Mercurial > hg > CbC > CbC_llvm
diff docs/tutorial/OCamlLangImpl1.rst @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 7d135dc70f03 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/docs/tutorial/OCamlLangImpl1.rst Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,285 @@ +================================================= +Kaleidoscope: Tutorial Introduction and the Lexer +================================================= + +.. contents:: + :local: + +Tutorial Introduction +===================== + +Welcome to the "Implementing a language with LLVM" tutorial. This +tutorial runs through the implementation of a simple language, showing +how fun and easy it can be. This tutorial will get you up and started as +well as help to build a framework you can extend to other languages. The +code in this tutorial can also be used as a playground to hack on other +LLVM specific things. + +The goal of this tutorial is to progressively unveil our language, +describing how it is built up over time. This will let us cover a fairly +broad range of language design and LLVM-specific usage issues, showing +and explaining the code for it all along the way, without overwhelming +you with tons of details up front. + +It is useful to point out ahead of time that this tutorial is really +about teaching compiler techniques and LLVM specifically, *not* about +teaching modern and sane software engineering principles. In practice, +this means that we'll take a number of shortcuts to simplify the +exposition. For example, the code leaks memory, uses global variables +all over the place, doesn't use nice design patterns like +`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but +it is very simple. If you dig in and use the code as a basis for future +projects, fixing these deficiencies shouldn't be hard. + +I've tried to put this tutorial together in a way that makes chapters +easy to skip over if you are already familiar with or are uninterested +in the various pieces. The structure of the tutorial is: + +- `Chapter #1 <#language>`_: Introduction to the Kaleidoscope + language, and the definition of its Lexer - This shows where we are + going and the basic functionality that we want it to do. In order to + make this tutorial maximally understandable and hackable, we choose + to implement everything in Objective Caml instead of using lexer and + parser generators. LLVM obviously works just fine with such tools, + feel free to use one if you prefer. +- `Chapter #2 <OCamlLangImpl2.html>`_: Implementing a Parser and + AST - With the lexer in place, we can talk about parsing techniques + and basic AST construction. This tutorial describes recursive descent + parsing and operator precedence parsing. Nothing in Chapters 1 or 2 + is LLVM-specific, the code doesn't even link in LLVM at this point. + :) +- `Chapter #3 <OCamlLangImpl3.html>`_: Code generation to LLVM IR - + With the AST ready, we can show off how easy generation of LLVM IR + really is. +- `Chapter #4 <OCamlLangImpl4.html>`_: Adding JIT and Optimizer + Support - Because a lot of people are interested in using LLVM as a + JIT, we'll dive right into it and show you the 3 lines it takes to + add JIT support. LLVM is also useful in many other ways, but this is + one simple and "sexy" way to shows off its power. :) +- `Chapter #5 <OCamlLangImpl5.html>`_: Extending the Language: + Control Flow - With the language up and running, we show how to + extend it with control flow operations (if/then/else and a 'for' + loop). This gives us a chance to talk about simple SSA construction + and control flow. +- `Chapter #6 <OCamlLangImpl6.html>`_: Extending the Language: + User-defined Operators - This is a silly but fun chapter that talks + about extending the language to let the user program define their own + arbitrary unary and binary operators (with assignable precedence!). + This lets us build a significant piece of the "language" as library + routines. +- `Chapter #7 <OCamlLangImpl7.html>`_: Extending the Language: + Mutable Variables - This chapter talks about adding user-defined + local variables along with an assignment operator. The interesting + part about this is how easy and trivial it is to construct SSA form + in LLVM: no, LLVM does *not* require your front-end to construct SSA + form! +- `Chapter #8 <OCamlLangImpl8.html>`_: Conclusion and other useful + LLVM tidbits - This chapter wraps up the series by talking about + potential ways to extend the language, but also includes a bunch of + pointers to info about "special topics" like adding garbage + collection support, exceptions, debugging, support for "spaghetti + stacks", and a bunch of other tips and tricks. + +By the end of the tutorial, we'll have written a bit less than 700 lines +of non-comment, non-blank, lines of code. With this small amount of +code, we'll have built up a very reasonable compiler for a non-trivial +language including a hand-written lexer, parser, AST, as well as code +generation support with a JIT compiler. While other systems may have +interesting "hello world" tutorials, I think the breadth of this +tutorial is a great testament to the strengths of LLVM and why you +should consider it if you're interested in language or compiler design. + +A note about this tutorial: we expect you to extend the language and +play with it on your own. Take the code and go crazy hacking away at it, +compilers don't need to be scary creatures - it can be a lot of fun to +play with languages! + +The Basic Language +================== + +This tutorial will be illustrated with a toy language that we'll call +"`Kaleidoscope <http://en.wikipedia.org/wiki/Kaleidoscope>`_" (derived +from "meaning beautiful, form, and view"). Kaleidoscope is a procedural +language that allows you to define functions, use conditionals, math, +etc. Over the course of the tutorial, we'll extend Kaleidoscope to +support the if/then/else construct, a for loop, user defined operators, +JIT