Mercurial > hg > CbC > CbC_llvm
diff docs/ExceptionHandling.rst @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/docs/ExceptionHandling.rst Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,364 @@ +========================== +Exception Handling in LLVM +========================== + +.. contents:: + :local: + +Introduction +============ + +This document is the central repository for all information pertaining to +exception handling in LLVM. It describes the format that LLVM exception +handling information takes, which is useful for those interested in creating +front-ends or dealing directly with the information. Further, this document +provides specific examples of what exception handling information is used for in +C and C++. + +Itanium ABI Zero-cost Exception Handling +---------------------------------------- + +Exception handling for most programming languages is designed to recover from +conditions that rarely occur during general use of an application. To that end, +exception handling should not interfere with the main flow of an application's +algorithm by performing checkpointing tasks, such as saving the current pc or +register state. + +The Itanium ABI Exception Handling Specification defines a methodology for +providing outlying data in the form of exception tables without inlining +speculative exception handling code in the flow of an application's main +algorithm. Thus, the specification is said to add "zero-cost" to the normal +execution of an application. + +A more complete description of the Itanium ABI exception handling runtime +support of can be found at `Itanium C++ ABI: Exception Handling +<http://mentorembedded.github.com/cxx-abi/abi-eh.html>`_. A description of the +exception frame format can be found at `Exception Frames +<http://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html>`_, +with details of the DWARF 4 specification at `DWARF 4 Standard +<http://dwarfstd.org/Dwarf4Std.php>`_. A description for the C++ exception +table formats can be found at `Exception Handling Tables +<http://mentorembedded.github.com/cxx-abi/exceptions.pdf>`_. + +Setjmp/Longjmp Exception Handling +--------------------------------- + +Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics +`llvm.eh.sjlj.setjmp`_ and `llvm.eh.sjlj.longjmp`_ to handle control flow for +exception handling. + +For each function which does exception processing --- be it ``try``/``catch`` +blocks or cleanups --- that function registers itself on a global frame +list. When exceptions are unwinding, the runtime uses this list to identify +which functions need processing. + +Landing pad selection is encoded in the call site entry of the function +context. The runtime returns to the function via `llvm.eh.sjlj.longjmp`_, where +a switch table transfers control to the appropriate landing pad based on the +index stored in the function context. + +In contrast to DWARF exception handling, which encodes exception regions and +frame information in out-of-line tables, SJLJ exception handling builds and +removes the unwind frame context at runtime. This results in faster exception +handling at the expense of slower execution when no exceptions are thrown. As +exceptions are, by their nature, intended for uncommon code paths, DWARF +exception handling is generally preferred to SJLJ. + +Overview +-------- + +When an exception is thrown in LLVM code, the runtime does its best to find a +handler suited to processing the circumstance. + +The runtime first attempts to find an *exception frame* corresponding to the +function where the exception was thrown. If the programming language supports +exception handling (e.g. C++), the exception frame contains a reference to an +exception table describing how to process the exception. If the language does +not support exception handling (e.g. C), or if the exception needs to be +forwarded to a prior activation, the exception frame contains information about +how to unwind the current activation and restore the state of the prior +activation. This process is repeated until the exception is handled. If the +exception is not handled and no activations remain, then the application is +terminated with an appropriate error message. + +Because different programming languages have different behaviors when handling +exceptions, the exception handling ABI provides a mechanism for +supplying *personalities*. An exception handling personality is defined by +way of a *personality function* (e.g. ``__gxx_personality_v0`` in C++), +which receives the context of the exception, an *exception structure* +containing the exception object type and value, and a reference to the exception +table for the current function. The personality function for the current +compile unit is specified in a *common exception frame*. + +The organization of an exception table is language dependent. For C++, an +exception table is organized as a series of code ranges defining what to do if +an exception occurs in that range. Typically, the information associated with a +range defines which types of exception objects (using C++ *type info*) that are +handled in that range, and an associated action that should take place. Actions +typically pass control to a *landing pad*. + +A landing pad corresponds roughly to the code found in the ``catch`` portion of +a ``try``/``catch`` sequence. When execution resumes at a landing pad, it +receives an *exception structure* and a *selector value* corresponding to the +*type* of exception thrown. The selector is then used to determine which *catch* +should actually process