Mercurial > hg > CbC > CbC_llvm
diff lib/Target/Hexagon/RDFDeadCode.cpp @ 100:7d135dc70f03 LLVM 3.9
LLVM 3.9
author | Miyagi Mitsuki <e135756@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Jan 2016 22:53:40 +0900 |
parents | |
children | 803732b1fca8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/Hexagon/RDFDeadCode.cpp Tue Jan 26 22:53:40 2016 +0900 @@ -0,0 +1,232 @@ +//===--- RDFDeadCode.cpp --------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// RDF-based generic dead code elimination. + +#include "RDFGraph.h" +#include "RDFLiveness.h" +#include "RDFDeadCode.h" + +#include "llvm/ADT/SetVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" + +#include <queue> + +using namespace llvm; +using namespace rdf; + +// This drastically improves execution time in "collect" over using +// SetVector as a work queue, and popping the first element from it. +template<typename T> struct DeadCodeElimination::SetQueue { + SetQueue() : Set(), Queue() {} + + bool empty() const { + return Queue.empty(); + } + T pop_front() { + T V = Queue.front(); + Queue.pop(); + Set.erase(V); + return V; + } + void push_back(T V) { + if (Set.count(V)) + return; + Queue.push(V); + Set.insert(V); + } + +private: + DenseSet<T> Set; + std::queue<T> Queue; +}; + + +// Check if the given instruction has observable side-effects, i.e. if +// it should be considered "live". It is safe for this function to be +// overly conservative (i.e. return "true" for all instructions), but it +// is not safe to return "false" for an instruction that should not be +// considered removable. +bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const { + if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn()) + return true; + if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects()) + return true; + if (MI->isPHI()) + return false; + for (auto &Op : MI->operands()) + if (Op.isReg() && MRI.isReserved(Op.getReg())) + return true; + return false; +} + +void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA, + SetQueue<NodeId> &WorkQ) { + if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) + return; + if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode())) + return; + for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) { + if (!LiveNodes.count(RA.Id)) + WorkQ.push_back(RA.Id); + } +} + +void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA, + SetQueue<NodeId> &WorkQ) { + NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); + for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { + if (!LiveNodes.count(UA.Id)) + WorkQ.push_back(UA.Id); + } + for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA)) + LiveNodes.insert(TA.Id); +} + +void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA, + SetQueue<NodeId> &WorkQ) { + for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) { + if (!LiveNodes.count(DA.Id)) + WorkQ.push_back(DA.Id); + } +} + +// Traverse the DFG and collect the set dead RefNodes and the set of +// dead instructions. Return "true" if any of these sets is non-empty, +// "false" otherwise. +bool DeadCodeElimination::collect() { + // This function works by first finding all live nodes. The dead nodes + // are then the complement of the set of live nodes. + // + // Assume that all nodes are dead. Identify instructions which must be + // considered live, i.e. instructions with observable side-effects, such + // as calls and stores. All arguments of such instructions are considered + // live. For each live def, all operands used in the corresponding + // instruction are considered live. For each live use, all its reaching + // defs are considered live. + LiveNodes.clear(); + SetQueue<NodeId> WorkQ; + for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) + for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) + scanInstr(IA, WorkQ); + + while (!WorkQ.empty()) { + NodeId N = WorkQ.pop_front(); + LiveNodes.insert(N); + auto RA = DFG.addr<RefNode*>(N); + if (DFG.IsDef(RA)) + processDef(RA, WorkQ); + else + processUse(RA, WorkQ); + } + + if (trace()) { + dbgs() << "Live nodes:\n"; + for (NodeId N : LiveNodes) { + auto RA = DFG.addr<RefNode*>(N); + dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n"; + } + } + + auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool { + for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG)) + if (LiveNodes.count(DA.Id)) + return false; + return true; + }; + + for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { + for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { + for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) + if (!LiveNodes.count(RA.Id)) + DeadNodes.insert(RA.Id); + if (DFG.IsCode<NodeAttrs::Stmt>(IA)) + if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode())) + continue; + if (IsDead(IA)) { + DeadInstrs.insert(IA.Id); + if (trace()) + dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n"; + } + } + } + + return !DeadNodes.empty(); +} + +// Erase the nodes given in the Nodes set from DFG. In addition to removing +// them from the DFG, if a node corresponds to a statement, the corresponding +// machine instruction is erased from the function. +bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) { + if (Nodes.empty()) + return false; + + // Prepare the actual set of ref nodes to remove: ref nodes from Nodes + // are included directly, for each InstrNode in Nodes, include the set + // of all RefNodes from it. + NodeList DRNs, DINs; + for (auto I : Nodes) { + auto BA = DFG.addr<NodeBase*>(I); + uint16_t Type = BA.Addr->getType(); + if (Type == NodeAttrs::Ref) { + DRNs.push_back(DFG.addr<RefNode*>(I)); + continue; + } + + // If it's a code node, add all ref nodes from it. + uint16_t Kind = BA.Addr->getKind(); + if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) { + for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG)) + DRNs.push_back(N); + DINs.push_back(DFG.addr<InstrNode*>(I)); + } else { + llvm_unreachable("Unexpected code node"); + return false; + } + } + + // Sort the list so that use nodes are removed first. This makes the + // "unlink" functions a bit faster. + auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool { + uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind(); + if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def) + return true; + if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use) + return false; + return A.Id < B.Id; + }; + std::sort(DRNs.begin(), DRNs.end(), UsesFirst); + + if (trace()) + dbgs() << "Removing dead ref nodes:\n"; + for (NodeAddr<RefNode*> RA : DRNs) { + if (trace()) + dbgs() << " " << PrintNode<RefNode*>(RA, DFG) << '\n'; + if (DFG.IsUse(RA)) + DFG.unlinkUse(RA, true); + else if (DFG.IsDef(RA)) + DFG.unlinkDef(RA, true); + } + + // Now, remove all dead instruction nodes. + for (NodeAddr<InstrNode*> IA : DINs) { + NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); + BA.Addr->removeMember(IA, DFG); + if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) + continue; + + MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); + if (trace()) + dbgs() << "erasing: " << *MI; + MI->eraseFromParent(); + } + return true; +}