 @@ +//===--- HexagonBitSimplify.cpp -------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hexbit" + +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "HexagonTargetMachine.h" +#include "HexagonBitTracker.h" + +using namespace llvm; + +namespace llvm { + void initializeHexagonBitSimplifyPass(PassRegistry& Registry); + FunctionPass *createHexagonBitSimplify(); +} + +namespace { + // Set of virtual registers, based on BitVector. + struct RegisterSet : private BitVector { + RegisterSet() : BitVector() {} + explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} + RegisterSet(const RegisterSet &RS) : BitVector(RS) {} + + using BitVector::clear; + using BitVector::count; + + unsigned find_first() const { + int First = BitVector::find_first(); + if (First < 0) + return 0; + return x2v(First); + } + + unsigned find_next(unsigned Prev) const { + int Next = BitVector::find_next(v2x(Prev)); + if (Next < 0) + return 0; + return x2v(Next); + } + + RegisterSet &insert(unsigned R) { + unsigned Idx = v2x(R); + ensure(Idx); + return static_cast<RegisterSet&>(BitVector::set(Idx)); + } + RegisterSet &remove(unsigned R) { + unsigned Idx = v2x(R); + if (Idx >= size()) + return *this; + return static_cast<RegisterSet&>(BitVector::reset(Idx)); + } + + RegisterSet &insert(const RegisterSet &Rs) { + return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); + } + RegisterSet &remove(const RegisterSet &Rs) { + return static_cast<RegisterSet&>(BitVector::reset(Rs)); + } + + reference operator[](unsigned R) { + unsigned Idx = v2x(R); + ensure(Idx); + return BitVector::operator[](Idx); + } + bool operator[](unsigned R) const { + unsigned Idx = v2x(R); + assert(Idx < size()); + return BitVector::operator[](Idx); + } + bool has(unsigned R) const { + unsigned Idx = v2x(R); + if (Idx >= size()) + return false; + return BitVector::test(Idx); + } + + bool empty() const { + return !BitVector::any(); + } + bool includes(const RegisterSet &Rs) const { + // A.BitVector::test(B) <=> A-B != {} + return !Rs.BitVector::test(*this); + } + bool intersects(const RegisterSet &Rs) const { + return BitVector::anyCommon(Rs); + } + + private: + void ensure(unsigned Idx) { + if (size() <= Idx) + resize(std::max(Idx+1, 32U)); + } + static inline unsigned v2x(unsigned v) { + return TargetRegisterInfo::virtReg2Index(v); + } + static inline unsigned x2v(unsigned x) { + return TargetRegisterInfo::index2VirtReg(x); + } + }; + + + struct PrintRegSet { + PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) + : RS(S), TRI(RI) {} + friend raw_ostream &operator<< (raw_ostream &OS, + const PrintRegSet &P); + private: + const RegisterSet &RS; + const TargetRegisterInfo *TRI; + }; + + raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) + LLVM_ATTRIBUTE_UNUSED; + raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { + OS << '{'; + for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) + OS << ' ' << PrintReg(R, P.TRI); + OS << " }"; + return OS; + } +} + + +namespace { + class Transformation; + + class HexagonBitSimplify : public MachineFunctionPass { + public: + static char ID; + HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) { + initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry()); + } + virtual const char *getPassName() const { + return "Hexagon bit simplification"; + } + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + virtual bool runOnMachineFunction(MachineFunction &MF); + + static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); + static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); + static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, + const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); + static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B, + uint16_t W); + static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, + uint16_t W); + static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, + uint16_t W, uint64_t &U); + static bool replaceReg(unsigned OldR, unsigned NewR, + MachineRegisterInfo &MRI); + static bool getSubregMask(const BitTracker::RegisterRef &RR, + unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); + static bool replaceRegWithSub(unsigned OldR, unsigned NewR, + unsigned NewSR, MachineRegisterInfo &MRI); + static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, + unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); + static bool parseRegSequence(const MachineInstr &I, + BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH); + + static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, + uint16_t Begin); + static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, + uint16_t Begin, const HexagonInstrInfo &HII); + + static const TargetRegisterClass *getFinalVRegClass( + const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); + static bool isTransparentCopy(const BitTracker::RegisterRef &RD, + const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); + + private: + MachineDominatorTree *MDT; + + bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); + }; + + char HexagonBitSimplify::ID = 0; + typedef HexagonBitSimplify HBS; + + + // The purpose of this class is to provide a common facility to traverse + // the function top-down or bottom-up via the dominator tree, and keep + // track of the available registers. + class Transformation { + public: + bool TopDown; + Transformation(bool TD) : TopDown(TD) {} + virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; + virtual ~Transformation() {} + }; +} + +INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit", + "Hexagon bit simplification", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit", + "Hexagon bit simplification", false, false) + + +bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, + RegisterSet &AVs) { + MachineDomTreeNode *N = MDT->getNode(&B); + typedef GraphTraits<MachineDomTreeNode*> GTN; + bool Changed = false; + + if (T.TopDown) + Changed = T.processBlock(B, AVs); + + RegisterSet Defs; + for (auto &I : B) + getInstrDefs(I, Defs); + RegisterSet NewAVs = AVs; + NewAVs.insert(Defs); + + for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) { + MachineBasicBlock *SB = (*I)->getBlock(); + Changed |= visitBlock(*SB, T, NewAVs); + } + if (!T.TopDown) + Changed |= T.processBlock(B, AVs); + + return Changed; +} + +// +// Utility functions: +// +void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, + RegisterSet &Defs) { + for (auto &Op : MI.operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + Defs.insert(R); + } +} + +void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, + RegisterSet &Uses) { + for (auto &Op : MI.operands()) { + if (!Op.isReg() || !Op.isUse()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + Uses.insert(R); + } +} + +// Check if all the bits in range [B, E) in both cells are equal. +bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, + uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, + uint16_t W) { + for (uint16_t i = 0; i < W; ++i) { + // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. + if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) + return false; + // Same for RC2[i]. + if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) + return false; + if (RC1[B1+i] != RC2[B2+i]) + return false; + } + return true; +} + + +bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC, + uint16_t B, uint16_t W) { + assert(B < RC.width() && B+W <= RC.width()); + for (uint16_t i = B; i < B+W; ++i) + if (!RC[i].num()) + return false; + return true; +} + + +bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, + uint16_t B, uint16_t W) { + assert(B < RC.width() && B+W <= RC.width()); + for (uint16_t i = B; i < B+W; ++i) + if (!RC[i].is(0)) + return false; + return true; +} + + +bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, + uint16_t B, uint16_t W, uint64_t &U) { + assert(B < RC.width() && B+W <= RC.width()); + int64_t T = 0; + for (uint16_t i = B+W; i > B; --i) { + const BitTracker::BitValue &BV = RC[i-1]; + T <<= 1; + if (BV.is(1)) + T |= 1; + else if (!BV.is(0)) + return false; + } + U = T; + return true; +} + + +bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, + MachineRegisterInfo &MRI) { + if (!TargetRegisterInfo::isVirtualRegister(OldR) || + !TargetRegisterInfo::isVirtualRegister(NewR)) + return false; + auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); + decltype(End) NextI; + for (auto I = Begin; I != End; I = NextI) { + NextI = std::next(I); + I->setReg(NewR); + } + return Begin != End; +} + + +bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, + unsigned NewSR, MachineRegisterInfo &MRI) { + if (!TargetRegisterInfo::isVirtualRegister(OldR) || + !TargetRegisterInfo::isVirtualRegister(NewR)) + return false; + auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); + decltype(End) NextI; + for (auto I = Begin; I != End; I = NextI) { + NextI = std::next(I); + I->setReg(NewR); + I->setSubReg(NewSR); + } + return Begin != End; +} + + +bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, + unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { + if (!TargetRegisterInfo::isVirtualRegister(OldR) || + !TargetRegisterInfo::isVirtualRegister(NewR)) + return false; + auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); + decltype(End) NextI; + for (auto I = Begin; I != End; I = NextI) { + NextI = std::next(I); + if (I->getSubReg() != OldSR) + continue; + I->setReg(NewR); + I->setSubReg(NewSR); + } + return Begin != End; +} + + +// For a register ref (pair Reg:Sub), set Begin to the position of the LSB +// of Sub in Reg, and set Width to the size of Sub in bits. Return true, +// if this succeeded, otherwise return false. +bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, + unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { + const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); + if (RC == &Hexagon::IntRegsRegClass) { + assert(RR.Sub == 0); + Begin = 0; + Width = 32; + return true; + } + if (RC == &Hexagon::DoubleRegsRegClass) { + if (RR.Sub == 0) { + Begin = 0; + Width = 64; + return true; + } + assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg); + Width = 32; + Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32); + return true; + } + return false; +} + + +// For a REG_SEQUENCE, set SL to the low subregister and SH to the high +// subregister. +bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, + BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) { + assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); + unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); + assert(Sub1 != Sub2); + if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) { + SL = I.getOperand(1); + SH = I.getOperand(3); + return true; + } + if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) { + SH = I.getOperand(1); + SL = I.getOperand(3); + return true; + } + return false; +} + + +// All stores (except 64-bit stores) take a 32-bit register as the source +// of the value to be stored. If the instruction stores into a location +// that is shorter than 32 bits, some bits of the source register are not +// used. For each store instruction, calculate the set of used bits in +// the source register, and set appropriate bits in Bits. Return true if +// the bits are calculated, false otherwise. +bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, + uint16_t Begin) { + using namespace Hexagon; + + switch (Opc) { + // Store byte + case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 + case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new + case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 + case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 + case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 + case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 + case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new + case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new + case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new + case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new + case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 + case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new + case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 + case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 + case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 + case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 + case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new + case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new + case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new + case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new + case S4_storerb_ap: // memb(Re32=#U6)=Rt32 + case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new + case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 + case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new + case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 + case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new + case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 + case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new + case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 + case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new + case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 + case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new + case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 + case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new + case S2_storerbgp: // memb(gp+#u16:0)=Rt32 + case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new + case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 + case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 + case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 + case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 + case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new + case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new + case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new + case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new + Bits.set(Begin, Begin+8); + return true; + + // Store low half + case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 + case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new + case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 + case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 + case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 + case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 + case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new + case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new + case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new + case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new + case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 + case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new + case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 + case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 + case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 + case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 + case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new + case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new + case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new + case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new + case S4_storerh_ap: // memh(Re32=#U6)=Rt32 + case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new + case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 + case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new + case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 + case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new + case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 + case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new + case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 + case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new + case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 + case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new + case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 + case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 + case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new + case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new + case S2_storerhgp: // memh(gp+#u16:1)=Rt32 + case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new + case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 + case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 + case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 + case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 + case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new + case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new + case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new + case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new + Bits.set(Begin, Begin+16); + return true; + + // Store high half + case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 + case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 + case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 + case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 + case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 + case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 + case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 + case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 + case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 + case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 + case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 + case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 + case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 + case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 + case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 + case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 + case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 + case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 + case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 + case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 + case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 + case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 + case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 + case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 + case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 + case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 + Bits.set(Begin+16, Begin+32); + return true; + } + + return false; +} + + +// For an instruction with opcode Opc, calculate the set of bits that it +// uses in a register in operand OpN. This only calculates the set of used +// bits for cases where it does not depend on any operands (as is the case +// in shifts, for example). For concrete instructions from a program, the +// operand may be a subregister of a larger register, while Bits would +// correspond to the larger register in its entirety. Because of that, +// the parameter Begin can be used to indicate which bit of Bits should be +// considered the LSB of of the operand. +bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, + BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { + using namespace Hexagon; + + const MCInstrDesc &D = HII.get(Opc); + if (D.mayStore()) { + if (OpN == D.getNumOperands()-1) + return getUsedBitsInStore(Opc, Bits, Begin); + return false; + } + + switch (Opc) { + // One register source. Used bits: R1[0-7]. + case A2_sxtb: + case A2_zxtb: + case A4_cmpbeqi: + case A4_cmpbgti: + case A4_cmpbgtui: + if (OpN == 1) { + Bits.set(Begin, Begin+8); + return true; + } + break; + + // One register source. Used bits: R1[0-15]. + case A2_aslh: + case A2_sxth: + case A2_zxth: + case A4_cmpheqi: + case A4_cmphgti: + case A4_cmphgtui: + if (OpN == 1) { + Bits.set(Begin, Begin+16); + return true; + } + break; + + // One register source. Used bits: R1[16-31]. + case A2_asrh: + if (OpN == 1) { + Bits.set(Begin+16, Begin+32); + return true; + } + break; + + // Two register sources. Used bits: R1[0-7], R2[0-7]. + case A4_cmpbeq: + case A4_cmpbgt: + case A4_cmpbgtu: + if (OpN == 1) { + Bits.set(Begin, Begin+8); + return true; + } + break; + + // Two register sources. Used bits: R1[0-15], R2[0-15]. + case A4_cmpheq: + case A4_cmphgt: + case A4_cmphgtu: + case A2_addh_h16_ll: + case A2_addh_h16_sat_ll: + case A2_addh_l16_ll: + case A2_addh_l16_sat_ll: + case A2_combine_ll: + case A2_subh_h16_ll: + case A2_subh_h16_sat_ll: + case A2_subh_l16_ll: + case A2_subh_l16_sat_ll: + case M2_mpy_acc_ll_s0: + case M2_mpy_acc_ll_s1: + case M2_mpy_acc_sat_ll_s0: + case M2_mpy_acc_sat_ll_s1: + case M2_mpy_ll_s0: + case M2_mpy_ll_s1: + case M2_mpy_nac_ll_s0: + case M2_mpy_nac_ll_s1: + case M2_mpy_nac_sat_ll_s0: + case M2_mpy_nac_sat_ll_s1: + case M2_mpy_rnd_ll_s0: + case M2_mpy_rnd_ll_s1: + case M2_mpy_sat_ll_s0: + case M2_mpy_sat_ll_s1: + case M2_mpy_sat_rnd_ll_s0: + case M2_mpy_sat_rnd_ll_s1: + case M2_mpyd_acc_ll_s0: + case M2_mpyd_acc_ll_s1: + case M2_mpyd_ll_s0: + case M2_mpyd_ll_s1: + case M2_mpyd_nac_ll_s0: + case M2_mpyd_nac_ll_s1: + case M2_mpyd_rnd_ll_s0: + case M2_mpyd_rnd_ll_s1: + case M2_mpyu_acc_ll_s0: + case M2_mpyu_acc_ll_s1: + case M2_mpyu_ll_s0: + case M2_mpyu_ll_s1: + case M2_mpyu_nac_ll_s0: + case M2_mpyu_nac_ll_s1: + case M2_mpyud_acc_ll_s0: + case M2_mpyud_acc_ll_s1: + case M2_mpyud_ll_s0: + case M2_mpyud_ll_s1: + case M2_mpyud_nac_ll_s0: + case M2_mpyud_nac_ll_s1: + if (OpN == 1 || OpN == 2) { + Bits.set(Begin, Begin+16); + return true; + } + break; + + // Two register sources. Used bits: R1[0-15], R2[16-31]. + case A2_addh_h16_lh: + case A2_addh_h16_sat_lh: + case A2_combine_lh: + case A2_subh_h16_lh: + case A2_subh_h16_sat_lh: + case M2_mpy_acc_lh_s0: + case M2_mpy_acc_lh_s1: + case M2_mpy_acc_sat_lh_s0: + case M2_mpy_acc_sat_lh_s1: + case M2_mpy_lh_s0: + case M2_mpy_lh_s1: + case M2_mpy_nac_lh_s0: + case M2_mpy_nac_lh_s1: + case M2_mpy_nac_sat_lh_s0: + case M2_mpy_nac_sat_lh_s1: + case M2_mpy_rnd_lh_s0: + case M2_mpy_rnd_lh_s1: + case M2_mpy_sat_lh_s0: + case M2_mpy_sat_lh_s1: + case M2_mpy_sat_rnd_lh_s0: + case M2_mpy_sat_rnd_lh_s1: + case M2_mpyd_acc_lh_s0: + case M2_mpyd_acc_lh_s1: + case M2_mpyd_lh_s0: + case M2_mpyd_lh_s1: + case M2_mpyd_nac_lh_s0: + case M2_mpyd_nac_lh_s1: + case M2_mpyd_rnd_lh_s0: + case M2_mpyd_rnd_lh_s1: + case M2_mpyu_acc_lh_s0: + case M2_mpyu_acc_lh_s1: + case M2_mpyu_lh_s0: + case M2_mpyu_lh_s1: + case M2_mpyu_nac_lh_s0: + case M2_mpyu_nac_lh_s1: + case M2_mpyud_acc_lh_s0: + case M2_mpyud_acc_lh_s1: + case M2_mpyud_lh_s0: + case M2_mpyud_lh_s1: + case M2_mpyud_nac_lh_s0: + case M2_mpyud_nac_lh_s1: + // These four are actually LH. + case A2_addh_l16_hl: + case A2_addh_l16_sat_hl: + case A2_subh_l16_hl: + case A2_subh_l16_sat_hl: + if (OpN == 1) { + Bits.set(Begin, Begin+16); + return true; + } + if (OpN == 2) { + Bits.set(Begin+16, Begin+32); + return true; + } + break; + + // Two register sources, used bits: R1[16-31], R2[0-15]. + case A2_addh_h16_hl: + case A2_addh_h16_sat_hl: + case A2_combine_hl: + case A2_subh_h16_hl: + case A2_subh_h16_sat_hl: + case M2_mpy_acc_hl_s0: + case M2_mpy_acc_hl_s1: + case M2_mpy_acc_sat_hl_s0: + case M2_mpy_acc_sat_hl_s1: + case M2_mpy_hl_s0: + case M2_mpy_hl_s1: + case M2_mpy_nac_hl_s0: + case M2_mpy_nac_hl_s1: + case M2_mpy_nac_sat_hl_s0: + case M2_mpy_nac_sat_hl_s1: + case M2_mpy_rnd_hl_s0: + case M2_mpy_rnd_hl_s1: + case M2_mpy_sat_hl_s0: + case M2_mpy_sat_hl_s1: + case M2_mpy_sat_rnd_hl_s0: + case M2_mpy_sat_rnd_hl_s1: + case M2_mpyd_acc_hl_s0: + case M2_mpyd_acc_hl_s1: + case M2_mpyd_hl_s0: + case M2_mpyd_hl_s1: + case M2_mpyd_nac_hl_s0: + case M2_mpyd_nac_hl_s1: + case M2_mpyd_rnd_hl_s0: + case M2_mpyd_rnd_hl_s1: + case M2_mpyu_acc_hl_s0: + case M2_mpyu_acc_hl_s1: + case M2_mpyu_hl_s0: + case M2_mpyu_hl_s1: + case M2_mpyu_nac_hl_s0: + case M2_mpyu_nac_hl_s1: + case M2_mpyud_acc_hl_s0: + case M2_mpyud_acc_hl_s1: + case M2_mpyud_hl_s0: + case M2_mpyud_hl_s1: + case M2_mpyud_nac_hl_s0: + case M2_mpyud_nac_hl_s1: + if (OpN == 1) { + Bits.set(Begin+16, Begin+32); + return true; + } + if (OpN == 2) { + Bits.set(Begin, Begin+16); + return true; + } + break; + + // Two register sources, used bits: R1[16-31], R2[16-31]. + case A2_addh_h16_hh: + case A2_addh_h16_sat_hh: + case A2_combine_hh: + case A2_subh_h16_hh: + case A2_subh_h16_sat_hh: + case M2_mpy_acc_hh_s0: + case M2_mpy_acc_hh_s1: + case M2_mpy_acc_sat_hh_s0: + case M2_mpy_acc_sat_hh_s1: + case M2_mpy_hh_s0: + case M2_mpy_hh_s1: + case M2_mpy_nac_hh_s0: + case M2_mpy_nac_hh_s1: + case M2_mpy_nac_sat_hh_s0: + case M2_mpy_nac_sat_hh_s1: + case M2_mpy_rnd_hh_s0: + case M2_mpy_rnd_hh_s1: + case M2_mpy_sat_hh_s0: + case M2_mpy_sat_hh_s1: + case M2_mpy_sat_rnd_hh_s0: + case M2_mpy_sat_rnd_hh_s1: + case M2_mpyd_acc_hh_s0: + case M2_mpyd_acc_hh_s1: + case M2_mpyd_hh_s0: + case M2_mpyd_hh_s1: + case M2_mpyd_nac_hh_s0: + case M2_mpyd_nac_hh_s1: + case M2_mpyd_rnd_hh_s0: + case M2_mpyd_rnd_hh_s1: + case M2_mpyu_acc_hh_s0: + case M2_mpyu_acc_hh_s1: + case M2_mpyu_hh_s0: + case M2_mpyu_hh_s1: + case M2_mpyu_nac_hh_s0: + case M2_mpyu_nac_hh_s1: + case M2_mpyud_acc_hh_s0: + case M2_mpyud_acc_hh_s1: + case M2_mpyud_hh_s0: + case M2_mpyud_hh_s1: + case M2_mpyud_nac_hh_s0: + case M2_mpyud_nac_hh_s1: + if (OpN == 1 || OpN == 2) { + Bits.set(Begin+16, Begin+32); + return true; + } + break; + } + + return false; +} + + +// Calculate the register class that matches Reg:Sub. For example, if +// vreg1 is a double register, then vreg1:subreg_hireg would match "int" +// register class. +const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( + const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { + if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return nullptr; + auto *RC = MRI.getRegClass(RR.Reg); + if (RR.Sub == 0) + return RC; + + auto VerifySR = [] (unsigned Sub) -> void { + assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg); + }; + + switch (RC->getID()) { + case Hexagon::DoubleRegsRegClassID: + VerifySR(RR.Sub); + return &Hexagon::IntRegsRegClass; + case Hexagon::VecDblRegsRegClassID: + VerifySR(RR.Sub); + return &Hexagon::VectorRegsRegClass; + case Hexagon::VecDblRegs128BRegClassID: + VerifySR(RR.Sub); + return &Hexagon::VectorRegs128BRegClass; + } + return nullptr; +} + + +// Check if RD could be replaced with RS at any possible use of RD. +// For example a predicate register cannot be replaced with a integer +// register, but a 64-bit register with a subregister can be replaced +// with a 32-bit register. +bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, + const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { + if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || + !TargetRegisterInfo::isVirtualRegister(RS.Reg)) + return false; + // Return false if one (or both) classes are nullptr. + auto *DRC = getFinalVRegClass(RD, MRI); + if (!DRC) + return false; + + return DRC == getFinalVRegClass(RS, MRI); +} + + +// +// Dead code elimination +// +namespace { + class DeadCodeElimination { + public: + DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) + : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), + MDT(mdt), MRI(mf.getRegInfo()) {} + + bool run() { + return runOnNode(MDT.getRootNode()); + } + + private: + bool isDead(unsigned R) const; + bool runOnNode(MachineDomTreeNode *N); + + MachineFunction &MF; + const HexagonInstrInfo &HII; + MachineDominatorTree &MDT; + MachineRegisterInfo &MRI; + }; +} + + +bool DeadCodeElimination::isDead(unsigned R) const { + for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { + MachineInstr *UseI = I->getParent(); + if (UseI->isDebugValue()) + continue; + if (UseI->isPHI()) { + assert(!UseI->getOperand(0).getSubReg()); + unsigned DR = UseI->getOperand(0).getReg(); + if (DR == R) + continue; + } + return false; + } + return true; +} + + +bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { + bool Changed = false; + typedef GraphTraits<MachineDomTreeNode*> GTN; + for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) + Changed |= runOnNode(*I); + + MachineBasicBlock *B = N->getBlock(); + std::vector<MachineInstr*> Instrs; + for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) + Instrs.push_back(&*I); + + for (auto MI : Instrs) { + unsigned Opc = MI->getOpcode(); + // Do not touch lifetime markers. This is why the target-independent DCE + // cannot be used. + if (Opc == TargetOpcode::LIFETIME_START || + Opc == TargetOpcode::LIFETIME_END) + continue; + bool Store = false; + if (MI->isInlineAsm()) + continue; + // Delete PHIs if possible. + if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) + continue; + + bool AllDead = true; + SmallVector<unsigned,2> Regs; + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { + AllDead = false; + break; + } + Regs.push_back(R); + } + if (!AllDead) + continue; + + B->erase(MI); + for (unsigned i = 0, n = Regs.size(); i != n; ++i) + MRI.markUsesInDebugValueAsUndef(Regs[i]); + Changed = true; + } + + return Changed; +} + + +// +// Eliminate redundant instructions +// +// This transformation