the exception. + +LLVM Code Generation +==================== + +From a C++ developer's perspective, exceptions are defined in terms of the +``throw`` and ``try``/``catch`` statements. In this section we will describe the +implementation of LLVM exception handling in terms of C++ examples. + +Throw +----- + +Languages that support exception handling typically provide a ``throw`` +operation to initiate the exception process. Internally, a ``throw`` operation +breaks down into two steps. + +#. A request is made to allocate exception space for an exception structure. + This structure needs to survive beyond the current activation. This structure + will contain the type and value of the object being thrown. + +#. A call is made to the runtime to raise the exception, passing the exception + structure as an argument. + +In C++, the allocation of the exception structure is done by the +``__cxa_allocate_exception`` runtime function. The exception raising is handled +by ``__cxa_throw``. The type of the exception is represented using a C++ RTTI +structure. + +Try/Catch +--------- + +A call within the scope of a *try* statement can potentially raise an +exception. In those circumstances, the LLVM C++ front-end replaces the call with +an ``invoke`` instruction. Unlike a call, the ``invoke`` has two potential +continuation points: + +#. where to continue when the call succeeds as per normal, and + +#. where to continue if the call raises an exception, either by a throw or the + unwinding of a throw + +The term used to define a the place where an ``invoke`` continues after an +exception is called a *landing pad*. LLVM landing pads are conceptually +alternative function entry points where an exception structure reference and a +type info index are passed in as arguments. The landing pad saves the exception +structure reference and then proceeds to select the catch block that corresponds +to the type info of the exception object. + +The LLVM :ref:`i_landingpad` is used to convey information about the landing +pad to the back end. For C++, the ``landingpad`` instruction returns a pointer +and integer pair corresponding to the pointer to the *exception structure* and +the *selector value* respectively. + +The ``landingpad`` instruction takes a reference to the personality function to +be used for this ``try``/``catch`` sequence. The remainder of the instruction is +a list of *cleanup*, *catch*, and *filter* clauses. The exception is tested +against the clauses sequentially from first to last. The selector value is a +positive number if the exception matched a type info, a negative number if it +matched a filter, and zero if it matched a cleanup. If nothing is matched, the +behavior of the program is `undefined`_. If a type info matched, then the +selector value is the index of the type info in the exception table, which can +be obtained using the `llvm.eh.typeid.for`_ intrinsic. + +Once the landing pad has the type info selector, the code branches to the code +for the first catch. The catch then checks the value of the type info selector +against the index of type info for that catch. Since the type info index is not +known until all the type infos have been gathered in the backend, the catch code +must call the `llvm.eh.typeid.for`_ intrinsic to determine the index for a given +type info. If the catch fails to match the selector then control is passed on to +the next catch. + +Finally, the entry and exit of catch code is bracketed with calls to +``__cxa_begin_catch`` and ``__cxa_end_catch``. + +* ``__cxa_begin_catch`` takes an exception structure reference as an argument + and returns the value of the exception object. + +* ``__cxa_end_catch`` takes no arguments. This function: + + #. Locates the most recently caught exception and decrements its handler + count, + + #. Removes the exception from the *caught* stack if the handler count goes to + zero, and + + #. Destroys the exception if the handler count goes to zero and the exception + was not re-thrown by throw. + + .. note:: + + a rethrow from within the catch may replace this call with a + ``__cxa_rethrow``. + +Cleanups +-------- + +A cleanup is extra code which needs to be run as part of unwinding a scope. C++ +destructors are a typical example, but other languages and language extensions +provide a variety of different kinds of cleanups. In general, a landing pad may +need to run arbitrary amounts of cleanup code before actually entering a catch +block. To indicate the presence of cleanups, a :ref:`i_landingpad` should have +a *cleanup* clause. Otherwise, the unwinder will not stop at the landing pad if +there are no catches or filters that require it to. + +.. note:: + + Do not allow a new exception to propagate out of the execution of a + cleanup. This can corrupt the internal state of the unwinder. Different + languages describe different high-level semantics for these situations: for + example, C++ requires that the process be terminated, whereas Ada cancels both + exceptions and throws a third. + +When all cleanups are finished, if the exception is not handled by the current +function, resume unwinding by calling the `resume +instruction <LangRef.html#i_resume>`_, passing in the result of the +``landingpad`` instruction for the original landing pad. + +Throw Filters +------------- + +C++ allows the specification of which exception types may be thrown from a +function. To represent this, a top level landing pad may exist to filter out +invalid types. To express this in LLVM code the :ref:`i_landingpad` will have a +filter clause. The clause