Mercurial > hg > CbC > CbC_llvm
diff lib/Bitcode/Writer/ValueEnumerator.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Bitcode/Writer/ValueEnumerator.cpp Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,545 @@ +//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { + return V.first->getType()->isIntOrIntVectorTy(); +} + +/// ValueEnumerator - Enumerate module-level information. +ValueEnumerator::ValueEnumerator(const Module *M) { + // Enumerate the global variables. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + EnumerateValue(I); + + // Enumerate the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { + EnumerateValue(I); + EnumerateAttributes(cast<Function>(I)->getAttributes()); + } + + // Enumerate the aliases. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I); + + // Remember what is the cutoff between globalvalue's and other constants. + unsigned FirstConstant = Values.size(); + + // Enumerate the global variable initializers. + for (Module::const_global_iterator I = M->global_begin(), + E = M->global_end(); I != E; ++I) + if (I->hasInitializer()) + EnumerateValue(I->getInitializer()); + + // Enumerate the aliasees. + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + EnumerateValue(I->getAliasee()); + + // Enumerate the prefix data constants. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + if (I->hasPrefixData()) + EnumerateValue(I->getPrefixData()); + + // Insert constants and metadata that are named at module level into the slot + // pool so that the module symbol table can refer to them... + EnumerateValueSymbolTable(M->getValueSymbolTable()); + EnumerateNamedMetadata(M); + + SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; + + // Enumerate types used by function bodies and argument lists. + for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { + + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) + EnumerateType(I->getType()); + + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if (MDNode *MD = dyn_cast<MDNode>(*OI)) + if (MD->isFunctionLocal() && MD->getFunction()) + // These will get enumerated during function-incorporation. + continue; + EnumerateOperandType(*OI); + } + EnumerateType(I->getType()); + if (const CallInst *CI = dyn_cast<CallInst>(I)) + EnumerateAttributes(CI->getAttributes()); + else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) + EnumerateAttributes(II->getAttributes()); + + // Enumerate metadata attached with this instruction. + MDs.clear(); + I->getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned i = 0, e = MDs.size(); i != e; ++i) + EnumerateMetadata(MDs[i].second); + + if (!I->getDebugLoc().isUnknown()) { + MDNode *Scope, *IA; + I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); + if (Scope) EnumerateMetadata(Scope); + if (IA) EnumerateMetadata(IA); + } + } + } + + // Optimize constant ordering. + OptimizeConstants(FirstConstant, Values.size()); +} + +unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { + InstructionMapType::const_iterator I = InstructionMap.find(Inst); + assert(I != InstructionMap.end() && "Instruction is not mapped!"); + return I->second; +} + +void ValueEnumerator::setInstructionID(const Instruction *I) { + InstructionMap[I] = InstructionCount++; +} + +unsigned ValueEnumerator::getValueID(const Value *V) const { + if (isa<MDNode>(V) || isa<MDString>(V)) { + ValueMapType::const_iterator I = MDValueMap.find(V); + assert(I != MDValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; + } + + ValueMapType::const_iterator I = ValueMap.find(V); + assert(I != ValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; +} + +void ValueEnumerator::dump() const { + print(dbgs(), ValueMap, "Default"); + dbgs() << '\n'; + print(dbgs(), MDValueMap, "MetaData"); + dbgs() << '\n'; +} + +void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, + const char *Name) const { + + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (ValueMapType::const_iterator I = Map.begin(), + E = Map.end(); I != E; ++I) { + + const Value *V = I->first; + if (V->hasName()) + OS << "Value: " << V->getName(); + else + OS << "Value: [null]\n"; + V->dump(); + + OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; + for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); + UI != UE; ++UI) { + if (UI != V->use_begin()) + OS << ","; + if((*UI)->hasName()) + OS << " " << (*UI)->getName(); + else + OS << " [null]"; + + } + OS << "\n\n"; + } +} + +// Optimize constant ordering. +namespace { + struct CstSortPredicate { + ValueEnumerator &VE; + explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} + bool operator()(const std::pair<const Value*, unsigned> &LHS, + const std::pair<const Value*, unsigned> &RHS) { + // Sort by plane. + if (LHS.first->getType() != RHS.first->getType()) + return VE.getTypeID(LHS.first->getType()) < + VE.getTypeID(RHS.first->getType()); + // Then by frequency. + return LHS.second > RHS.second; + } + }; +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { + if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + + CstSortPredicate P(*this); + std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); + + // Ensure that