will identify instructions where the output register +// is the same as one of its input registers. This only works on instructions +// that define a single register (unlike post-increment loads, for example). +// The equality check is actually more detailed: the code calculates which +// bits of the output are used, and only compares these bits with the input +// registers. +// If the output matches an input, the instruction is replaced with COPY. +// The copies will be removed by another transformation. +namespace { + class RedundantInstrElimination : public Transformation { + public: + RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, + MachineRegisterInfo &mri) + : Transformation(true), HII(hii), MRI(mri), BT(bt) {} + bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; + private: + bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, + unsigned &LostB, unsigned &LostE); + bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, + unsigned &LostB, unsigned &LostE); + bool computeUsedBits(unsigned Reg, BitVector &Bits); + bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, + uint16_t Begin); + bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); + + const HexagonInstrInfo &HII; + MachineRegisterInfo &MRI; + BitTracker &BT; + }; +} + + +// Check if the instruction is a lossy shift left, where the input being +// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range +// of bit indices that are lost. +bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, + unsigned OpN, unsigned &LostB, unsigned &LostE) { + using namespace Hexagon; + unsigned Opc = MI.getOpcode(); + unsigned ImN, RegN, Width; + switch (Opc) { + case S2_asl_i_p: + ImN = 2; + RegN = 1; + Width = 64; + break; + case S2_asl_i_p_acc: + case S2_asl_i_p_and: + case S2_asl_i_p_nac: + case S2_asl_i_p_or: + case S2_asl_i_p_xacc: + ImN = 3; + RegN = 2; + Width = 64; + break; + case S2_asl_i_r: + ImN = 2; + RegN = 1; + Width = 32; + break; + case S2_addasl_rrri: + case S4_andi_asl_ri: + case S4_ori_asl_ri: + case S4_addi_asl_ri: + case S4_subi_asl_ri: + case S2_asl_i_r_acc: + case S2_asl_i_r_and: + case S2_asl_i_r_nac: + case S2_asl_i_r_or: + case S2_asl_i_r_sat: + case S2_asl_i_r_xacc: + ImN = 3; + RegN = 2; + Width = 32; + break; + default: + return false; + } + + if (RegN != OpN) + return false; + + assert(MI.getOperand(ImN).isImm()); + unsigned S = MI.getOperand(ImN).getImm(); + if (S == 0) + return false; + LostB = Width-S; + LostE = Width; + return true; +} + + +// Check if the instruction is a lossy shift right, where the input being +// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range +// of bit indices that are lost. +bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, + unsigned OpN, unsigned &LostB, unsigned &LostE) { + using namespace Hexagon; + unsigned Opc = MI.getOpcode(); + unsigned ImN, RegN; + switch (Opc) { + case S2_asr_i_p: + case S2_lsr_i_p: + ImN = 2; + RegN = 1; + break; + case S2_asr_i_p_acc: + case S2_asr_i_p_and: + case S2_asr_i_p_nac: + case S2_asr_i_p_or: + case S2_lsr_i_p_acc: + case S2_lsr_i_p_and: + case S2_lsr_i_p_nac: + case S2_lsr_i_p_or: + case S2_lsr_i_p_xacc: + ImN = 3; + RegN = 2; + break; + case S2_asr_i_r: + case S2_lsr_i_r: + ImN = 2; + RegN = 1; + break; + case S4_andi_lsr_ri: + case S4_ori_lsr_ri: + case S4_addi_lsr_ri: + case S4_subi_lsr_ri: + case S2_asr_i_r_acc: + case S2_asr_i_r_and: + case S2_asr_i_r_nac: + case S2_asr_i_r_or: + case S2_lsr_i_r_acc: + case S2_lsr_i_r_and: + case S2_lsr_i_r_nac: + case S2_lsr_i_r_or: + case S2_lsr_i_r_xacc: + ImN = 3; + RegN = 2; + break; + + default: + return false; + } + + if (RegN != OpN) + return false; + + assert(MI.getOperand(ImN).isImm()); + unsigned S = MI.getOperand(ImN).getImm(); + LostB = 0; + LostE = S; + return true; +} + + +// Calculate the bit vector that corresponds to the used bits of register Reg. +// The vector Bits has the same size, as the size of Reg in bits. If the cal- +// culation fails (i.e. the used bits are unknown), it returns false. Other- +// wise, it returns true and sets the corresponding bits in Bits. +bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { + BitVector Used(Bits.size()); + RegisterSet Visited; + std::vector<unsigned> Pending; + Pending.push_back(Reg); + + for (unsigned i = 0; i < Pending.size(); ++i) { + unsigned R = Pending[i]; + if (Visited.has(R)) + continue; + Visited.insert(R); + for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { + BitTracker::RegisterRef UR = *I; + unsigned B, W; + if (!HBS::getSubregMask(UR, B, W, MRI)) + return false; + MachineInstr &UseI = *I->getParent(); + if (UseI.isPHI() || UseI.isCopy()) { + unsigned DefR = UseI.getOperand(0).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(DefR)) + return false; + Pending.push_back(DefR); + } else { + if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) + return false; + } + } + } + Bits |= Used; + return true; +} + + +// Calculate the bits used by instruction MI in a register in operand OpN. +// Return true/false if the calculation succeeds/fails. If is succeeds, set +// used bits in Bits. This function does not reset any bits in Bits, so +// subsequent calls over different instructions will result in the union +// of the used bits in all these instructions. +// The register in question may be used with a sub-register, whereas Bits +// holds the bits for the entire register. To keep track of that, the +// argument Begin indicates where in Bits is the lowest-significant bit +// of the register used in operand OpN. For example, in instruction: +// vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10 +// the operand 1 is a 32-bit register, which happens to be a subregister +// of the 64-bit register vreg2, and that subregister starts at position 32. +// In this case Begin=32, since Bits[32] would be the lowest-significant bit +// of vreg2:subreg_hireg. +bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, + unsigned OpN, BitVector &Bits, uint16_t Begin) { + unsigned Opc = MI.getOpcode(); + BitVector T(Bits.size()); + bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); + // Even if we don't have bits yet, we could still provide some information + // if the instruction is a lossy shift: the lost bits will be marked as + // not used. + unsigned LB, LE; + if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { + assert(MI.getOperand(OpN).isReg()); + BitTracker::RegisterRef RR = MI.getOperand(OpN); + const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); + uint16_t Width = RC->getSize()*8; + + if (!GotBits) + T.set(Begin, Begin+Width); + assert(LB <= LE && LB < Width && LE <= Width); + T.reset(Begin+LB, Begin+LE); + GotBits = true; + } + if (GotBits) + Bits |= T; + return GotBits; +} + + +// Calculates the used bits in RD ("defined register"), and checks if these +// bits in RS ("used register") and RD are identical. +bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, + BitTracker::RegisterRef RS) { + const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); + const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); + + unsigned DB, DW; + if (!HBS::getSubregMask(RD, DB, DW, MRI)) + return false; + unsigned SB, SW; + if (!HBS::getSubregMask(RS, SB, SW, MRI)) + return false; + if (SW != DW) + return false; + + BitVector Used(DC.width()); + if (!computeUsedBits(RD.Reg, Used)) + return false; + + for (unsigned i = 0; i != DW; ++i) + if (Used[i+DB] && DC[DB+i] != SC[SB+i]) + return false; + return true; +} + + +bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, + const RegisterSet&) { + bool Changed = false; + + for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { + NextI = std::next(I); + MachineInstr *MI = &*I; + + if (MI->getOpcode() == TargetOpcode::COPY) + continue; + if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) + continue; + unsigned NumD = MI->getDesc().getNumDefs(); + if (NumD != 1) + continue; + + BitTracker::RegisterRef RD = MI->getOperand(0); + if (!BT.has(RD.Reg)) + continue; + const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + + // Find a source operand that is equal to the result. + for (auto &Op : MI->uses()) { + if (!Op.isReg()) + continue; + BitTracker::RegisterRef RS = Op; + if (!BT.has(RS.Reg)) + continue; + if (!HBS::isTransparentCopy(RD, RS, MRI)) + continue; + + unsigned BN, BW; + if (!HBS::getSubregMask(RS, BN, BW, MRI)) + continue; + + const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); + if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) + continue; + + // If found, replace the instruction with a COPY. + DebugLoc DL = MI->getDebugLoc(); + const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); + unsigned NewR = MRI.createVirtualRegister(FRC); + BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) + .addReg(RS.Reg, 0, RS.Sub); + HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); + BT.put(BitTracker::RegisterRef(NewR), SC); + Changed = true; + break; + } + } + + return Changed; +} + + +// +// Const generation +// +// Recognize instructions that produce constant values known at compile-time. +// Replace them with register definitions that load these constants directly. +namespace { + class ConstGeneration : public Transformation { + public: + ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, + MachineRegisterInfo &mri) + : Transformation(true), HII(hii), MRI(mri), BT(bt) {} + bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; + private: + bool isTfrConst(const MachineInstr *MI) const; + bool isConst(unsigned R, int64_t &V) const; + unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, + MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); + + const HexagonInstrInfo &HII; + MachineRegisterInfo &MRI; + BitTracker &BT; + }; +} + +bool ConstGeneration::isConst(unsigned R, int64_t &C) const { + if (!BT.has(R)) + return false; + const BitTracker::RegisterCell &RC = BT.lookup(R); + int64_t T = 0; + for (unsigned i = RC.width(); i > 0; --i) { + const BitTracker::BitValue &V = RC[i-1]; + T <<= 1; + if (V.is(1)) + T |= 1; + else if (!V.is(0)) + return false; + } + C = T; + return true; +} + + +bool ConstGeneration::isTfrConst(const MachineInstr *MI) const { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::A2_combineii: + case Hexagon::A4_combineii: + case Hexagon::A2_tfrsi: + case Hexagon::A2_tfrpi: + case Hexagon::TFR_PdTrue: + case Hexagon::TFR_PdFalse: + case Hexagon::CONST32_Int_Real: + case Hexagon::CONST64_Int_Real: + return true; + } + return false; +} + + +// Generate a transfer-immediate instruction that is appropriate for the +// register class and the actual value being transferred. +unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, + MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { + unsigned Reg = MRI.createVirtualRegister(RC); + if (RC == &Hexagon::IntRegsRegClass) { + BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) + .addImm(int32_t(C)); + return Reg; + } + + if (RC == &Hexagon::DoubleRegsRegClass) { + if (isInt<8>(C)) { + BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) + .addImm(C); + return Reg; + } + + unsigned Lo = Lo_32(C), Hi = Hi_32(C); + if (isInt<8>(Lo) || isInt<8>(Hi)) { + unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii + : Hexagon::A4_combineii; + BuildMI(B, At, DL, HII.get(Opc), Reg) + .addImm(int32_t(Hi)) + .addImm(int32_t(Lo)); + return Reg; + } + + BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg) + .addImm(C); + return Reg; + } + + if (RC == &Hexagon::PredRegsRegClass) { + unsigned Opc; + if (C == 0) + Opc = Hexagon::TFR_PdFalse; + else if ((C & 0xFF) == 0xFF) + Opc = Hexagon::TFR_PdTrue; + else + return 0; + BuildMI(B, At, DL, HII.get(Opc), Reg); + return Reg; + } + + return 0; +} + + +bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { + bool Changed = false; + RegisterSet Defs; + + for (auto I = B.begin(), E = B.end(); I != E; ++I) { + if (isTfrConst(I)) + continue; + Defs.clear(); + HBS::getInstrDefs(*I, Defs); + if (Defs.count() != 1) + continue; + unsigned DR = Defs.find_first(); + if (!TargetRegisterInfo::isVirtualRegister(DR)) + continue; + int64_t C; + if (isConst(DR, C)) { + DebugLoc DL = I->getDebugLoc(); + auto At = I->isPHI() ? B.getFirstNonPHI() : I; + unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); + if (ImmReg) { + HBS::replaceReg(DR, ImmReg, MRI); + BT.put(ImmReg, BT.lookup(DR)); + Changed = true; + } + } + } + return Changed; +} + + +// +// Copy generation +// +// Identify pairs of available registers which hold identical values. +// In such cases, only one of them needs to be calculated, the other one +// will be defined as a copy of the first. +// +// Copy propagation +// +// Eliminate register copies RD = RS, by replacing the uses of RD with +// with uses of RS. +namespace { + class CopyGeneration : public Transformation { + public: + CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, + MachineRegisterInfo &mri) + : Transformation(true), HII(hii), MRI(mri), BT(bt) {} + bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; + private: + bool findMatch(const BitTracker::RegisterRef &Inp, + BitTracker::RegisterRef &Out, const RegisterSet &AVs); + + const HexagonInstrInfo &HII; + MachineRegisterInfo &MRI; + BitTracker &BT; + }; + + class CopyPropagation : public Transformation { + public: + CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) + : Transformation(false), MRI(mri) {} + bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; + static bool isCopyReg(unsigned Opc); + private: + bool propagateRegCopy(MachineInstr &MI); + + MachineRegisterInfo &MRI; + }; + +} + + +/// Check if there is a register in AVs that is identical to Inp. If so, +/// set Out to the found register. The output may be a pair Reg:Sub. +bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, + BitTracker::RegisterRef &Out, const RegisterSet &AVs) { + if (!BT.has(Inp.Reg)) + return false; + const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); + unsigned B, W; + if (!HBS::getSubregMask(Inp, B, W, MRI)) + return false; + + for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { + if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI)) + continue; + const BitTracker::RegisterCell &RC = BT.lookup(R); + unsigned RW = RC.width(); + if (W == RW) { + if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R)) + continue; + if (!HBS::isEqual(InpRC, B, RC, 0, W)) + continue; + Out.Reg = R; + Out.Sub = 0; + return true; + } + // Check if there is a super-register, whose part (with a subregister) + // is equal to the input. + // Only do double registers for now. + if (W*2 != RW) + continue; + if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) + continue; + + if (HBS::isEqual(InpRC, B, RC, 0, W)) + Out.Sub = Hexagon::subreg_loreg; + else if (HBS::isEqual(InpRC, B, RC, W, W)) + Out.Sub = Hexagon::subreg_hireg; + else + continue; + Out.Reg = R; + return true; + } + return false; +} + + +bool CopyGeneration::processBlock(MachineBasicBlock &B, + const RegisterSet &AVs) { + RegisterSet AVB(AVs); + bool Changed = false; + RegisterSet Defs; + + for (auto I = B.begin(), E = B.end(), NextI = I; I != E; + ++I, AVB.insert(Defs)) { + NextI = std::next(I); + Defs.clear(); + HBS::getInstrDefs(*I, Defs); + + unsigned Opc = I->getOpcode(); + if (CopyPropagation::isCopyReg(Opc)) + continue; + + for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { + BitTracker::RegisterRef MR; + if (!findMatch(R, MR, AVB)) + continue; + DebugLoc DL = I->getDebugLoc(); + auto *FRC = HBS::getFinalVRegClass(MR, MRI); + unsigned NewR = MRI.createVirtualRegister(FRC); + auto At = I->isPHI() ? B.getFirstNonPHI() : I; + BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) + .addReg(MR.Reg, 0, MR.Sub); + BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); + } + } + + return Changed; +} + + +bool CopyPropagation::isCopyReg(unsigned Opc) { + switch (Opc) { + case TargetOpcode::COPY: + case TargetOpcode::REG_SEQUENCE: + case Hexagon::A2_tfr: + case Hexagon::A2_tfrp: + case Hexagon::A2_combinew: + case Hexagon::A4_combineir: + case Hexagon::A4_combineri: + return true; + default: + break; + } + return false; +} + + +bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { + bool Changed = false; + unsigned Opc = MI.getOpcode(); + BitTracker::RegisterRef RD = MI.getOperand(0); + assert(MI.getOperand(0).getSubReg() == 0); + + switch (Opc) { + case TargetOpcode::COPY: + case Hexagon::A2_tfr: + case Hexagon::A2_tfrp: { + BitTracker::RegisterRef RS = MI.getOperand(1); + if (!HBS::isTransparentCopy(RD, RS, MRI)) + break; + if (RS.Sub != 0) + Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); + else + Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); + break; + } + case TargetOpcode::REG_SEQUENCE: { + BitTracker::RegisterRef SL, SH; + if (HBS::parseRegSequence(MI, SL, SH)) { + Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, + SL.Reg, SL.Sub, MRI); + Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, + SH.Reg, SH.Sub, MRI); + } + break; + } + case Hexagon::A2_combinew: { + BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); + Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, + RL.Reg, RL.Sub, MRI); + Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, + RH.Reg, RH.Sub, MRI); + break; + } + case Hexagon::A4_combineir: + case Hexagon::A4_combineri: { + unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; + unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg + : Hexagon::subreg_hireg; + BitTracker::RegisterRef RS = MI.getOperand(SrcX); + Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); + break; + } + } + return Changed; +} + + +bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { + std::vector<MachineInstr*> Instrs; + for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) + Instrs.push_back(&*I); + + bool Changed = false; + for (auto I : Instrs) { + unsigned Opc = I->getOpcode(); + if (!CopyPropagation::isCopyReg(Opc)) + continue; + Changed |= propagateRegCopy(*I); + } + + return Changed; +} + + +// +// Bit simplification +// +// Recognize patterns that can be simplified and replace them with the +// simpler forms. +// This is by no means complete +namespace { + class BitSimplification : public Transformation { + public: + BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii, + MachineRegisterInfo &mri) + : Transformation(true), HII(hii), MRI(mri), BT(bt) {} + bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; + private: + struct RegHalf : public BitTracker::RegisterRef { + bool Low; // Low/High halfword. + }; + + bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, + unsigned B, RegHalf &RH); + + bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, + BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); + unsigned getCombineOpcode(bool HLow, bool LLow); + + bool genStoreUpperHalf(MachineInstr *MI); + bool genStoreImmediate(MachineInstr *MI); + bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, + const BitTracker::RegisterCell &RC); + bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, + const BitTracker::RegisterCell &RC); + bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, + const BitTracker::RegisterCell &RC); + bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, + const BitTracker::RegisterCell &RC); + bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, + const BitTracker::RegisterCell &RC); + + const HexagonInstrInfo &HII; + MachineRegisterInfo &MRI; + BitTracker &BT; + }; +} + + +// Check if the bits [B..B+16) in