Mercurial > hg > CbC > CbC_llvm
diff tools/llvm-objcopy/Object.cpp @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children | 3a76565eade5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tools/llvm-objcopy/Object.cpp Fri Oct 27 17:07:41 2017 +0900 @@ -0,0 +1,841 @@ +//===- Object.cpp -----------------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +#include "Object.h" +#include "llvm-objcopy.h" + +using namespace llvm; +using namespace object; +using namespace ELF; + +template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const { + typedef typename ELFT::Ehdr Elf_Ehdr; + typedef typename ELFT::Phdr Elf_Phdr; + + uint8_t *Buf = Out.getBufferStart(); + Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr); + Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf); + Phdr.p_type = Type; + Phdr.p_flags = Flags; + Phdr.p_offset = Offset; + Phdr.p_vaddr = VAddr; + Phdr.p_paddr = PAddr; + Phdr.p_filesz = FileSize; + Phdr.p_memsz = MemSize; + Phdr.p_align = Align; +} + +void Segment::writeSegment(FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart() + Offset; + // We want to maintain segments' interstitial data and contents exactly. + // This lets us just copy segments directly. + std::copy(std::begin(Contents), std::end(Contents), Buf); +} + +void SectionBase::removeSectionReferences(const SectionBase *Sec) {} +void SectionBase::initialize(SectionTableRef SecTable) {} +void SectionBase::finalize() {} + +template <class ELFT> +void SectionBase::writeHeader(FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart(); + Buf += HeaderOffset; + typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf); + Shdr.sh_name = NameIndex; + Shdr.sh_type = Type; + Shdr.sh_flags = Flags; + Shdr.sh_addr = Addr; + Shdr.sh_offset = Offset; + Shdr.sh_size = Size; + Shdr.sh_link = Link; + Shdr.sh_info = Info; + Shdr.sh_addralign = Align; + Shdr.sh_entsize = EntrySize; +} + +void Section::writeSection(FileOutputBuffer &Out) const { + if (Type == SHT_NOBITS) + return; + uint8_t *Buf = Out.getBufferStart() + Offset; + std::copy(std::begin(Contents), std::end(Contents), Buf); +} + +void StringTableSection::addString(StringRef Name) { + StrTabBuilder.add(Name); + Size = StrTabBuilder.getSize(); +} + +uint32_t StringTableSection::findIndex(StringRef Name) const { + return StrTabBuilder.getOffset(Name); +} + +void StringTableSection::finalize() { StrTabBuilder.finalize(); } + +void StringTableSection::writeSection(FileOutputBuffer &Out) const { + StrTabBuilder.write(Out.getBufferStart() + Offset); +} + +static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { + switch (Index) { + case SHN_ABS: + case SHN_COMMON: + return true; + } + if (Machine == EM_HEXAGON) { + switch (Index) { + case SHN_HEXAGON_SCOMMON: + case SHN_HEXAGON_SCOMMON_2: + case SHN_HEXAGON_SCOMMON_4: + case SHN_HEXAGON_SCOMMON_8: + return true; + } + } + return false; +} + +uint16_t Symbol::getShndx() const { + if (DefinedIn != nullptr) { + return DefinedIn->Index; + } + switch (ShndxType) { + // This means that we don't have a defined section but we do need to + // output a legitimate section index. + case SYMBOL_SIMPLE_INDEX: + return SHN_UNDEF; + case SYMBOL_ABS: + case SYMBOL_COMMON: + case SYMBOL_HEXAGON_SCOMMON: + case SYMBOL_HEXAGON_SCOMMON_2: + case SYMBOL_HEXAGON_SCOMMON_4: + case SYMBOL_HEXAGON_SCOMMON_8: + return static_cast<uint16_t>(ShndxType); + } + llvm_unreachable("Symbol with invalid ShndxType encountered"); +} + +void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type, + SectionBase *DefinedIn, uint64_t Value, + uint16_t Shndx, uint64_t Sz) { + Symbol Sym; + Sym.Name = Name; + Sym.Binding = Bind; + Sym.Type = Type; + Sym.DefinedIn = DefinedIn; + if (DefinedIn == nullptr) { + if (Shndx >= SHN_LORESERVE) + Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); + else + Sym.ShndxType = SYMBOL_SIMPLE_INDEX; + } + Sym.Value = Value; + Sym.Size = Sz; + Sym.Index = Symbols.size(); + Symbols.emplace_back(llvm::make_unique<Symbol>(Sym)); + Size += this->EntrySize; +} + +void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { + if (SymbolNames == Sec) { + error("String table " + SymbolNames->Name + + " cannot be removed because it is referenced by the symbol table " + + this->Name); + } + auto Iter = + std::remove_if(std::begin(Symbols), std::end(Symbols), + [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; }); + Size -= (std::end(Symbols) - Iter) * this->EntrySize; + Symbols.erase(Iter, std::end(Symbols)); +} + +void