consists of an array of type infos. +``landingpad`` will return a negative value +if the exception does not match any of the type infos. If no match is found then +a call to ``__cxa_call_unexpected`` should be made, otherwise +``_Unwind_Resume``. Each of these functions requires a reference to the +exception structure. Note that the most general form of a ``landingpad`` +instruction can have any number of catch, cleanup, and filter clauses (though +having more than one cleanup is pointless). The LLVM C++ front-end can generate +such ``landingpad`` instructions due to inlining creating nested exception +handling scopes. + +.. _undefined: + +Restrictions +------------ + +The unwinder delegates the decision of whether to stop in a call frame to that +call frame's language-specific personality function. Not all unwinders guarantee +that they will stop to perform cleanups. For example, the GNU C++ unwinder +doesn't do so unless the exception is actually caught somewhere further up the +stack. + +In order for inlining to behave correctly, landing pads must be prepared to +handle selector results that they did not originally advertise. Suppose that a +function catches exceptions of type ``A``, and it's inlined into a function that +catches exceptions of type ``B``. The inliner will update the ``landingpad`` +instruction for the inlined landing pad to include the fact that ``B`` is also +caught. If that landing pad assumes that it will only be entered to catch an +``A``, it's in for a rude awakening. Consequently, landing pads must test for +the selector results they understand and then resume exception propagation with +the `resume instruction <LangRef.html#i_resume>`_ if none of the conditions +match. + +Exception Handling Intrinsics +============================= + +In addition to the ``landingpad`` and ``resume`` instructions, LLVM uses several +intrinsic functions (name prefixed with ``llvm.eh``) to provide exception +handling information at various points in generated code. + +.. _llvm.eh.typeid.for: + +``llvm.eh.typeid.for`` +---------------------- + +.. code-block:: llvm + + i32 @llvm.eh.typeid.for(i8* %type_info) + + +This intrinsic returns the type info index in the exception table of the current +function. This value can be used to compare against the result of +``landingpad`` instruction. The single argument is a reference to a type info. + +.. _llvm.eh.sjlj.setjmp: + +``llvm.eh.sjlj.setjmp`` +----------------------- + +.. code-block:: llvm + + i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf) + +For SJLJ based exception handling, this intrinsic forces register saving for the +current function and stores the address of the following instruction for use as +a destination address by `llvm.eh.sjlj.longjmp`_. The buffer format and the +overall functioning of this intrinsic is compatible with the GCC +``__builtin_setjmp`` implementation allowing code built with the clang and GCC +to interoperate. + +The single parameter is a pointer to a five word buffer in which the calling +context is saved. The front end places the frame pointer in the first word, and +the target implementation of this intrinsic should place the destination address +for a `llvm.eh.sjlj.longjmp`_ in the second word. The following three words are +available for use in a target-specific manner. + +.. _llvm.eh.sjlj.longjmp: + +``llvm.eh.sjlj.longjmp`` +------------------------ + +.. code-block:: llvm + + void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf) + +For SJLJ based exception handling, the ``llvm.eh.sjlj.longjmp`` intrinsic is +used to implement ``__builtin_longjmp()``. The single parameter is a pointer to +a buffer populated by `llvm.eh.sjlj.setjmp`_. The frame pointer and stack +pointer are restored from the buffer, then control is transferred to the +destination address. + +``llvm.eh.sjlj.lsda`` +--------------------- + +.. code-block:: llvm + + i8* @llvm.eh.sjlj.lsda() + +For SJLJ based exception handling, the ``llvm.eh.sjlj.lsda`` intrinsic returns +the address of the Language Specific Data Area (LSDA) for the current +function. The SJLJ front-end code stores this address in the exception handling +function context for use by the runtime. + +``llvm.eh.sjlj.callsite`` +------------------------- + +.. code-block:: llvm + + void @llvm.eh.sjlj.callsite(i32 %call_site_num) + +For SJLJ based exception handling, the ``llvm.eh.sjlj.callsite`` intrinsic +identifies the callsite value associated with the following ``invoke`` +instruction. This is used to ensure that landing pad entries in the LSDA are +generated in matching order. + +Asm Table Formats +================= + +There are two tables that are used by the exception handling runtime to +determine which actions should be taken when an exception is thrown. + +Exception Handling Frame +------------------------ + +An exception handling frame ``eh_frame`` is very similar to the unwind frame +used by DWARF debug info. The frame contains all the information necessary to +tear down the current frame and restore the state of the prior frame. There is +an exception handling frame for each function in a compile unit, plus a common +exception handling frame that defines information common to all functions in the +unit. + +Exception Tables +---------------- + +An exception table contains information about what actions to take when an +exception is thrown in a particular part of a function's code. There is one +exception table per function, except leaf functions and functions that have +calls only to non-throwing functions. They do not need an exception table.