diff lib/IR/Instructions.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children e4204d083e25
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/IR/Instructions.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,3684 @@
+//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements all of the non-inline methods for the LLVM instruction
+// classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Instructions.h"
+#include "LLVMContextImpl.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+//                            CallSite Class
+//===----------------------------------------------------------------------===//
+
+User::op_iterator CallSite::getCallee() const {
+  Instruction *II(getInstruction());
+  return isCall()
+    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
+    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
+}
+
+//===----------------------------------------------------------------------===//
+//                            TerminatorInst Class
+//===----------------------------------------------------------------------===//
+
+// Out of line virtual method, so the vtable, etc has a home.
+TerminatorInst::~TerminatorInst() {
+}
+
+//===----------------------------------------------------------------------===//
+//                           UnaryInstruction Class
+//===----------------------------------------------------------------------===//
+
+// Out of line virtual method, so the vtable, etc has a home.
+UnaryInstruction::~UnaryInstruction() {
+}
+
+//===----------------------------------------------------------------------===//
+//                              SelectInst Class
+//===----------------------------------------------------------------------===//
+
+/// areInvalidOperands - Return a string if the specified operands are invalid
+/// for a select operation, otherwise return null.
+const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
+  if (Op1->getType() != Op2->getType())
+    return "both values to select must have same type";
+  
+  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
+    // Vector select.
+    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
+      return "vector select condition element type must be i1";
+    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
+    if (ET == 0)
+      return "selected values for vector select must be vectors";
+    if (ET->getNumElements() != VT->getNumElements())
+      return "vector select requires selected vectors to have "
+                   "the same vector length as select condition";
+  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
+    return "select condition must be i1 or <n x i1>";
+  }
+  return 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                               PHINode Class
+//===----------------------------------------------------------------------===//
+
+PHINode::PHINode(const PHINode &PN)
+  : Instruction(PN.getType(), Instruction::PHI,
+                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
+    ReservedSpace(PN.getNumOperands()) {
+  std::copy(PN.op_begin(), PN.op_end(), op_begin());
+  std::copy(PN.block_begin(), PN.block_end(), block_begin());
+  SubclassOptionalData = PN.SubclassOptionalData;
+}
+
+PHINode::~PHINode() {
+  dropHungoffUses();
+}
+
+Use *PHINode::allocHungoffUses(unsigned N) const {
+  // Allocate the array of Uses of the incoming values, followed by a pointer
+  // (with bottom bit set) to the User, followed by the array of pointers to
+  // the incoming basic blocks.
+  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
+    + N * sizeof(BasicBlock*);
+  Use *Begin = static_cast<Use*>(::operator new(size));
+  Use *End = Begin + N;
+  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
+  return Use::initTags(Begin, End);
+}
+
+// removeIncomingValue - Remove an incoming value.  This is useful if a
+// predecessor basic block is deleted.
+Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
+  Value *Removed = getIncomingValue(Idx);
+
+  // Move everything after this operand down.
+  //
+  // FIXME: we could just swap with the end of the list, then erase.  However,
+  // clients might not expect this to happen.  The code as it is thrashes the
+  // use/def lists, which is kinda lame.
+  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
+  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
+
+  // Nuke the last value.
+  Op<-1>().set(0);
+  --NumOperands;
+
+  // If the PHI node is dead, because it has zero entries, nuke it now.
+  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
+    // If anyone is using this PHI, make them use a dummy value instead...
+    replaceAllUsesWith(UndefValue::get(getType()));
+    eraseFromParent();
+  }
+  return Removed;
+}
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation.  This grows the number of ops by 1.5
+/// times.