SymbolTableSection::initialize(SectionTableRef SecTable) { + Size = 0; + setStrTab(SecTable.getSectionOfType<StringTableSection>( + Link, + "Symbol table has link index of " + Twine(Link) + + " which is not a valid index", + "Symbol table has link index of " + Twine(Link) + + " which is not a string table")); +} + +void SymbolTableSection::finalize() { + // Make sure SymbolNames is finalized before getting name indexes. + SymbolNames->finalize(); + + uint32_t MaxLocalIndex = 0; + for (auto &Sym : Symbols) { + Sym->NameIndex = SymbolNames->findIndex(Sym->Name); + if (Sym->Binding == STB_LOCAL) + MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); + } + // Now we need to set the Link and Info fields. + Link = SymbolNames->Index; + Info = MaxLocalIndex + 1; +} + +void SymbolTableSection::addSymbolNames() { + // Add all of our strings to SymbolNames so that SymbolNames has the right + // size before layout is decided. + for (auto &Sym : Symbols) + SymbolNames->addString(Sym->Name); +} + +const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { + if (Symbols.size() <= Index) + error("Invalid symbol index: " + Twine(Index)); + return Symbols[Index].get(); +} + +template <class ELFT> +void SymbolTableSectionImpl<ELFT>::writeSection( + llvm::FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart(); + Buf += Offset; + typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf); + // Loop though symbols setting each entry of the symbol table. + for (auto &Symbol : Symbols) { + Sym->st_name = Symbol->NameIndex; + Sym->st_value = Symbol->Value; + Sym->st_size = Symbol->Size; + Sym->setBinding(Symbol->Binding); + Sym->setType(Symbol->Type); + Sym->st_shndx = Symbol->getShndx(); + ++Sym; + } +} + +template <class SymTabType> +void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences( + const SectionBase *Sec) { + if (Symbols == Sec) { + error("Symbol table " + Symbols->Name + " cannot be removed because it is " + "referenced by the relocation " + "section " + + this->Name); + } +} + +template <class SymTabType> +void RelocSectionWithSymtabBase<SymTabType>::initialize( + SectionTableRef SecTable) { + setSymTab(SecTable.getSectionOfType<SymTabType>( + Link, + "Link field value " + Twine(Link) + " in section " + Name + " is invalid", + "Link field value " + Twine(Link) + " in section " + Name + + " is not a symbol table")); + + if (Info != SHN_UNDEF) + setSection(SecTable.getSection(Info, + "Info field value " + Twine(Info) + + " in section " + Name + " is invalid")); + else + setSection(nullptr); +} + +template <class SymTabType> +void RelocSectionWithSymtabBase<SymTabType>::finalize() { + this->Link = Symbols->Index; + if (SecToApplyRel != nullptr) + this->Info = SecToApplyRel->Index; +} + +template <class ELFT> +void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {} + +template <class ELFT> +void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { + Rela.r_addend = Addend; +} + +template <class ELFT> +template <class T> +void RelocationSection<ELFT>::writeRel(T *Buf) const { + for (const auto &Reloc : Relocations) { + Buf->r_offset = Reloc.Offset; + setAddend(*Buf, Reloc.Addend); + Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); + ++Buf; + } +} + +template <class ELFT> +void RelocationSection<ELFT>::writeSection(llvm::FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart() + Offset; + if (Type == SHT_REL) + writeRel(reinterpret_cast<Elf_Rel *>(Buf)); + else + writeRel(reinterpret_cast<Elf_Rela *>(Buf)); +} + +void DynamicRelocationSection::writeSection(llvm::FileOutputBuffer &Out) const { + std::copy(std::begin(Contents), std::end(Contents), + Out.getBufferStart() + Offset); +} + +void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) { + if (StrTab == Sec) { + error("String table " + StrTab->Name + " cannot be removed because it is " + "referenced by the section " + + this->Name); + } +} + +bool SectionWithStrTab::classof(const SectionBase *S) { + return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S); +} + +void SectionWithStrTab::initialize(SectionTableRef SecTable) { + auto StrTab = SecTable.getSection(Link, + "Link field value " + Twine(Link) + + " in section " + Name + " is invalid"); + if (StrTab->Type != SHT_STRTAB) { + error("Link field value " + Twine(Link) + " in section " + Name + + " is not a string table"); + } + setStrTab(StrTab); +} + +void SectionWithStrTab::finalize() { this->Link = StrTab->Index; } + +// Returns true IFF a section is wholly inside the range of a segment +static bool