integer and vector of integer constants are at the start of the + // constant pool. This is important so that GEP structure indices come before + // gep constant exprs. + std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, + isIntOrIntVectorValue); + + // Rebuild the modified portion of ValueMap. + for (; CstStart != CstEnd; ++CstStart) + ValueMap[Values[CstStart].first] = CstStart+1; +} + + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { + for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); + VI != VE; ++VI) + EnumerateValue(VI->getValue()); +} + +/// EnumerateNamedMetadata - Insert all of the values referenced by +/// named metadata in the specified module. +void ValueEnumerator::EnumerateNamedMetadata(const Module *M) { + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) + EnumerateNamedMDNode(I); +} + +void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { + for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) + EnumerateMetadata(MD->getOperand(i)); +} + +/// EnumerateMDNodeOperands - Enumerate all non-function-local values +/// and types referenced by the given MDNode. +void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (Value *V = N->getOperand(i)) { + if (isa<MDNode>(V) || isa<MDString>(V)) + EnumerateMetadata(V); + else if (!isa<Instruction>(V) && !isa<Argument>(V)) + EnumerateValue(V); + } else + EnumerateType(Type::getVoidTy(N->getContext())); + } +} + +void ValueEnumerator::EnumerateMetadata(const Value *MD) { + assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); + + // Enumerate the type of this value. + EnumerateType(MD->getType()); + + const MDNode *N = dyn_cast<MDNode>(MD); + + // In the module-level pass, skip function-local nodes themselves, but + // do walk their operands. + if (N && N->isFunctionLocal() && N->getFunction()) { + EnumerateMDNodeOperands(N); + return; + } + + // Check to see if it's already in! + unsigned &MDValueID = MDValueMap[MD]; + if (MDValueID) { + // Increment use count. + MDValues[MDValueID-1].second++; + return; + } + MDValues.push_back(std::make_pair(MD, 1U)); + MDValueID = MDValues.size(); + + // Enumerate all non-function-local operands. + if (N) + EnumerateMDNodeOperands(N); +} + +/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata +/// information reachable from the given MDNode. +void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) { + assert(N->isFunctionLocal() && N->getFunction() && + "EnumerateFunctionLocalMetadata called on non-function-local mdnode!"); + + // Enumerate the type of this value. + EnumerateType(N->getType()); + + // Check to see if it's already in! + unsigned &MDValueID = MDValueMap[N]; + if (MDValueID) { + // Increment use count. + MDValues[MDValueID-1].second++; + return; + } + MDValues.push_back(std::make_pair(N, 1U)); + MDValueID = MDValues.size(); + + // To incoroporate function-local information visit all function-local + // MDNodes and all function-local values they reference. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (Value *V = N->getOperand(i)) { + if (MDNode *O = dyn_cast<MDNode>(V)) { + if (O->isFunctionLocal() && O->getFunction()) + EnumerateFunctionLocalMetadata(O); + } else if (isa<Instruction>(V) || isa<Argument>(V)) + EnumerateValue(V); + } + + // Also, collect all function-local MDNodes for easy access. + FunctionLocalMDs.push_back(N); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { + assert(!V->getType()->isVoidTy() && "Can't insert void values!"); + assert(!isa<MDNode>(V) && !isa<MDString>(V) && + "EnumerateValue doesn't handle Metadata!"); + + // Check to see if it's already in! + unsigned &ValueID = ValueMap[V]; + if (ValueID) { + // Increment use count. + Values[ValueID-1].second++; + return; + } + + // Enumerate the type of this value. + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + if (isa<GlobalValue>(C)) { + // Initializers for globals are handled explicitly elsewhere. + } else if (C->getNumOperands()) { + // If a constant has operands, enumerate them. This makes sure that if a + // constant has uses (for example an array of const ints), that they are + // inserted also. + + // We prefer to enumerate them with values before we enumerate the user + // itself. This makes it more likely that we can avoid forward references + // in the reader. We know that there can be no cycles in the constants + // graph that don't go through a global variable. + for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); + I != E; ++I) + if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. + EnumerateValue(*I); + + // Finally, add the value. Doing this could make the ValueID reference be + // dangling, don't reuse it. + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } + } + + // Add the value. + Values.push_back(std::make_pair(V, 1U)); + ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(Type *Ty) { + unsigned *TypeID = &TypeMap[Ty]; + + // We've already seen this type. + if (*TypeID) + return; + + // If it is a non-anonymous struct, mark the type as being visited so that we + // don't recursively visit it. This is safe because we allow forward + // references of these in