diff examples/ParallelJIT/ParallelJIT.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/examples/ParallelJIT/ParallelJIT.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,305 @@
+//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Parallel JIT
+//
+// This test program creates two LLVM functions then calls them from three
+// separate threads.  It requires the pthreads library.
+// The three threads are created and then block waiting on a condition variable.
+// Once all threads are blocked on the conditional variable, the main thread
+// wakes them up. This complicated work is performed so that all three threads
+// call into the JIT at the same time (or the best possible approximation of the
+// same time). This test had assertion errors until I got the locking right.
+
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/Interpreter.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/TargetSelect.h"
+#include <iostream>
+#include <pthread.h>
+using namespace llvm;
+
+static Function* createAdd1(Module *M) {
+  // Create the add1 function entry and insert this entry into module M.  The
+  // function will have a return type of "int" and take an argument of "int".
+  // The '0' terminates the list of argument types.
+  Function *Add1F =
+    cast<Function>(M->getOrInsertFunction("add1",
+                                          Type::getInt32Ty(M->getContext()),
+                                          Type::getInt32Ty(M->getContext()),
+                                          (Type *)0));
+
+  // Add a basic block to the function. As before, it automatically inserts
+  // because of the last argument.
+  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
+
+  // Get pointers to the constant `1'.
+  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
+
+  // Get pointers to the integer argument of the add1 function...
+  assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
+  Argument *ArgX = Add1F->arg_begin();  // Get the arg
+  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
+
+  // Create the add instruction, inserting it into the end of BB.
+  Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
+
+  // Create the return instruction and add it to the basic block
+  ReturnInst::Create(M->getContext(), Add, BB);
+
+  // Now, function add1 is ready.
+  return Add1F;
+}
+
+static Function *CreateFibFunction(Module *M) {
+  // Create the fib function and insert it into module M.  This function is said
+  // to return an int and take an int parameter.
+  Function *FibF = 
+    cast<Function>(M->getOrInsertFunction("fib",
+                                          Type::getInt32Ty(M->getContext()),
+                                          Type::getInt32Ty(M->getContext()),
+                                          (Type *)0));
+
+  // Add a basic block to the function.
+  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
+
+  // Get pointers to the constants.
+  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
+  Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
+
+  // Get pointer to the integer argument of the add1 function...
+  Argument *ArgX = FibF->arg_begin();   // Get the arg.
+  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
+
+  // Create the true_block.
+  BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
+  // Create an exit block.
+  BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
+
+  // Create the "if (arg < 2) goto exitbb"
+  Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
+  BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
+
+  // Create: ret int 1
+  ReturnInst::Create(M->getContext(), One, RetBB);
+
+  // create fib(x-1)
+  Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
+  Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
+
+  // create fib(x-2)
+  Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
+  Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
+
+  // fib(x-1)+fib(x-2)
+  Value *Sum =
+    BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
+
+  // Create the return instruction and add it to the basic block
+  ReturnInst::Create(M->getContext(), Sum, RecurseBB);
+
+  return FibF;
+}
+
+struct threadParams {
+  ExecutionEngine* EE;
+  Function* F;
+  int value;
+};
+
+// We block the subthreads just before they begin to execute:
+// we want all of them to call into the JIT at the same time,
+// to verify that the locking is working correctly.