sectionWithinSegment(const SectionBase &Section, + const Segment &Segment) { + // If a section is empty it should be treated like it has a size of 1. This is + // to clarify the case when an empty section lies on a boundary between two + // segments and ensures that the section "belongs" to the second segment and + // not the first. + uint64_t SecSize = Section.Size ? Section.Size : 1; + return Segment.Offset <= Section.OriginalOffset && + Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; +} + +// Returns true IFF a segment's original offset is inside of another segment's +// range. +static bool segmentOverlapsSegment(const Segment &Child, + const Segment &Parent) { + + return Parent.OriginalOffset <= Child.OriginalOffset && + Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; +} + +template <class ELFT> +void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) { + uint32_t Index = 0; + for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { + ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset, + (size_t)Phdr.p_filesz}; + Segments.emplace_back(llvm::make_unique<Segment>(Data)); + Segment &Seg = *Segments.back(); + Seg.Type = Phdr.p_type; + Seg.Flags = Phdr.p_flags; + Seg.OriginalOffset = Phdr.p_offset; + Seg.Offset = Phdr.p_offset; + Seg.VAddr = Phdr.p_vaddr; + Seg.PAddr = Phdr.p_paddr; + Seg.FileSize = Phdr.p_filesz; + Seg.MemSize = Phdr.p_memsz; + Seg.Align = Phdr.p_align; + Seg.Index = Index++; + for (auto &Section : Sections) { + if (sectionWithinSegment(*Section, Seg)) { + Seg.addSection(&*Section); + if (!Section->ParentSegment || + Section->ParentSegment->Offset > Seg.Offset) { + Section->ParentSegment = &Seg; + } + } + } + } + // Now we do an O(n^2) loop through the segments in order to match up + // segments. + for (auto &Child : Segments) { + for (auto &Parent : Segments) { + // Every segment will overlap with itself but we don't want a segment to + // be it's own parent so we avoid that situation. + if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) { + // We want a canonical "most parental" segment but this requires + // inspecting the ParentSegment. + if (Child->ParentSegment != nullptr) { + if (Child->ParentSegment->OriginalOffset > Parent->OriginalOffset) { + Child->ParentSegment = Parent.get(); + } else if (Child->ParentSegment->Index > Parent->Index) { + // They must have equal OriginalOffsets so we need to disambiguate. + // To decide which is the parent we'll choose the one with the + // higher index. + Child->ParentSegment = Parent.get(); + } + } else { + Child->ParentSegment = Parent.get(); + } + } + } + } +} + +template <class ELFT> +void Object<ELFT>::initSymbolTable(const llvm::object::ELFFile<ELFT> &ElfFile, + SymbolTableSection *SymTab, + SectionTableRef SecTable) { + + const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); + StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); + + for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) { + SectionBase *DefSection = nullptr; + StringRef Name = unwrapOrError(Sym.getName(StrTabData)); + + if (Sym.st_shndx >= SHN_LORESERVE) { + if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) { + error( + "Symbol '" + Name + + "' has unsupported value greater than or equal to SHN_LORESERVE: " + + Twine(Sym.st_shndx)); + } + } else if (Sym.st_shndx != SHN_UNDEF) { + DefSection = SecTable.getSection( + Sym.st_shndx, + "Symbol '" + Name + "' is defined in invalid section with index " + + Twine(Sym.st_shndx)); + } + + SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, + Sym.getValue(), Sym.st_shndx, Sym.st_size); + } +} + +template <class ELFT> +static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {} + +template <class ELFT> +static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { + ToSet = Rela.r_addend; +} + +template <class ELFT, class T> +void initRelocations(RelocationSection<ELFT> *Relocs, + SymbolTableSection *SymbolTable, T RelRange) { + for (const auto &Rel : RelRange) { + Relocation ToAdd; + ToAdd.Offset = Rel.r_offset; + getAddend(ToAdd.Addend, Rel); + ToAdd.Type = Rel.getType(false); + ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); + Relocs->addRelocation(ToAdd); + } +} + +SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) { + if (Index == SHN_UNDEF || Index > Sections.size()) + error(ErrMsg); + return Sections[Index - 1].get(); +} + +template <class T> +T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg, + Twine TypeErrMsg) { + if (T *Sec = llvm::dyn_cast<T>(getSection(Index, IndexErrMsg))) + return