compilation with a simple command line interface, etc. + +Because we want to keep things simple, the only datatype in Kaleidoscope +is a 64-bit floating point type (aka 'float' in O'Caml parlance). As +such, all values are implicitly double precision and the language +doesn't require type declarations. This gives the language a very nice +and simple syntax. For example, the following simple example computes +`Fibonacci numbers: <http://en.wikipedia.org/wiki/Fibonacci_number>`_ + +:: + + # Compute the x'th fibonacci number. + def fib(x) + if x < 3 then + 1 + else + fib(x-1)+fib(x-2) + + # This expression will compute the 40th number. + fib(40) + +We also allow Kaleidoscope to call into standard library functions (the +LLVM JIT makes this completely trivial). This means that you can use the +'extern' keyword to define a function before you use it (this is also +useful for mutually recursive functions). For example: + +:: + + extern sin(arg); + extern cos(arg); + extern atan2(arg1 arg2); + + atan2(sin(.4), cos(42)) + +A more interesting example is included in Chapter 6 where we write a +little Kaleidoscope application that `displays a Mandelbrot +Set <OCamlLangImpl6.html#example>`_ at various levels of magnification. + +Lets dive into the implementation of this language! + +The Lexer +========= + +When it comes to implementing a language, the first thing needed is the +ability to process a text file and recognize what it says. The +traditional way to do this is to use a +"`lexer <http://en.wikipedia.org/wiki/Lexical_analysis>`_" (aka +'scanner') to break the input up into "tokens". Each token returned by +the lexer includes a token code and potentially some metadata (e.g. the +numeric value of a number). First, we define the possibilities: + +.. code-block:: ocaml + + (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of + * these others for known things. *) + type token = + (* commands *) + | Def | Extern + + (* primary *) + | Ident of string | Number of float + + (* unknown *) + | Kwd of char + +Each token returned by our lexer will be one of the token variant +values. An unknown character like '+' will be returned as +``Token.Kwd '+'``. If the curr token is an identifier, the value will be +``Token.Ident s``. If the current token is a numeric literal (like 1.0), +the value will be ``Token.Number 1.0``. + +The actual implementation of the lexer is a collection of functions +driven by a function named ``Lexer.lex``. The ``Lexer.lex`` function is +called to return the next token from standard input. We will use +`Camlp4 <http://caml.inria.fr/pub/docs/manual-camlp4/index.html>`_ to +simplify the tokenization of the standard input. Its definition starts +as: + +.. code-block:: ocaml + + (*===----------------------------------------------------------------------=== + * Lexer + *===----------------------------------------------------------------------===*) + + let rec lex = parser + (* Skip any whitespace. *) + | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream + +``Lexer.lex`` works by recursing over a ``char Stream.t`` to read +characters one at a time from the standard input. It eats them as it +recognizes them and stores them in in a ``Token.token`` variant. The +first thing that it has to do is ignore whitespace between tokens. This +is accomplished with the recursive call above. + +The next thing ``Lexer.lex`` needs to do is recognize identifiers and +specific keywords like "def". Kaleidoscope does this with a pattern +match and a helper function. + +.. code-block:: ocaml + + (* identifier: [a-zA-Z][a-zA-Z0-9] *) + | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_ident buffer stream + + ... + + and lex_ident buffer = parser + | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> + Buffer.add_char buffer c; + lex_ident buffer stream + | [< stream=lex >] -> + match Buffer.contents buffer with + | "def" -> [< 'Token.Def; stream >] + | "extern" -> [< 'Token.Extern; stream >] + | id -> [< 'Token.Ident id; stream >] + +Numeric values are similar: + +.. code-block:: ocaml + + (* number: [0-9.]+ *) + | [< ' ('0' .. '9' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_number buffer stream + + ... + + and lex_number buffer = parser + | [< ' ('0' .. '9' | '.' as c); stream >] -> + Buffer.add_char buffer c; + lex_number buffer stream + | [< stream=lex >] -> + [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] + +This is all pretty straight-forward code for processing input. When +reading a numeric value from input, we use the ocaml ``float_of_string`` +function to convert it to a numeric value that we store in +``Token.Number``. Note that this isn't doing sufficient error checking: +it will raise ``Failure`` if the string "1.23.45.67". Feel free to +extend it :). Next we handle comments: + +.. code-block:: ocaml + + (* Comment until end of line. *) + | [< ' ('#'); stream >] -> + lex_comment stream + + ... + + and lex_comment = parser + | [< ' ('\n'); stream=lex >] -> stream + | [< 'c; e=lex_comment >] -> e + | [< >] -> [< >] + +We handle comments by skipping to the end of the line and then return +the next token. Finally, if the input doesn't match one of the above +cases, it is either an operator character like '+' or the end of the +file. These are handled with this code: + +.. code-block:: ocaml + + (* Otherwise, just return the character as its ascii value. *) + | [< 'c; stream >] -> + [< 'Token.Kwd c; lex stream >] + + (* end of stream. *) + | [< >] -> [< >] + +With this, we have the complete lexer for the basic Kaleidoscope +language (the `full code listing <OCamlLangImpl2.html#code>`_ for the +Lexer is available in the `next chapter <OCamlLangImpl2.html>`_ of the +tutorial). Next we'll `build a simple parser that uses this to build an +Abstract Syntax Tree <OCamlLangImpl2.html>`_. When we have that, we'll +include a driver so that you can use the lexer and parser together. + +`Next: Implementing a Parser and AST <OCamlLangImpl2.html>`_ +