diff docs/tutorial/OCamlLangImpl1.rst @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 7d135dc70f03
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/docs/tutorial/OCamlLangImpl1.rst	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,285 @@
+=================================================
+Kaleidoscope: Tutorial Introduction and the Lexer
+=================================================
+
+.. contents::
+   :local:
+
+Tutorial Introduction
+=====================
+
+Welcome to the "Implementing a language with LLVM" tutorial. This
+tutorial runs through the implementation of a simple language, showing
+how fun and easy it can be. This tutorial will get you up and started as
+well as help to build a framework you can extend to other languages. The
+code in this tutorial can also be used as a playground to hack on other
+LLVM specific things.
+
+The goal of this tutorial is to progressively unveil our language,
+describing how it is built up over time. This will let us cover a fairly
+broad range of language design and LLVM-specific usage issues, showing
+and explaining the code for it all along the way, without overwhelming
+you with tons of details up front.
+
+It is useful to point out ahead of time that this tutorial is really
+about teaching compiler techniques and LLVM specifically, *not* about
+teaching modern and sane software engineering principles. In practice,
+this means that we'll take a number of shortcuts to simplify the
+exposition. For example, the code leaks memory, uses global variables
+all over the place, doesn't use nice design patterns like
+`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
+it is very simple. If you dig in and use the code as a basis for future
+projects, fixing these deficiencies shouldn't be hard.
+
+I've tried to put this tutorial together in a way that makes chapters
+easy to skip over if you are already familiar with or are uninterested
+in the various pieces. The structure of the tutorial is:
+
+-  `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
+   language, and the definition of its Lexer - This shows where we are
+   going and the basic functionality that we want it to do. In order to
+   make this tutorial maximally understandable and hackable, we choose
+   to implement everything in Objective Caml instead of using lexer and
+   parser generators. LLVM obviously works just fine with such tools,
+   feel free to use one if you prefer.
+-  `Chapter #2 <OCamlLangImpl2.html>`_: Implementing a Parser and
+   AST - With the lexer in place, we can talk about parsing techniques
+   and basic AST construction. This tutorial describes recursive descent
+   parsing and operator precedence parsing. Nothing in Chapters 1 or 2
+   is LLVM-specific, the code doesn't even link in LLVM at this point.
+   :)
+-  `Chapter #3 <OCamlLangImpl3.html>`_: Code generation to LLVM IR -
+   With the AST ready, we can show off how easy generation of LLVM IR
+   really is.
+-  `Chapter #4 <OCamlLangImpl4.html>`_: Adding JIT and Optimizer
+   Support - Because a lot of people are interested in using LLVM as a
+   JIT, we'll dive right into it and show you the 3 lines it takes to
+   add JIT support. LLVM is also useful in many other ways, but this is
+   one simple and "sexy" way to shows off its power. :)
+-  `Chapter #5 <OCamlLangImpl5.html>`_: Extending the Language:
+   Control Flow - With the language up and running, we show how to
+   extend it with control flow operations (if/then/else and a 'for'
+   loop). This gives us a chance to talk about simple SSA construction
+   and control flow.
+-  `Chapter #6 <OCamlLangImpl6.html>`_: Extending the Language:
+   User-defined Operators - This is a silly but fun chapter that talks
+   about extending the language to let the user program define their own
+   arbitrary unary and binary operators (with assignable precedence!).
+   This lets us build a significant piece of the "language" as library
+   routines.
+-  `Chapter #7 <OCamlLangImpl7.html>`_: Extending the Language:
+   Mutable Variables - This chapter talks about adding user-defined
+   local variables along with an assignment operator. The interesting
+   part about this is how easy and trivial it is to construct SSA form
+   in LLVM: no, LLVM does *not* require your front-end to construct SSA
+   form!
+-  `Chapter #8 <OCamlLangImpl8.html>`_: Conclusion and other useful
+   LLVM tidbits - This chapter wraps up the series by talking about
+   potential ways to extend the language, but also includes a bunch of
+   pointers to info about "special topics" like adding garbage
+   collection support, exceptions, debugging, support for "spaghetti
+   stacks", and a bunch of other tips and tricks.
+
+By the end of the tutorial, we'll have written a bit less than 700 lines
+of non-comment, non-blank, lines of code. With this small amount of
+code, we'll have built up a very reasonable compiler for a non-trivial
+language including a hand-written lexer, parser, AST, as well as code
+generation support with a JIT compiler. While other systems may have
+interesting "hello world" tutorials, I think the breadth of this
+tutorial is a great testament to the strengths of LLVM and why you
+should consider it if you're interested in language or compiler design.
+
+A note about this tutorial: we expect you to extend the language and
+play with it on your own. Take the code and go crazy hacking away at it,
+compilers don't need to be scary creatures - it can be a lot of fun to
+play with languages!
+
+The Basic Language
+==================
+
+This tutorial will be illustrated with a toy language that we'll call
+"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived
+from "meaning beautiful, form, and view"). Kaleidoscope is a procedural
+language that allows you to define functions, use conditionals, math,
+etc. Over the course of the tutorial, we'll extend Kaleidoscope to
+support the if/then/else construct, a for loop, user defined operators,
+JIT compilation with a simple command line interface, etc.
+
+Because we want to keep things simple, the only datatype in Kaleidoscope
+is a 64-bit floating point type (aka 'float' in O'Caml parlance). As
+such, all values are implicitly double precision and the language
+doesn't require type declarations. This gives the language a very nice
+and simple syntax. For example, the following simple example computes
+`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_
+
+::
+
+    # Compute the x'th fibonacci number.