+///
+void PHINode::growOperands() {
+  unsigned e = getNumOperands();
+  unsigned NumOps = e + e / 2;
+  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
+
+  Use *OldOps = op_begin();
+  BasicBlock **OldBlocks = block_begin();
+
+  ReservedSpace = NumOps;
+  OperandList = allocHungoffUses(ReservedSpace);
+
+  std::copy(OldOps, OldOps + e, op_begin());
+  std::copy(OldBlocks, OldBlocks + e, block_begin());
+
+  Use::zap(OldOps, OldOps + e, true);
+}
+
+/// hasConstantValue - If the specified PHI node always merges together the same
+/// value, return the value, otherwise return null.
+Value *PHINode::hasConstantValue() const {
+  // Exploit the fact that phi nodes always have at least one entry.
+  Value *ConstantValue = getIncomingValue(0);
+  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
+    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
+      if (ConstantValue != this)
+        return 0; // Incoming values not all the same.
+       // The case where the first value is this PHI.
+      ConstantValue = getIncomingValue(i);
+    }
+  if (ConstantValue == this)
+    return UndefValue::get(getType());
+  return ConstantValue;
+}
+
+//===----------------------------------------------------------------------===//
+//                       LandingPadInst Implementation
+//===----------------------------------------------------------------------===//
+
+LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
+                               unsigned NumReservedValues, const Twine &NameStr,
+                               Instruction *InsertBefore)
+  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
+  init(PersonalityFn, 1 + NumReservedValues, NameStr);
+}
+
+LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
+                               unsigned NumReservedValues, const Twine &NameStr,
+                               BasicBlock *InsertAtEnd)
+  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
+  init(PersonalityFn, 1 + NumReservedValues, NameStr);
+}
+
+LandingPadInst::LandingPadInst(const LandingPadInst &LP)
+  : Instruction(LP.getType(), Instruction::LandingPad,
+                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
+    ReservedSpace(LP.getNumOperands()) {
+  Use *OL = OperandList, *InOL = LP.OperandList;
+  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
+    OL[I] = InOL[I];
+
+  setCleanup(LP.isCleanup());
+}
+
+LandingPadInst::~LandingPadInst() {
+  dropHungoffUses();
+}
+
+LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
+                                       unsigned NumReservedClauses,
+                                       const Twine &NameStr,
+                                       Instruction *InsertBefore) {
+  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
+                            InsertBefore);
+}
+
+LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
+                                       unsigned NumReservedClauses,
+                                       const Twine &NameStr,
+                                       BasicBlock *InsertAtEnd) {
+  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
+                            InsertAtEnd);
+}
+
+void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
+                          const Twine &NameStr) {
+  ReservedSpace = NumReservedValues;
+  NumOperands = 1;
+  OperandList = allocHungoffUses(ReservedSpace);
+  OperandList[0] = PersFn;
+  setName(NameStr);
+  setCleanup(false);
+}
+
+/// growOperands - grow operands - This grows the operand list in response to a
+/// push_back style of operation. This grows the number of ops by 2 times.
+void LandingPadInst::growOperands(unsigned Size) {
+  unsigned e = getNumOperands();
+  if (ReservedSpace >= e + Size) return;
+  ReservedSpace = (e + Size / 2) * 2;
+
+  Use *NewOps = allocHungoffUses(ReservedSpace);
+  Use *OldOps = OperandList;
+  for (unsigned i = 0; i != e; ++i)
+      NewOps[i] = OldOps[i];
+
+  OperandList = NewOps;
+  Use::zap(OldOps, OldOps + e, true);
+}
+
+void LandingPadInst::addClause(Value *Val) {
+  unsigned OpNo = getNumOperands();
+  growOperands(1);
+  assert(OpNo < ReservedSpace && "Growing didn't work!");
+  ++NumOperands;
+  OperandList[OpNo] = Val;
+}
+
+//===----------------------------------------------------------------------===//
+//                        CallInst Implementation
+//===----------------------------------------------------------------------===//
+
+CallInst::~CallInst() {
+}
+
+void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
+  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
+  Op<-1>() = Func;
+
+#ifndef NDEBUG
+  FunctionType *FTy =
+    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+