register cell RC form a valid halfword, +// i.e. [0..16), [16..32), etc. of some register. If so, return true and +// set the information about the found register in RH. +bool BitSimplification::matchHalf(unsigned SelfR, + const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { + // XXX This could be searching in the set of available registers, in case + // the match is not exact. + + // Match 16-bit chunks, where the RC[B..B+15] references exactly one + // register and all the bits B..B+15 match between RC and the register. + // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, + // and RC = { [0]:0 [1-15]:v1[1-15]... }. + bool Low = false; + unsigned I = B; + while (I < B+16 && RC[I].num()) + I++; + if (I == B+16) + return false; + + unsigned Reg = RC[I].RefI.Reg; + unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. + if (P < I-B) + return false; + unsigned Pos = P - (I-B); + + if (Reg == 0 || Reg == SelfR) // Don't match "self". + return false; + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + return false; + if (!BT.has(Reg)) + return false; + + const BitTracker::RegisterCell &SC = BT.lookup(Reg); + if (Pos+16 > SC.width()) + return false; + + for (unsigned i = 0; i < 16; ++i) { + const BitTracker::BitValue &RV = RC[i+B]; + if (RV.Type == BitTracker::BitValue::Ref) { + if (RV.RefI.Reg != Reg) + return false; + if (RV.RefI.Pos != i+Pos) + return false; + continue; + } + if (RC[i+B] != SC[i+Pos]) + return false; + } + + unsigned Sub = 0; + switch (Pos) { + case 0: + Sub = Hexagon::subreg_loreg; + Low = true; + break; + case 16: + Sub = Hexagon::subreg_loreg; + Low = false; + break; + case 32: + Sub = Hexagon::subreg_hireg; + Low = true; + break; + case 48: + Sub = Hexagon::subreg_hireg; + Low = false; + break; + default: + return false; + } + + RH.Reg = Reg; + RH.Sub = Sub; + RH.Low = Low; + // If the subregister is not valid with the register, set it to 0. + if (!HBS::getFinalVRegClass(RH, MRI)) + RH.Sub = 0; + + return true; +} + + +// Check if RC matches the pattern of a S2_packhl. If so, return true and +// set the inputs Rs and Rt. +bool BitSimplification::matchPackhl(unsigned SelfR, + const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, + BitTracker::RegisterRef &Rt) { + RegHalf L1, H1, L2, H2; + + if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) + return false; + if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) + return false; + + // Rs = H1.L1, Rt = H2.L2 + if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) + return false; + if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) + return false; + + Rs = H1; + Rt = H2; + return true; +} + + +unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { + return HLow ? LLow ? Hexagon::A2_combine_ll + : Hexagon::A2_combine_lh + : LLow ? Hexagon::A2_combine_hl + : Hexagon::A2_combine_hh; +} + + +// If MI stores the upper halfword of a register (potentially obtained via +// shifts or extracts), replace it with a storerf instruction. This could +// cause the "extraction" code to become dead. +bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + if (Opc != Hexagon::S2_storerh_io) + return false; + + MachineOperand &ValOp = MI->getOperand(2); + BitTracker::RegisterRef RS = ValOp; + if (!BT.has(RS.Reg)) + return false; + const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); + RegHalf H; + if (!matchHalf(0, RC, 0, H)) + return false; + if (H.Low) + return false; + MI->setDesc(HII.get(Hexagon::S2_storerf_io)); + ValOp.setReg(H.Reg); + ValOp.setSubReg(H.Sub); + return true; +} + + +// If MI stores a value known at compile-time, and the value is within a range +// that avoids using constant-extenders, replace it with a store-immediate. +bool BitSimplification::genStoreImmediate(MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + unsigned Align = 0; + switch (Opc) { + case Hexagon::S2_storeri_io: + Align++; + case Hexagon::S2_storerh_io: + Align++; + case Hexagon::S2_storerb_io: + break; + default: + return false; + } + + // Avoid stores to frame-indices (due to an unknown offset). + if (!MI->getOperand(0).isReg()) + return false; + MachineOperand &OffOp = MI->getOperand(1); + if (!OffOp.isImm()) + return false; + + int64_t Off = OffOp.getImm(); + // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). + if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) + return false; + // Source register: + BitTracker::RegisterRef RS = MI->getOperand(2); + if (!BT.has(RS.Reg)) + return false; + const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); + uint64_t U; + if (!HBS::getConst(RC, 0, RC.width(), U)) + return false; + + // Only consider 8-bit values to avoid constant-extenders. + int V; + switch (Opc) { + case Hexagon::S2_storerb_io: + V = int8_t(U); + break; + case Hexagon::S2_storerh_io: + V = int16_t(U); + break; + case Hexagon::S2_storeri_io: + V = int32_t(U); + break; + } + if (!isInt<8>(V)) + return false; + + MI->RemoveOperand(2); + switch (Opc) { + case Hexagon::S2_storerb_io: + MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); + break; + case Hexagon::S2_storerh_io: + MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); + break; + case Hexagon::S2_storeri_io: + MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); + break; + } + MI->addOperand(MachineOperand::CreateImm(V)); + return true; +} + + +// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the +// last instruction in a sequence that results in something equivalent to +// the pack-halfwords. The intent is to cause the entire sequence to become +// dead. +bool BitSimplification::genPackhl(MachineInstr *MI, + BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { + unsigned Opc = MI->getOpcode(); + if (Opc == Hexagon::S2_packhl) + return false; + BitTracker::RegisterRef Rs, Rt; + if (!matchPackhl(RD.Reg, RC, Rs, Rt)) + return false; + + MachineBasicBlock &B = *MI->getParent(); + unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); + DebugLoc DL = MI->getDebugLoc(); + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) + .addReg(Rs.Reg, 0, Rs.Sub) + .addReg(Rt.Reg, 0, Rt.Sub); + HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); + BT.put(BitTracker::RegisterRef(NewR), RC); + return true; +} + + +// If MI produces halfword of the input in the low half of the output, +// replace it with zero-extend or extractu. +bool BitSimplification::genExtractHalf(MachineInstr *MI, + BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { + RegHalf L; + // Check for halfword in low 16 bits, zeros elsewhere. + if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) + return false; + + unsigned Opc = MI->getOpcode(); + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + // Prefer zxth, since zxth can go in any slot, while extractu only in + // slots 2 and 3. + unsigned NewR = 0; + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + if (L.Low && Opc != Hexagon::A2_zxth) { + NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) + .addReg(L.Reg, 0, L.Sub); + } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { + NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) + .addReg(L.Reg, 0, L.Sub) + .addImm(16); + } + if (NewR == 0) + return false; + HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); + BT.put(BitTracker::RegisterRef(NewR), RC); + return true; +} + + +// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the +// combine. +bool BitSimplification::genCombineHalf(MachineInstr *MI, + BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { + RegHalf L, H; + // Check for combine h/l + if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) + return false; + // Do nothing if this is just a reg copy. + if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) + return false; + + unsigned Opc = MI->getOpcode(); + unsigned COpc = getCombineOpcode(H.Low, L.Low); + if (COpc == Opc) + return false; + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + BuildMI(B, At, DL, HII.get(COpc), NewR) + .addReg(H.Reg, 0, H.Sub) + .addReg(L.Reg, 0, L.Sub); + HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); + BT.put(BitTracker::RegisterRef(NewR), RC); + return true; +} + + +// If MI resets high bits of a register and keeps the lower ones, replace it +// with zero-extend byte/half, and-immediate, or extractu, as appropriate. +bool BitSimplification::genExtractLow(MachineInstr *MI, + BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::A2_zxtb: + case Hexagon::A2_zxth: + case Hexagon::S2_extractu: + return false; + } + if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { + int32_t Imm = MI->getOperand(2).getImm(); + if (isInt<10>(Imm)) + return false; + } + + if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) + return false; + unsigned W = RC.width(); + while (W > 0 && RC[W-1].is(0)) + W--; + if (W == 0 || W == RC.width()) + return false; + unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb + : (W == 16) ? Hexagon::A2_zxth + : (W < 10) ? Hexagon::A2_andir + : Hexagon::S2_extractu; + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + for (auto &Op : MI->uses()) { + if (!Op.isReg()) + continue; + BitTracker::RegisterRef RS = Op; + if (!BT.has(RS.Reg)) + continue; + const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); + unsigned BN, BW; + if (!HBS::getSubregMask(RS, BN, BW, MRI)) + continue; + if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) + continue; + + unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) + .addReg(RS.Reg, 0, RS.Sub); + if (NewOpc == Hexagon::A2_andir) + MIB.addImm((1 << W) - 1); + else if (NewOpc == Hexagon::S2_extractu) + MIB.addImm(W).addImm(0); + HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); + BT.put(BitTracker::RegisterRef(NewR), RC); + return true; + } + return