Mercurial > hg > CbC > CbC_llvm
diff examples/ParallelJIT/ParallelJIT.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/ParallelJIT/ParallelJIT.cpp Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,305 @@ +//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Parallel JIT +// +// This test program creates two LLVM functions then calls them from three +// separate threads. It requires the pthreads library. +// The three threads are created and then block waiting on a condition variable. +// Once all threads are blocked on the conditional variable, the main thread +// wakes them up. This complicated work is performed so that all three threads +// call into the JIT at the same time (or the best possible approximation of the +// same time). This test had assertion errors until I got the locking right. + +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ExecutionEngine/Interpreter.h" +#include "llvm/ExecutionEngine/JIT.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/TargetSelect.h" +#include <iostream> +#include <pthread.h> +using namespace llvm; + +static Function* createAdd1(Module *M) { + // Create the add1 function entry and insert this entry into module M. The + // function will have a return type of "int" and take an argument of "int". + // The '0' terminates the list of argument types. + Function *Add1F = + cast<Function>(M->getOrInsertFunction("add1", + Type::getInt32Ty(M->getContext()), + Type::getInt32Ty(M->getContext()), + (Type *)0)); + + // Add a basic block to the function. As before, it automatically inserts + // because of the last argument. + BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F); + + // Get pointers to the constant `1'. + Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); + + // Get pointers to the integer argument of the add1 function... + assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg + Argument *ArgX = Add1F->arg_begin(); // Get the arg + ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. + + // Create the add instruction, inserting it into the end of BB. + Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); + + // Create the return instruction and add it to the basic block + ReturnInst::Create(M->getContext(), Add, BB); + + // Now, function add1 is ready. + return Add1F; +} + +static Function *CreateFibFunction(Module *M) { + // Create the fib function and insert it into module M. This function is said + // to return an int and take an int parameter. + Function *FibF = + cast<Function>(M->getOrInsertFunction("fib", + Type::getInt32Ty(M->getContext()), + Type::getInt32Ty(M->getContext()), + (Type *)0)); + + // Add a basic block to the function. + BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF); + + // Get pointers to the constants. + Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); + Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2); + + // Get pointer to the integer argument of the add1 function... + Argument *ArgX = FibF->arg_begin(); // Get the arg. + ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. + + // Create the true_block. + BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF); + // Create an exit block. + BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF); + + // Create the "if (arg < 2) goto exitbb" + Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); + BranchInst::Create(RetBB, RecurseBB, CondInst, BB); + + // Create: ret int 1 + ReturnInst::Create(M->getContext(), One, RetBB); + + // create fib(x-1) + Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); + Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); + + // create fib(x-2) + Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); + Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); + + // fib(x-1)+fib(x-2) + Value *Sum = + BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); + + // Create the return instruction and add it to the basic block + ReturnInst::Create(M->getContext(), Sum, RecurseBB); + + return FibF; +} + +struct threadParams { + ExecutionEngine* EE; + Function* F; + int value; +}; + +// We block the subthreads just before they begin to execute: +// we want all of them to call into the JIT at the same time, +// to verify that the locking is working correctly. +class WaitForThreads +{ +public: + WaitForThreads() + { + n = 0; + waitFor = 0; + + int result = pthread_cond_init( &condition, NULL ); + assert( result == 0 ); + + result = pthread_mutex_init( &mutex, NULL ); + assert( result == 0 ); + } + + ~WaitForThreads() + { + int result = pthread_cond_destroy( &condition ); + assert( result == 0 ); + + result = pthread_mutex_destroy( &mutex ); + assert( result == 0 ); + } + + // All threads will stop here until another thread calls releaseThreads + void block() + { + int result = pthread_mutex_lock( &mutex ); + assert( result == 0 ); + n ++; + //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; + + assert( waitFor == 0 || n <= waitFor ); + if ( waitFor > 0 && n == waitFor ) + { + // There are enough threads blocked that we can release all of them + std::cout << "Unblocking threads from block()" << std::endl; + unblockThreads(); + } + else + { + // We just need to wait until someone unblocks us + result = pthread_cond_wait( &condition, &mutex ); + assert( result == 0 ); + } + + // unlock the mutex before returning + result = pthread_mutex_unlock( &mutex ); + assert( result == 0 ); + } + + // If there are num or more threads blocked, it will signal them all + // Otherwise, this thread blocks until there are enough OTHER threads + // blocked + void releaseThreads( size_t num ) + { + int result = pthread_mutex_lock( &mutex ); + assert( result == 0 ); + + if ( n >= num ) { + std::cout << "Unblocking threads from releaseThreads()" << std::endl; + unblockThreads(); + } + else + { + waitFor = num; + pthread_cond_wait( &condition, &mutex ); + } + + // unlock the mutex before returning + result = pthread_mutex_unlock( &mutex ); + assert( result == 0 ); + } + +private: + void unblockThreads() + { + // Reset the counters to zero: this way, if any new threads + // enter while threads are exiting, they will block instead + // of triggering a new release of threads + n = 0; + + // Reset waitFor to zero: this way, if waitFor threads enter + // while threads are exiting, they will block instead of + // triggering a new release of threads + waitFor = 0; + + int result = pthread_cond_broadcast( &condition ); + (void)result; + assert(result == 0); + } + + size_t n; + size_t waitFor; + pthread_cond_t condition; + pthread_mutex_t mutex; +}; + +static WaitForThreads synchronize; + +void* callFunc( void* param ) +{ + struct threadParams* p = (struct threadParams*) param; + + // Call the `foo' function with no arguments: + std::vector<GenericValue> Args(1); + Args[0].IntVal = APInt(32, p->value); + + synchronize.block(); // wait until other threads are at this point + GenericValue gv = p->EE->runFunction(p->F, Args); + + return (void*)(intptr_t)gv.IntVal.getZExtValue(); +} + +int main() { + InitializeNativeTarget(); + LLVMContext Context; + + // Create some module to put our function into it. + Module *M = new Module("test", Context); + + Function* add1F = createAdd1( M ); + Function* fibF = CreateFibFunction( M ); + + // Now we create the JIT. + ExecutionEngine* EE = EngineBuilder(M).create(); + + //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; + //~ std::cout << "\n\nRunning foo: " << std::flush; + + // Create one thread for add1 and two threads for fib + struct threadParams add1 = { EE, add1F, 1000 }; + struct threadParams fib1 = { EE, fibF, 39 }; + struct threadParams fib2 = { EE, fibF, 42 }; + + pthread_t add1Thread; + int result = pthread_create( &add1Thread, NULL, callFunc, &add1 ); + if ( result != 0 ) { + std::cerr << "Could not create thread" << std::endl; + return 1; + } + + pthread_t fibThread1; + result = pthread_create( &fibThread1, NULL, callFunc, &fib1 ); + if ( result != 0 ) { + std::cerr << "Could not create thread" << std::endl; + return 1; + } + + pthread_t fibThread2; + result = pthread_create( &fibThread2, NULL, callFunc, &fib2 ); + if ( result != 0 ) { + std::cerr << "Could not create thread" << std::endl; + return 1; + } + + synchronize.releaseThreads(3); // wait until other threads are at this point + + void* returnValue; + result = pthread_join( add1Thread, &returnValue ); + if ( result != 0 ) { + std::cerr << "Could not join thread" << std::endl; + return 1; + } + std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; + + result = pthread_join( fibThread1, &returnValue ); + if ( result != 0 ) { + std::cerr << "Could not join thread" << std::endl; + return 1; + } + std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; + + result = pthread_join( fibThread2, &returnValue ); + if ( result != 0 ) { + std::cerr << "Could not join thread" << std::endl; + return 1; + } + std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; + + return 0; +}