Sec; + error(TypeErrMsg); +} + +template <class ELFT> +std::unique_ptr<SectionBase> +Object<ELFT>::makeSection(const llvm::object::ELFFile<ELFT> &ElfFile, + const Elf_Shdr &Shdr) { + ArrayRef<uint8_t> Data; + switch (Shdr.sh_type) { + case SHT_REL: + case SHT_RELA: + if (Shdr.sh_flags & SHF_ALLOC) { + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<DynamicRelocationSection>(Data); + } + return llvm::make_unique<RelocationSection<ELFT>>(); + case SHT_STRTAB: + // If a string table is allocated we don't want to mess with it. That would + // mean altering the memory image. There are no special link types or + // anything so we can just use a Section. + if (Shdr.sh_flags & SHF_ALLOC) { + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<Section>(Data); + } + return llvm::make_unique<StringTableSection>(); + case SHT_HASH: + case SHT_GNU_HASH: + // Hash tables should refer to SHT_DYNSYM which we're not going to change. + // Because of this we don't need to mess with the hash tables either. + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<Section>(Data); + case SHT_DYNSYM: + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<DynamicSymbolTableSection>(Data); + case SHT_DYNAMIC: + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<DynamicSection>(Data); + case SHT_SYMTAB: { + auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>(); + SymbolTable = SymTab.get(); + return std::move(SymTab); + } + case SHT_NOBITS: + return llvm::make_unique<Section>(Data); + default: + Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); + return llvm::make_unique<Section>(Data); + } +} + +template <class ELFT> +SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) { + uint32_t Index = 0; + for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { + if (Index == 0) { + ++Index; + continue; + } + SecPtr Sec = makeSection(ElfFile, Shdr); + Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); + Sec->Type = Shdr.sh_type; + Sec->Flags = Shdr.sh_flags; + Sec->Addr = Shdr.sh_addr; + Sec->Offset = Shdr.sh_offset; + Sec->OriginalOffset = Shdr.sh_offset; + Sec->Size = Shdr.sh_size; + Sec->Link = Shdr.sh_link; + Sec->Info = Shdr.sh_info; + Sec->Align = Shdr.sh_addralign; + Sec->EntrySize = Shdr.sh_entsize; + Sec->Index = Index++; + Sections.push_back(std::move(Sec)); + } + + SectionTableRef SecTable(Sections); + + // Now that all of the sections have been added we can fill out some extra + // details about symbol tables. We need the symbol table filled out before + // any relocations. + if (SymbolTable) { + SymbolTable->initialize(SecTable); + initSymbolTable(ElfFile, SymbolTable, SecTable); + } + + // Now that all sections and symbols have been added we can add + // relocations that reference symbols and set the link and info fields for + // relocation sections. + for (auto &Section : Sections) { + if (Section.get() == SymbolTable) + continue; + Section->initialize(SecTable); + if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) { + auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; + if (RelSec->Type == SHT_REL) + initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr))); + else + initRelocations(RelSec, SymbolTable, + unwrapOrError(ElfFile.relas(Shdr))); + } + } + + return SecTable; +} + +template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) { + const auto &ElfFile = *Obj.getELFFile(); + const auto &Ehdr = *ElfFile.getHeader(); + + std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident); + Type = Ehdr.e_type; + Machine = Ehdr.e_machine; + Version = Ehdr.e_version; + Entry = Ehdr.e_entry; + Flags = Ehdr.e_flags; + + SectionTableRef SecTable = readSectionHeaders(ElfFile); + readProgramHeaders(ElfFile); + + SectionNames = SecTable.getSectionOfType<StringTableSection>( + Ehdr.e_shstrndx, + "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + + " is invalid", + "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + + " is not a string table"); +} + +template <class ELFT> +void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart(); + Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf); + std::copy(Ident, Ident + 16, Ehdr.e_ident); + Ehdr.e_type = Type; + Ehdr.e_machine = Machine; + Ehdr.e_version = Version; + Ehdr.e_entry = Entry; + Ehdr.e_phoff = sizeof(Elf_Ehdr); + Ehdr.e_flags = Flags; + Ehdr.e_ehsize = sizeof(Elf_Ehdr); + Ehdr.e_phentsize = sizeof(Elf_Phdr); + Ehdr.e_phnum = Segments.size(); + Ehdr.e_shentsize = sizeof(Elf_Shdr); + if (WriteSectionHeaders) { + Ehdr.e_shoff = SHOffset; + Ehdr.e_shnum = Sections.size() + 1; + Ehdr.e_shstrndx = SectionNames->Index; + } else { + Ehdr.e_shoff = 0; + Ehdr.e_shnum = 0; + Ehdr.e_shstrndx = 0; + } +} + +template <class ELFT> +void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const { + for (auto &Phdr : Segments) + Phdr->template writeHeader<ELFT>(Out); +} + +template <class ELFT> +void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const { + uint8_t *Buf = Out.getBufferStart() + SHOffset; + // This reference serves to write the dummy section header at the begining + // of the file. It is not used for anything else + Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf); + Shdr.sh_name = 0; + Shdr.sh_type = SHT_NULL; + Shdr.sh_flags = 0; + Shdr.sh_addr = 0; + Shdr.sh_offset = 0; + Shdr.sh_size = 0; + Shdr.sh_link = 0; + Shdr.sh_info = 0; + Shdr.sh_addralign = 0; + Shdr.sh_entsize = 0; + + for (auto &Section : Sections) + Section->template writeHeader<ELFT>(Out); +} + +template <class ELFT> +void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const { + for (auto &Section : Sections) + Section->writeSection(Out); +} + +template <class ELFT> +void Object<ELFT>::removeSections( + std::function<bool(const SectionBase &)> ToRemove) { + + auto Iter = std::stable_partition( + std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { + if (ToRemove(*Sec)) + return false; + if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { + if (auto ToRelSec = RelSec->getSection()) + return !ToRemove(*ToRelSec); + } + return true; + }); + if (SymbolTable != nullptr && ToRemove(*SymbolTable)) + SymbolTable = nullptr; + if (ToRemove(*SectionNames)) { + if (WriteSectionHeaders) + error("Cannot remove " + SectionNames->Name + + " because it is the section header string table."); + SectionNames = nullptr; + } + // Now make sure there are no remaining references to the sections that will + // be removed. Sometimes it is impossible to remove a reference so we emit + // an error here instead. + for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { + for (auto &Segment : Segments) + Segment->removeSection(RemoveSec.get()); + for (auto &KeepSec : make_range(std::begin(Sections), Iter)) + KeepSec->removeSectionReferences(RemoveSec.get()); + } + // Now finally get rid of them all togethor. + Sections.erase(Iter, std::end(Sections)); +} + +template <class ELFT> void ELFObject<ELFT>::sortSections() { + // Put all sections in offset order. Maintain the ordering as closely as + // possible while meeting that demand however. + auto CompareSections = [](const SecPtr &A, const SecPtr &B) { + return A->OriginalOffset < B->OriginalOffset; + }; + std::stable_sort(std::begin(this->Sections), std::end(this->Sections), + CompareSections); +} + +template <class ELFT> void ELFObject<ELFT>::assignOffsets() { + // We need a temporary list of segments that has a special order to it + // so that we know that anytime ->ParentSegment is set that segment has + // already had it's offset properly set. + std::vector<Segment *> OrderedSegments; + for (auto &Segment : this->Segments) + OrderedSegments.push_back(Segment.get()); + auto CompareSegments = [](const Segment *A, const Segment *B) { + // Any segment without a parent segment should come before a segment + // that has a parent segment. + if (A->OriginalOffset < B->OriginalOffset) + return true; + if (A->OriginalOffset > B->OriginalOffset) + return false; + return A->Index < B->Index; + }; + std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), + CompareSegments); + // The size of ELF + program headers will not change so it is ok to assume + // that the first offset of the first segment is a good place to start + // outputting sections. This covers both the standard case and the PT_PHDR + // case. + uint64_t Offset; + if (!OrderedSegments.empty()) { + Offset = OrderedSegments[0]->Offset; + } else { + Offset = sizeof(Elf_Ehdr); + } + // The only way a segment should move is if a section was between two + // segments and that section was removed. If that section isn't in a segment + // then it's acceptable, but not ideal, to simply move it to after the + // segments. So we can simply layout segments one after the other accounting + // for alignment. + for (auto &Segment : OrderedSegments) { + // We assume that segments have been ordered by OriginalOffset and Index + // such that a parent segment will always come before a child segment in + // OrderedSegments. This means that the Offset of the ParentSegment should + // already be set and we can set our offset relative to it. + if (Segment->ParentSegment != nullptr) { + auto Parent = Segment->ParentSegment; + Segment->Offset = + Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; + } else { + Offset = alignTo(Offset, Segment->Align == 0 ? 