+  assert((Args.size() == FTy->getNumParams() ||
+          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
+         "Calling a function with bad signature!");
+
+  for (unsigned i = 0; i != Args.size(); ++i)
+    assert((i >= FTy->getNumParams() || 
+            FTy->getParamType(i) == Args[i]->getType()) &&
+           "Calling a function with a bad signature!");
+#endif
+
+  std::copy(Args.begin(), Args.end(), op_begin());
+  setName(NameStr);
+}
+
+void CallInst::init(Value *Func, const Twine &NameStr) {
+  assert(NumOperands == 1 && "NumOperands not set up?");
+  Op<-1>() = Func;
+
+#ifndef NDEBUG
+  FunctionType *FTy =
+    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+
+  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
+#endif
+
+  setName(NameStr);
+}
+
+CallInst::CallInst(Value *Func, const Twine &Name,
+                   Instruction *InsertBefore)
+  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                   ->getElementType())->getReturnType(),
+                Instruction::Call,
+                OperandTraits<CallInst>::op_end(this) - 1,
+                1, InsertBefore) {
+  init(Func, Name);
+}
+
+CallInst::CallInst(Value *Func, const Twine &Name,
+                   BasicBlock *InsertAtEnd)
+  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                   ->getElementType())->getReturnType(),
+                Instruction::Call,
+                OperandTraits<CallInst>::op_end(this) - 1,
+                1, InsertAtEnd) {
+  init(Func, Name);
+}
+
+CallInst::CallInst(const CallInst &CI)
+  : Instruction(CI.getType(), Instruction::Call,
+                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
+                CI.getNumOperands()) {
+  setAttributes(CI.getAttributes());
+  setTailCall(CI.isTailCall());
+  setCallingConv(CI.getCallingConv());
+    
+  std::copy(CI.op_begin(), CI.op_end(), op_begin());
+  SubclassOptionalData = CI.SubclassOptionalData;
+}
+
+void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
+  AttributeSet PAL = getAttributes();
+  PAL = PAL.addAttribute(getContext(), i, attr);
+  setAttributes(PAL);
+}
+
+void CallInst::removeAttribute(unsigned i, Attribute attr) {
+  AttributeSet PAL = getAttributes();
+  AttrBuilder B(attr);
+  LLVMContext &Context = getContext();
+  PAL = PAL.removeAttributes(Context, i,
+                             AttributeSet::get(Context, i, B));
+  setAttributes(PAL);
+}
+
+bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
+  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
+    return true;
+  if (const Function *F = getCalledFunction())
+    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
+  return false;
+}
+
+bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
+  if (AttributeList.hasAttribute(i, A))
+    return true;
+  if (const Function *F = getCalledFunction())
+    return F->getAttributes().hasAttribute(i, A);
+  return false;
+}
+
+/// IsConstantOne - Return true only if val is constant int 1
+static bool IsConstantOne(Value *val) {
+  assert(val && "IsConstantOne does not work with NULL val");
+  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
+}
+
+static Instruction *createMalloc(Instruction *InsertBefore,
+                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
+                                 Type *AllocTy, Value *AllocSize, 
+                                 Value *ArraySize, Function *MallocF,
+                                 const Twine &Name) {
+  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
+         "createMalloc needs either InsertBefore or InsertAtEnd");
+
+  // malloc(type) becomes: 
+  //       bitcast (i8* malloc(typeSize)) to type*
+  // malloc(type, arraySize) becomes:
+  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
+  if (!ArraySize)
+    ArraySize = ConstantInt::get(IntPtrTy, 1);
+  else if (ArraySize->getType() != IntPtrTy) {
+    if (InsertBefore)
+      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
+                                              "", InsertBefore);
+    else
+      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
+                                              "", InsertAtEnd);
+  }
+
+  if (!IsConstantOne(ArraySize)) {
+    if (IsConstantOne(AllocSize)) {
+      AllocSize = ArraySize;         // Operand * 1 = Operand
+    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
+      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
+                                                     false /*ZExt*/);
+      // Malloc arg is constant product of type size and array size
+      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
+    } else {
+      // Multiply type size by the array size...