+class WaitForThreads
+{
+public:
+  WaitForThreads()
+  {
+    n = 0;
+    waitFor = 0;
+
+    int result = pthread_cond_init( &condition, NULL );
+    assert( result == 0 );
+
+    result = pthread_mutex_init( &mutex, NULL );
+    assert( result == 0 );
+  }
+
+  ~WaitForThreads()
+  {
+    int result = pthread_cond_destroy( &condition );
+    assert( result == 0 );
+
+    result = pthread_mutex_destroy( &mutex );
+    assert( result == 0 );
+  }
+
+  // All threads will stop here until another thread calls releaseThreads
+  void block()
+  {
+    int result = pthread_mutex_lock( &mutex );
+    assert( result == 0 );
+    n ++;
+    //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
+
+    assert( waitFor == 0 || n <= waitFor );
+    if ( waitFor > 0 && n == waitFor )
+    {
+      // There are enough threads blocked that we can release all of them
+      std::cout << "Unblocking threads from block()" << std::endl;
+      unblockThreads();
+    }
+    else
+    {
+      // We just need to wait until someone unblocks us
+      result = pthread_cond_wait( &condition, &mutex );
+      assert( result == 0 );
+    }
+
+    // unlock the mutex before returning
+    result = pthread_mutex_unlock( &mutex );
+    assert( result == 0 );
+  }
+
+  // If there are num or more threads blocked, it will signal them all
+  // Otherwise, this thread blocks until there are enough OTHER threads
+  // blocked
+  void releaseThreads( size_t num )
+  {
+    int result = pthread_mutex_lock( &mutex );
+    assert( result == 0 );
+
+    if ( n >= num ) {
+      std::cout << "Unblocking threads from releaseThreads()" << std::endl;
+      unblockThreads();
+    }
+    else
+    {
+      waitFor = num;
+      pthread_cond_wait( &condition, &mutex );
+    }
+
+    // unlock the mutex before returning
+    result = pthread_mutex_unlock( &mutex );
+    assert( result == 0 );
+  }
+
+private:
+  void unblockThreads()
+  {
+    // Reset the counters to zero: this way, if any new threads
+    // enter while threads are exiting, they will block instead
+    // of triggering a new release of threads
+    n = 0;
+
+    // Reset waitFor to zero: this way, if waitFor threads enter
+    // while threads are exiting, they will block instead of
+    // triggering a new release of threads
+    waitFor = 0;
+
+    int result = pthread_cond_broadcast( &condition );
+    (void)result;
+    assert(result == 0);
+  }
+
+  size_t n;
+  size_t waitFor;
+  pthread_cond_t condition;
+  pthread_mutex_t mutex;
+};
+
+static WaitForThreads synchronize;
+
+void* callFunc( void* param )
+{
+  struct threadParams* p = (struct threadParams*) param;
+
+  // Call the `foo' function with no arguments:
+  std::vector<GenericValue> Args(1);
+  Args[0].IntVal = APInt(32, p->value);
+
+  synchronize.block(); // wait until other threads are at this point
+  GenericValue gv = p->EE->runFunction(p->F, Args);
+
+  return (void*)(intptr_t)gv.IntVal.getZExtValue();
+}
+
+int main() {
+  InitializeNativeTarget();
+  LLVMContext Context;
+
+  // Create some module to put our function into it.
+  Module *M = new Module("test", Context);
+
+  Function* add1F = createAdd1( M );
+  Function* fibF = CreateFibFunction( M );
+
+  // Now we create the JIT.
+  ExecutionEngine* EE = EngineBuilder(M).create();
+
+  //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
+  //~ std::cout << "\n\nRunning foo: " << std::flush;
+
+  // Create one thread for add1 and two threads for fib
+  struct threadParams add1 = { EE, add1F, 1000 };
+  struct threadParams fib1 = { EE, fibF, 39 };
+  struct threadParams fib2 = { EE, fibF, 42 };
+
+  pthread_t add1Thread;
+  int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
+  if ( result != 0 ) {
+          std::cerr << "Could not create thread" << std::endl;
+          return 1;
+  }
+
+  pthread_t fibThread1;
+  result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
+  if ( result != 0 ) {
+          std::cerr << "Could not create thread" << std::endl;
+          return 1;
+  }
+
+  pthread_t fibThread2;
+  result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
+  if ( result != 0 ) {
+          std::cerr << "Could not create thread" << std::endl;
+          return 1;
+  }
+
+  synchronize.releaseThreads(3); // wait until other threads are at this point
+
+  void* returnValue;
+  result = pthread_join( add1Thread, &returnValue );
+  if ( result != 0 ) {
+          std::cerr << "Could not join thread" << std::endl;
+          return 1;
+  }
+  std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
+
+  result = pthread_join( fibThread1, &returnValue );
+  if ( result != 0 ) {
+          std::cerr << "Could not join thread" << std::endl;
+          return 1;
+  }
+  std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
+
+  result = pthread_join( fibThread2, &returnValue );
+  if ( result != 0 ) {
+          std::cerr << "Could not join thread" << std::endl;
+          return 1;
+  }
+  std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
+
+  return 0;
+}