1 : Segment->Align); + Segment->Offset = Offset; + } + Offset = std::max(Offset, Segment->Offset + Segment->FileSize); + } + // Now the offset of every segment has been set we can assign the offsets + // of each section. For sections that are covered by a segment we should use + // the segment's original offset and the section's original offset to compute + // the offset from the start of the segment. Using the offset from the start + // of the segment we can assign a new offset to the section. For sections not + // covered by segments we can just bump Offset to the next valid location. + uint32_t Index = 1; + for (auto &Section : this->Sections) { + Section->Index = Index++; + if (Section->ParentSegment != nullptr) { + auto Segment = Section->ParentSegment; + Section->Offset = + Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset); + } else { + Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align); + Section->Offset = Offset; + if (Section->Type != SHT_NOBITS) + Offset += Section->Size; + } + } + + if (this->WriteSectionHeaders) { + Offset = alignTo(Offset, sizeof(typename ELFT::Addr)); + } + this->SHOffset = Offset; +} + +template <class ELFT> size_t ELFObject<ELFT>::totalSize() const { + // We already have the section header offset so we can calculate the total + // size by just adding up the size of each section header. + auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; + return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) + + NullSectionSize; +} + +template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const { + this->writeHeader(Out); + this->writeProgramHeaders(Out); + this->writeSectionData(Out); + if (this->WriteSectionHeaders) + this->writeSectionHeaders(Out); +} + +template <class ELFT> void ELFObject<ELFT>::finalize() { + // Make sure we add the names of all the sections. + if (this->SectionNames != nullptr) + for (const auto &Section : this->Sections) { + this->SectionNames->addString(Section->Name); + } + // Make sure we add the names of all the symbols. + if (this->SymbolTable != nullptr) + this->SymbolTable->addSymbolNames(); + + sortSections(); + assignOffsets(); + + // Finalize SectionNames first so that we can assign name indexes. + if (this->SectionNames != nullptr) + this->SectionNames->finalize(); + // Finally now that all offsets and indexes have been set we can finalize any + // remaining issues. + uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr); + for (auto &Section : this->Sections) { + Section->HeaderOffset = Offset; + Offset += sizeof(Elf_Shdr); + if (this->WriteSectionHeaders) + Section->NameIndex = this->SectionNames->findIndex(Section->Name); + Section->finalize(); + } +} + +template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const { + return TotalSize; +} + +template <class ELFT> +void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const { + for (auto &Segment : this->Segments) { + // GNU objcopy does not output segments that do not cover a section. Such + // segments can sometimes be produced by LLD due to how LLD handles PT_PHDR. + if (Segment->Type == llvm::ELF::PT_LOAD && + Segment->firstSection() != nullptr) { + Segment->writeSegment(Out); + } + } +} + +template <class ELFT> void BinaryObject<ELFT>::finalize() { + + // Put all segments in offset order. + auto CompareSegments = [](const SegPtr &A, const SegPtr &B) { + return A->Offset < B->Offset; + }; + std::sort(std::begin(this->Segments), std::end(this->Segments), + CompareSegments); + + uint64_t Offset = 0; + for (auto &Segment : this->Segments) { + if (Segment->Type == llvm::ELF::PT_LOAD && + Segment->firstSection() != nullptr) { + Offset = alignTo(Offset, Segment->Align); + Segment->Offset = Offset; + Offset += Segment->FileSize; + } + } + TotalSize = Offset; +} + +template class Object<ELF64LE>; +template class Object<ELF64BE>; +template class Object<ELF32LE>; +template class Object<ELF32BE>; + +template class ELFObject<ELF64LE>; +template class ELFObject<ELF64BE>; +template class ELFObject<ELF32LE>; +template class ELFObject<ELF32BE>; + +template class BinaryObject<ELF64LE>; +template class BinaryObject<ELF64BE>; +template class BinaryObject<ELF32LE>; +template class BinaryObject<ELF32BE>;