the bitcode reader. + if (StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isLiteral()) + *TypeID = ~0U; + + // Enumerate all of the subtypes before we enumerate this type. This ensures + // that the type will be enumerated in an order that can be directly built. + for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); + I != E; ++I) + EnumerateType(*I); + + // Refresh the TypeID pointer in case the table rehashed. + TypeID = &TypeMap[Ty]; + + // Check to see if we got the pointer another way. This can happen when + // enumerating recursive types that hit the base case deeper than they start. + // + // If this is actually a struct that we are treating as forward ref'able, + // then emit the definition now that all of its contents are available. + if (*TypeID && *TypeID != ~0U) + return; + + // Add this type now that its contents are all happily enumerated. + Types.push_back(Ty); + + *TypeID = Types.size(); +} + +// Enumerate the types for the specified value. If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(V)) return; + + // This constant may have operands, make sure to enumerate the types in + // them. + for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { + const Value *Op = C->getOperand(i); + + // Don't enumerate basic blocks here, this happens as operands to + // blockaddress. + if (isa<BasicBlock>(Op)) continue; + + EnumerateOperandType(Op); + } + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (Value *Elem = N->getOperand(i)) + EnumerateOperandType(Elem); + } + } else if (isa<MDString>(V) || isa<MDNode>(V)) + EnumerateMetadata(V); +} + +void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { + if (PAL.isEmpty()) return; // null is always 0. + + // Do a lookup. + unsigned &Entry = AttributeMap[PAL]; + if (Entry == 0) { + // Never saw this before, add it. + Attribute.push_back(PAL); + Entry = Attribute.size(); + } + + // Do lookups for all attribute groups. + for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { + AttributeSet AS = PAL.getSlotAttributes(i); + unsigned &Entry = AttributeGroupMap[AS]; + if (Entry == 0) { + AttributeGroups.push_back(AS); + Entry = AttributeGroups.size(); + } + } +} + +void ValueEnumerator::incorporateFunction(const Function &F) { + InstructionCount = 0; + NumModuleValues = Values.size(); + NumModuleMDValues = MDValues.size(); + + // Adding function arguments to the value table. + for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I) + EnumerateValue(I); + + FirstFuncConstantID = Values.size(); + + // Add all function-level constants to the value table. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || + isa<InlineAsm>(*OI)) + EnumerateValue(*OI); + } + BasicBlocks.push_back(BB); + ValueMap[BB] = BasicBlocks.size(); + } + + // Optimize the constant layout. + OptimizeConstants(FirstFuncConstantID, Values.size()); + + // Add the function's parameter attributes so they are available for use in + // the function's instruction. + EnumerateAttributes(F.getAttributes()); + + FirstInstID = Values.size(); + + SmallVector<MDNode *, 8> FnLocalMDVector; + // Add all of the instructions. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { + for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); + OI != E; ++OI) { + if (MDNode *MD = dyn_cast<MDNode>(*OI)) + if (MD->isFunctionLocal() && MD->getFunction()) + // Enumerate metadata after the instructions they might refer to. + FnLocalMDVector.push_back(MD); + } + + SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; + I->getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned i = 0, e = MDs.size(); i != e; ++i) { + MDNode *N = MDs[i].second; + if (N->isFunctionLocal() && N->getFunction()) + FnLocalMDVector.push_back(N); + } + + if (!I->getType()->isVoidTy()) + EnumerateValue(I); + } + } + + // Add all of the function-local metadata. + for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) + EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); +} + +void ValueEnumerator::purgeFunction() { + /// Remove purged values from the ValueMap. + for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) + ValueMap.erase(Values[i].first); + for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i) + MDValueMap.erase(MDValues[i].first); + for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) + ValueMap.erase(BasicBlocks[i]); + + Values.resize(NumModuleValues); + MDValues.resize(NumModuleMDValues); + BasicBlocks.clear(); + FunctionLocalMDs.clear(); +} + +static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, + DenseMap<const BasicBlock*, unsigned> &IDMap) { + unsigned Counter = 0; + for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) + IDMap[BB] = ++Counter; +} + +/// getGlobalBasicBlockID - This returns the function-specific ID for the +/// specified basic block. This is relatively expensive information, so it +/// should only be used by rare constructs such as address-of-label. +unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { + unsigned &Idx = GlobalBasicBlockIDs[BB]; + if (Idx != 0) + return Idx-1; + + IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); + return getGlobalBasicBlockID(BB); +} +