+    def fib(x)
+      if x < 3 then
+        1
+      else
+        fib(x-1)+fib(x-2)
+
+    # This expression will compute the 40th number.
+    fib(40)
+
+We also allow Kaleidoscope to call into standard library functions (the
+LLVM JIT makes this completely trivial). This means that you can use the
+'extern' keyword to define a function before you use it (this is also
+useful for mutually recursive functions). For example:
+
+::
+
+    extern sin(arg);
+    extern cos(arg);
+    extern atan2(arg1 arg2);
+
+    atan2(sin(.4), cos(42))
+
+A more interesting example is included in Chapter 6 where we write a
+little Kaleidoscope application that `displays a Mandelbrot
+Set <OCamlLangImpl6.html#example>`_ at various levels of magnification.
+
+Lets dive into the implementation of this language!
+
+The Lexer
+=========
+
+When it comes to implementing a language, the first thing needed is the
+ability to process a text file and recognize what it says. The
+traditional way to do this is to use a
+"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka
+'scanner') to break the input up into "tokens". Each token returned by
+the lexer includes a token code and potentially some metadata (e.g. the
+numeric value of a number). First, we define the possibilities:
+
+.. code-block:: ocaml
+
+    (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+     * these others for known things. *)
+    type token =
+      (* commands *)
+      | Def | Extern
+
+      (* primary *)
+      | Ident of string | Number of float
+
+      (* unknown *)
+      | Kwd of char
+
+Each token returned by our lexer will be one of the token variant
+values. An unknown character like '+' will be returned as
+``Token.Kwd '+'``. If the curr token is an identifier, the value will be
+``Token.Ident s``. If the current token is a numeric literal (like 1.0),
+the value will be ``Token.Number 1.0``.
+
+The actual implementation of the lexer is a collection of functions
+driven by a function named ``Lexer.lex``. The ``Lexer.lex`` function is
+called to return the next token from standard input. We will use
+`Camlp4 <http://caml.inria.fr/pub/docs/manual-camlp4/index.html>`_ to
+simplify the tokenization of the standard input. Its definition starts
+as:
+
+.. code-block:: ocaml
+
+    (*===----------------------------------------------------------------------===
+     * Lexer
+     *===----------------------------------------------------------------------===*)
+
+    let rec lex = parser
+      (* Skip any whitespace. *)
+      | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+``Lexer.lex`` works by recursing over a ``char Stream.t`` to read
+characters one at a time from the standard input. It eats them as it
+recognizes them and stores them in in a ``Token.token`` variant. The
+first thing that it has to do is ignore whitespace between tokens. This
+is accomplished with the recursive call above.
+
+The next thing ``Lexer.lex`` needs to do is recognize identifiers and
+specific keywords like "def". Kaleidoscope does this with a pattern
+match and a helper function.
+
+.. code-block:: ocaml
+
+      (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+      | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+          let buffer = Buffer.create 1 in
+          Buffer.add_char buffer c;
+          lex_ident buffer stream
+
+    ...
+
+    and lex_ident buffer = parser
+      | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+          Buffer.add_char buffer c;
+          lex_ident buffer stream
+      | [< stream=lex >] ->
+          match Buffer.contents buffer with
+          | "def" -> [< 'Token.Def; stream >]
+          | "extern" -> [< 'Token.Extern; stream >]
+          | id -> [< 'Token.Ident id; stream >]
+
+Numeric values are similar:
+
+.. code-block:: ocaml
+
+      (* number: [0-9.]+ *)
+      | [< ' ('0' .. '9' as c); stream >] ->
+          let buffer = Buffer.create 1 in
+          Buffer.add_char buffer c;
+          lex_number buffer stream
+
+    ...
+
+    and lex_number buffer = parser
+      | [< ' ('0' .. '9' | '.' as c); stream >] ->
+          Buffer.add_char buffer c;
+          lex_number buffer stream
+      | [< stream=lex >] ->
+          [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+This is all pretty straight-forward code for processing input. When
+reading a numeric value from input, we use the ocaml ``float_of_string``
+function to convert it to a numeric value that we store in
+``Token.Number``. Note that this isn't doing sufficient error checking:
+it will raise ``Failure`` if the string "1.23.45.67". Feel free to
+extend it :). Next we handle comments:
+
+.. code-block:: ocaml
+
+      (* Comment until end of line. *)
+      | [< ' ('#'); stream >] ->
+          lex_comment stream
+
+    ...
+
+    and lex_comment = parser
+      | [< ' ('\n'); stream=lex >] -> stream
+      | [< 'c; e=lex_comment >] -> e
+      | [< >] -> [< >]
+
+We handle comments by skipping to the end of the line and then return
+the next token. Finally, if the input doesn't match one of the above
+cases, it is either an operator character like '+' or the end of the
+file. These are handled with this code:
+
+.. code-block:: ocaml
+
+      (* Otherwise, just return the character as its ascii value. *)
+      | [< 'c; stream >] ->
+          [< 'Token.Kwd c; lex stream >]
+
+      (* end of stream. *)
+      | [< >] -> [< >]
+
+With this, we have the complete lexer for the basic Kaleidoscope
+language (the `full code listing <OCamlLangImpl2.html#code>`_ for the
+Lexer is available in the `next chapter <OCamlLangImpl2.html>`_ of the
+tutorial). Next we'll `build a simple parser that uses this to build an
+Abstract Syntax Tree <OCamlLangImpl2.html>`_. When we have that, we'll
+include a driver so that you can use the lexer and parser together.
+
+`Next: Implementing a Parser and AST <OCamlLangImpl2.html>`_
+