false; +} + + +// Check for tstbit simplification opportunity, where the bit being checked +// can be tracked back to another register. For example: +// vreg2 = S2_lsr_i_r vreg1, 5 +// vreg3 = S2_tstbit_i vreg2, 0 +// => +// vreg3 = S2_tstbit_i vreg1, 5 +bool BitSimplification::simplifyTstbit(MachineInstr *MI, + BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { + unsigned Opc = MI->getOpcode(); + if (Opc != Hexagon::S2_tstbit_i) + return false; + + unsigned BN = MI->getOperand(2).getImm(); + BitTracker::RegisterRef RS = MI->getOperand(1); + unsigned F, W; + DebugLoc DL = MI->getDebugLoc(); + if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) + return false; + MachineBasicBlock &B = *MI->getParent(); + auto At = MI->isPHI() ? B.getFirstNonPHI() + : MachineBasicBlock::iterator(MI); + + const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); + const BitTracker::BitValue &V = SC[F+BN]; + if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { + const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); + // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is + // a double register, need to use a subregister and adjust bit + // number. + unsigned P = UINT_MAX; + BitTracker::RegisterRef RR(V.RefI.Reg, 0); + if (TC == &Hexagon::DoubleRegsRegClass) { + P = V.RefI.Pos; + RR.Sub = Hexagon::subreg_loreg; + if (P >= 32) { + P -= 32; + RR.Sub = Hexagon::subreg_hireg; + } + } else if (TC == &Hexagon::IntRegsRegClass) { + P = V.RefI.Pos; + } + if (P != UINT_MAX) { + unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); + BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) + .addReg(RR.Reg, 0, RR.Sub) + .addImm(P); + HBS::replaceReg(RD.Reg, NewR, MRI); + BT.put(NewR, RC); + return true; + } + } else if (V.is(0) || V.is(1)) { + unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); + unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue; + BuildMI(B, At, DL, HII.get(NewOpc), NewR); + HBS::replaceReg(RD.Reg, NewR, MRI); + return true; + } + + return false; +} + + +bool BitSimplification::processBlock(MachineBasicBlock &B, + const RegisterSet &AVs) { + bool Changed = false; + RegisterSet AVB = AVs; + RegisterSet Defs; + + for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { + MachineInstr *MI = &*I; + Defs.clear(); + HBS::getInstrDefs(*MI, Defs); + + unsigned Opc = MI->getOpcode(); + if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) + continue; + + if (MI->mayStore()) { + bool T = genStoreUpperHalf(MI); + T = T || genStoreImmediate(MI); + Changed |= T; + continue; + } + + if (Defs.count() != 1) + continue; + const MachineOperand &Op0 = MI->getOperand(0); + if (!Op0.isReg() || !Op0.isDef()) + continue; + BitTracker::RegisterRef RD = Op0; + if (!BT.has(RD.Reg)) + continue; + const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); + const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); + + if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { + bool T = genPackhl(MI, RD, RC); + Changed |= T; + continue; + } + + if (FRC->getID() == Hexagon::IntRegsRegClassID) { + bool T = genExtractHalf(MI, RD, RC); + T = T || genCombineHalf(MI, RD, RC); + T = T || genExtractLow(MI, RD, RC); + Changed |= T; + continue; + } + + if (FRC->getID() == Hexagon::PredRegsRegClassID) { + bool T = simplifyTstbit(MI, RD, RC); + Changed |= T; + continue; + } + } + return Changed; +} + + +bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HRI = *HST.getRegisterInfo(); + auto &HII = *HST.getInstrInfo(); + + MDT = &getAnalysis<MachineDominatorTree>(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + bool Changed; + + Changed = DeadCodeElimination(MF, *MDT).run(); + + const HexagonEvaluator HE(HRI, MRI, HII, MF); + BitTracker BT(HE, MF); + DEBUG(BT.trace(true)); + BT.run(); + + MachineBasicBlock &Entry = MF.front(); + + RegisterSet AIG; // Available registers for IG. + ConstGeneration ImmG(BT, HII, MRI); + Changed |= visitBlock(Entry, ImmG, AIG); + + RegisterSet ARE; // Available registers for RIE. + RedundantInstrElimination RIE(BT, HII, MRI); + Changed |= visitBlock(Entry, RIE, ARE); + + RegisterSet ACG; // Available registers for CG. + CopyGeneration CopyG(BT, HII, MRI); + Changed |= visitBlock(Entry, CopyG, ACG); + + RegisterSet ACP; // Available registers for CP. + CopyPropagation CopyP(HRI, MRI); + Changed |= visitBlock(Entry, CopyP, ACP); + + Changed = DeadCodeElimination(MF, *MDT).run() || Changed; + + BT.run(); + RegisterSet ABS; // Available registers for BS. + BitSimplification BitS(BT, HII, MRI); + Changed |= visitBlock(Entry, BitS, ABS); + + Changed = DeadCodeElimination(MF, *MDT).run() || Changed; + + if (Changed) { + for (auto &B : MF) + for (auto &I : B) + I.clearKillInfo(); + DeadCodeElimination(MF, *MDT).run(); + } + return Changed; +} + + +// Recognize loops where the code at the end of the loop matches the code +// before the entry of the loop, and the matching code is such that is can +// be simplified. This pass relies on the bit simplification above and only +// prepares code in a way that can be handled by the bit simplifcation. +// +// This is the motivating testcase (and explanation): +// +// { +// loop0(.LBB0_2, r1) // %for.body.preheader +// r5:4 = memd(r0++#8) +// } +// { +// r3 = lsr(r4, #16) +// r7:6 = combine(r5, r5) +// } +// { +// r3 = insert(r5, #16, #16) +// r7:6 = vlsrw(r7:6, #16) +// } +// .LBB0_2: +// { +// memh(r2+#4) = r5 +// memh(r2+#6) = r6 # R6 is really R5.H +// } +// { +// r2 = add(r2, #8) +// memh(r2+#0) = r4 +// memh(r2+#2) = r3 # R3 is really R4.H +// } +// { +// r5:4 = memd(r0++#8) +// } +// { # "Shuffling" code that sets up R3 and R6 +// r3 = lsr(r4, #16) # so that their halves can be stored in the +// r7:6 = combine(r5, r5) # next iteration. This could be folded into +// } # the stores if the code was at the beginning +// { # of the loop iteration. Since the same code +// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved +// r7:6 = vlsrw(r7:6, #16) # there. +// }:endloop0 +// +// +// The outcome: +// +// { +// loop0(.LBB0_2, r1) +// r5:4 = memd(r0++#8) +// } +// .LBB0_2: +// { +// memh(r2+#4) = r5 +// memh(r2+#6) = r5.h +// } +// { +// r2 = add(r2, #8) +// memh(r2+#0) = r4 +// memh(r2+#2) = r4.h +// } +// { +// r5:4 = memd(r0++#8) +// }:endloop0 + +namespace llvm { + FunctionPass *createHexagonLoopRescheduling(); + void initializeHexagonLoopReschedulingPass(PassRegistry&); +} + +namespace { + class HexagonLoopRescheduling : public MachineFunctionPass { + public: + static char ID; + HexagonLoopRescheduling() : MachineFunctionPass(ID), + HII(0), HRI(0), MRI(0), BTP(0) { + initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + private: + const HexagonInstrInfo *HII; + const HexagonRegisterInfo *HRI; + MachineRegisterInfo *MRI; + BitTracker *BTP; + + struct LoopCand { + LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, + MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} + MachineBasicBlock *LB, *PB, *EB; + }; + typedef std::vector<MachineInstr*> InstrList; + struct InstrGroup { + BitTracker::RegisterRef Inp, Out; + InstrList Ins; + }; + struct PhiInfo { + PhiInfo(MachineInstr &P, MachineBasicBlock &B); + unsigned DefR; + BitTracker::RegisterRef LR, PR; + MachineBasicBlock *LB, *PB; + }; + + static unsigned getDefReg(const MachineInstr *MI); + bool isConst(unsigned Reg) const; + bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; + bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; + bool isShuffleOf(unsigned OutR, unsigned InpR) const; + bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, + unsigned &InpR2) const; + void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, + MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); + bool processLoop(LoopCand &C); + }; +} + +char HexagonLoopRescheduling::ID = 0; + +INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", + "Hexagon Loop Rescheduling", false, false) + + +HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, + MachineBasicBlock &B) { + DefR = HexagonLoopRescheduling::getDefReg(&P); + LB = &B; + PB = nullptr; + for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { + const MachineOperand &OpB = P.getOperand(i+1); + if (OpB.getMBB() == &B) { + LR = P.getOperand(i); + continue; + } + PB = OpB.getMBB(); + PR = P.getOperand(i); + } +} + + +unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { + RegisterSet Defs; + HBS::getInstrDefs(*MI, Defs); + if (Defs.count() != 1) + return 0; + return Defs.find_first(); +} + + +bool HexagonLoopRescheduling::isConst(unsigned Reg) const { + if (!BTP->has(Reg)) + return false; + const BitTracker::RegisterCell &RC = BTP->lookup(Reg); + for (unsigned i = 0, w = RC.width(); i < w; ++i) { + const BitTracker::BitValue &V = RC[i]; + if (!V.is(0) && !V.is(1)) + return false; + } + return true; +} + + +bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, + unsigned DefR) const { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case TargetOpcode::COPY: + case Hexagon::S2_lsr_i_r: + case Hexagon::S2_asr_i_r: + case Hexagon::S2_asl_i_r: + case Hexagon::S2_lsr_i_p: + case Hexagon::S2_asr_i_p: + case Hexagon::S2_asl_i_p: + case Hexagon::S2_insert: + case Hexagon::A2_or: + case Hexagon::A2_orp: + case Hexagon::A2_and: + case Hexagon::A2_andp: + case Hexagon::A2_combinew: + case Hexagon::A4_combineri: + case Hexagon::A4_combineir: + case Hexagon::A2_combineii: + case Hexagon::A4_combineii: + case Hexagon::A2_combine_ll: + case Hexagon::A2_combine_lh: + case Hexagon::A2_combine_hl: + case Hexagon::A2_combine_hh: + return true; + } + return false; +} + + +bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, + unsigned InpR) const { + for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { + const MachineOperand &Op = MI->getOperand(i); + if (!Op.isReg()) + continue; + if (Op.getReg() == InpR) + return i == n-1; + } + return false; +} + + +bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { + if (!BTP->has(OutR) || !BTP->has(InpR)) + return false; + const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); + for (unsigned i = 0, w = OutC.width(); i < w; ++i) { + const BitTracker::BitValue &V = OutC[i]; + if (V.Type != BitTracker::BitValue::Ref) + continue; + if (V.RefI.Reg != InpR) + return false; + } + return true; +} + + +bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, + unsigned OutR2, unsigned &InpR2) const { + if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) + return false; + const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); + const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); + unsigned W = OutC1.width(); + unsigned MatchR = 0; + if (W != OutC2.width()) + return false; + for (unsigned i = 0; i < W; ++i) { + const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; + if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) + return false; + if (V1.Type != BitTracker::BitValue::Ref) + continue; + if (V1.RefI.Pos != V2.RefI.Pos) + return false; + if (V1.RefI.Reg != InpR1) + return false; + if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) + return false; + if (!MatchR) + MatchR = V2.RefI.Reg; + else if (V2.RefI.Reg != MatchR) + return false; + } + InpR2 = MatchR; + return true; +} + + +void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, + MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, + unsigned NewPredR) { + DenseMap<unsigned,unsigned> RegMap; + + const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); + unsigned PhiR = MRI->createVirtualRegister(PhiRC); + BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) + .addReg(NewPredR) + .addMBB(&PB) + .addReg(G.Inp.Reg) + .addMBB(&LB); + RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); + + for (unsigned i = G.Ins.size(); i > 0; --i) { + const MachineInstr *SI = G.Ins[i-1]; + unsigned DR = getDefReg(SI); + const TargetRegisterClass *RC = MRI->getRegClass(DR); + unsigned NewDR = MRI->createVirtualRegister(RC); + DebugLoc DL = SI->getDebugLoc(); + + auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); + for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { + const MachineOperand &Op = SI->getOperand(j); + if (!Op.isReg()) { + MIB.addOperand(Op); + continue; + } + if (!Op.isUse()) + continue; + unsigned UseR = RegMap[Op.getReg()]; + MIB.addReg(UseR, 0, Op.getSubReg()); + } + RegMap.insert(std::make_pair(DR, NewDR)); + } + + HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); +} + + +bool HexagonLoopRescheduling::processLoop(LoopCand &C) { + DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n"); + std::vector<PhiInfo> Phis; + for (auto &I : *C.LB) { + if (!I.isPHI()) + break; + unsigned PR = getDefReg(&I); + if (isConst(PR)) + continue; + bool BadUse = false, GoodUse = false; + for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { + MachineInstr *UseI = UI->getParent(); + if (UseI->getParent() != C.LB) { + BadUse = true; + break; + } + if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) + GoodUse = true; + } + if (BadUse || !GoodUse) + continue; + + Phis.push_back(PhiInfo(I, *C.LB)); + } + + DEBUG({ + dbgs() << "Phis: {"; + for (auto &I : Phis) { + dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi(" + << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() + << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" + << I.LB->getNumber() << ')'; + } + dbgs() << " }\n"; + }); + + if (Phis.empty()) + return false; + + bool Changed = false; + InstrList ShufIns; + + // Go backwards in the block: for each bit shuffling instruction, check + // if that instruction could potentially be moved to the front of the loop: + // the output of the loop cannot be used in a non-shuffling instruction + // in this loop. + for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { + if (I->isTerminator()) + continue; + if (I->isPHI()) + break; + + RegisterSet Defs; + HBS::getInstrDefs(*I, Defs); + if (Defs.count() != 1) + continue; + unsigned DefR = Defs.find_first(); + if (!TargetRegisterInfo::isVirtualRegister(DefR)) + continue; + if (!isBitShuffle(&*I, DefR)) + continue; + + bool BadUse = false; + for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { + MachineInstr *UseI = UI->getParent(); + if (UseI->getParent() == C.LB) { + if (UseI->isPHI()) { + // If the use is in a phi node in this loop, then it should be + // the value corresponding to the back edge. + unsigned Idx = UI.getOperandNo(); + if (UseI->getOperand(Idx+1).getMBB() != C.LB) + BadUse = true; + } else { + auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI); + if (F == ShufIns.end()) + BadUse = true; + } + } else { + // There is a use outside of the loop, but there is no epilog block + // suitable for a copy-out. + if (C.EB == nullptr) + BadUse = true; + } + if (BadUse) + break; + } + + if (BadUse) + continue; + ShufIns.push_back(&*I); + } + + // Partition the list of shuffling instructions into instruction groups, + // where each group has to be moved as a whole (i.e. a group is a chain of + // dependent instructions). A group produces a single live output register, + // which is meant to be the input of the loop phi node (although this is + // not checked here yet). It also uses a single register as its input, + // which is some value produced in the loop body. After moving the group + // to the beginning of the loop, that input register would need to be + // the loop-carried register (through a phi node) instead of the (currently + // loop-carried) output register. + typedef std::vector<InstrGroup> InstrGroupList; + InstrGroupList Groups; + + for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { + MachineInstr *SI = ShufIns[i]; + if (SI == nullptr) + continue; + + InstrGroup G; + G.Ins.push_back(SI); + G.Out.Reg = getDefReg(SI); + RegisterSet Inputs; + HBS::getInstrUses(*SI, Inputs); + + for (unsigned j = i+1; j < n; ++j) { + MachineInstr *MI = ShufIns[j]; + if (MI == nullptr) + continue; + RegisterSet Defs; + HBS::getInstrDefs(*MI, Defs); + // If this instruction does not define any pending inputs, skip it. + if (!Defs.intersects(Inputs)) + continue; + // Otherwise, add it to the current group and remove the inputs that + // are defined by MI. + G.Ins.push_back(MI); + Inputs.remove(Defs); + // Then add all registers used by MI. + HBS::getInstrUses(*MI, Inputs); + ShufIns[j] = nullptr; + } + + // Only add a group if it requires at most one register. + if (Inputs.count() > 1) + continue; + auto LoopInpEq = [G] (const PhiInfo &P) -> bool { + return G.Out.Reg == P.LR.Reg; + }; + if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end()) + continue; + + G.Inp.Reg = Inputs.find_first(); + Groups.push_back(G); + } + + DEBUG({ + for (unsigned i = 0, n = Groups.size(); i < n; ++i) { + InstrGroup &G = Groups[i]; + dbgs() << "Group[" << i << "] inp: " + << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub) + << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; + for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) + dbgs() << " " << *G.Ins[j]; + } + }); + + for (unsigned i = 0, n = Groups.size(); i < n; ++i) { + InstrGroup &G = Groups[i]; + if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) + continue; + auto LoopInpEq = [G] (const PhiInfo &P) -> bool { + return G.Out.Reg == P.LR.Reg; + }; + auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq); + if (F == Phis.end()) + continue; + unsigned PredR = 0; + if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) { + const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg); + unsigned Opc = DefPredR->getOpcode(); + if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) + continue; + if (!DefPredR->getOperand(1).isImm()) + continue; + if (DefPredR->getOperand(1).getImm() != 0) + continue; + const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); + if (RC != MRI->getRegClass(F->PR.Reg)) { + PredR = MRI->createVirtualRegister(RC); + unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi + : Hexagon::A2_tfrpi; + auto T = C.PB->getFirstTerminator(); + DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); + BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR) + .addImm(0); + } else { + PredR = F->PR.Reg; + } + } + assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg)); + moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR); + Changed = true; + } + + return Changed; +} + + +bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + HII = HST.getInstrInfo(); + HRI = HST.getRegisterInfo(); + MRI = &MF.getRegInfo(); + const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); + BitTracker BT(HE, MF); + DEBUG(BT.trace(true)); + BT.run(); + BTP = &BT; + + std::vector<LoopCand> Cand; + + for (auto &B : MF) { + if (B.pred_size() != 2 || B.succ_size() != 2) + continue; + MachineBasicBlock *PB = nullptr; + bool IsLoop = false; + for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { + if (*PI != &B) + PB = *PI; + else + IsLoop = true; + } + if (!IsLoop) + continue; + + MachineBasicBlock *EB = nullptr; + for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { + if (*SI == &B) + continue; + // Set EP to the epilog block, if it has only 1 predecessor (i.e. the + // edge from B to EP is non-critical. + if ((*SI)->pred_size() == 1) + EB = *SI; + break; + } + + Cand.push_back(LoopCand(&B, PB, EB)); + } + + bool Changed = false; + for (auto &C : Cand) + Changed |= processLoop(C); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createHexagonLoopRescheduling() { + return new HexagonLoopRescheduling(); +} + +FunctionPass *llvm::createHexagonBitSimplify() { + return new HexagonBitSimplify(); +} +