+      if (InsertBefore)
+        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+                                              "mallocsize", InsertBefore);
+      else
+        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+                                              "mallocsize", InsertAtEnd);
+    }
+  }
+
+  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
+  // Create the call to Malloc.
+  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
+  Module* M = BB->getParent()->getParent();
+  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
+  Value *MallocFunc = MallocF;
+  if (!MallocFunc)
+    // prototype malloc as "void *malloc(size_t)"
+    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
+  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
+  CallInst *MCall = NULL;
+  Instruction *Result = NULL;
+  if (InsertBefore) {
+    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
+    Result = MCall;
+    if (Result->getType() != AllocPtrType)
+      // Create a cast instruction to convert to the right type...
+      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
+  } else {
+    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
+    Result = MCall;
+    if (Result->getType() != AllocPtrType) {
+      InsertAtEnd->getInstList().push_back(MCall);
+      // Create a cast instruction to convert to the right type...
+      Result = new BitCastInst(MCall, AllocPtrType, Name);
+    }
+  }
+  MCall->setTailCall();
+  if (Function *F = dyn_cast<Function>(MallocFunc)) {
+    MCall->setCallingConv(F->getCallingConv());
+    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
+  }
+  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
+
+  return Result;
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+///    possibly multiplied by the array size if the array size is not
+///    constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
+                                    Type *IntPtrTy, Type *AllocTy,
+                                    Value *AllocSize, Value *ArraySize,
+                                    Function * MallocF,
+                                    const Twine &Name) {
+  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
+                      ArraySize, MallocF, Name);
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+///    possibly multiplied by the array size if the array size is not
+///    constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+/// Note: This function does not add the bitcast to the basic block, that is the
+/// responsibility of the caller.
+Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
+                                    Type *IntPtrTy, Type *AllocTy,
+                                    Value *AllocSize, Value *ArraySize, 
+                                    Function *MallocF, const Twine &Name) {
+  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
+                      ArraySize, MallocF, Name);
+}
+
+static Instruction* createFree(Value* Source, Instruction *InsertBefore,
+                               BasicBlock *InsertAtEnd) {
+  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
+         "createFree needs either InsertBefore or InsertAtEnd");
+  assert(Source->getType()->isPointerTy() &&
+         "Can not free something of nonpointer type!");
+
+  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
+  Module* M = BB->getParent()->getParent();
+
+  Type *VoidTy = Type::getVoidTy(M->getContext());
+  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
+  // prototype free as "void free(void*)"
+  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
+  CallInst* Result = NULL;
+  Value *PtrCast = Source;
+  if (InsertBefore) {
+    if (Source->getType() != IntPtrTy)
+      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
+    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
+  } else {
+    if (Source->getType() != IntPtrTy)
+      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
+    Result = CallInst::Create(FreeFunc, PtrCast, "");
+  }
+  Result->setTailCall();
+  if (Function *F = dyn_cast<Function>(FreeFunc))
+    Result->setCallingConv(F->getCallingConv());
+
+  return Result;
+}
+
+/// CreateFree - Generate the IR for a call to the builtin free function.
+Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
+  return createFree(Source, InsertBefore, NULL);
+}
+
+/// CreateFree - Generate the IR for a call to the builtin free function.
+/// Note: This function does not add the call to the basic block, that is the
+/// responsibility of the caller.
+Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
+  Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
+  assert(FreeCall && "CreateFree did not create a CallInst");
+  return FreeCall;
+}
+
+//===----------------------------------------------------------------------===//
+//                        InvokeInst Implementation
+//===----------------------------------------------------------------------===//
+
+void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
+                      ArrayRef<Value *> Args, const Twine &NameStr) {
+  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
+  Op<-3>() = Fn;
+  Op<-2>() = IfNormal;
+  Op<-1>() = IfException;
+
+#ifndef NDEBUG
+  FunctionType *FTy =
+    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
+
+  assert(((Args.size() == FTy->getNumParams()) ||
+          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
+         "Invoking a function with bad signature");
+
+  for (unsigned i = 0, e = Args.size(); i != e; i++)
+    assert((i >= FTy->getNumParams() || 
+            FTy->getParamType(i) == Args[i]->getType()) &&
+           "Invoking a function with a bad signature!");
+#endif
+
+  std::copy(Args.begin(), Args.end(), op_begin());
+  setName(NameStr);
+}
+
+InvokeInst::InvokeInst(const InvokeInst &II)
+  : TerminatorInst(II.getType(), Instruction::Invoke,
+                   OperandTraits<InvokeInst>::op_end(this)
+                   - II.getNumOperands(),
+                   II.getNumOperands()) {
+  setAttributes(II.getAttributes());
+  setCallingConv(II.getCallingConv());
+  std::copy(II.op_begin(), II.op_end(), op_begin());
+  SubclassOptionalData = II.SubclassOptionalData;
+}
+
+BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
+  return getSuccessor(idx);
+}
+unsigned InvokeInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+  return setSuccessor(idx, B);
+}
+
+bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
+  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
+    return true;
+  if (const Function *F = getCalledFunction())
+    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
+  return false;
+}
+
+bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
+  if (AttributeList.hasAttribute(i, A))
+    return true;
+  if (const Function *F = getCalledFunction())
+    return F->getAttributes().hasAttribute(i, A);
+  return false;
+}
+
+void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
+  AttributeSet PAL = getAttributes();
+  PAL = PAL.addAttribute(getContext(), i, attr);
+  setAttributes(PAL);
+}
+
+void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
+  AttributeSet PAL = getAttributes();
+  AttrBuilder B(attr);
+  PAL = PAL.removeAttributes(getContext(), i,
+                             AttributeSet::get(getContext(), i, B));
+  setAttributes(PAL);
+}
+
+LandingPadInst *InvokeInst::getLandingPadInst() const {
+  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
+}
+
+//===----------------------------------------------------------------------===//
+//                        ReturnInst Implementation
+//===----------------------------------------------------------------------===//
+
+ReturnInst::ReturnInst(const ReturnInst &RI)
+  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
+                   OperandTraits<ReturnInst>::op_end(this) -
+                     RI.getNumOperands(),
+                   RI.getNumOperands()) {
+  if (RI.getNumOperands())
+    Op<0>() = RI.Op<0>();
+  SubclassOptionalData = RI.SubclassOptionalData;
+}
+
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
+                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
+                   InsertBefore) {
+  if (retVal)
+    Op<0>() = retVal;
+}
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
+                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
+                   InsertAtEnd) {
+  if (retVal)
+    Op<0>() = retVal;
+}
+ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
+                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
+}
+
+unsigned ReturnInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+
+/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
+/// emit the vtable for the class in this translation unit.
+void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+  llvm_unreachable("ReturnInst has no successors!");
+}
+
+BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
+  llvm_unreachable("ReturnInst has no successors!");
+}
+
+ReturnInst::~ReturnInst() {
+}
+
+//===----------------------------------------------------------------------===//
+//                        ResumeInst Implementation
+//===----------------------------------------------------------------------===//
+
+ResumeInst::ResumeInst(const ResumeInst &RI)
+  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
+                   OperandTraits<ResumeInst>::op_begin(this), 1) {
+  Op<0>() = RI.Op<0>();
+}
+
+ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
+                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
+  Op<0>() = Exn;
+}
+
+ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
+                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
+  Op<0>() = Exn;
+}
+
+unsigned ResumeInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+
+void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+  llvm_unreachable("ResumeInst has no successors!");
+}
+
+BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
+  llvm_unreachable("ResumeInst has no successors!");
+}
+
+//===----------------------------------------------------------------------===//
+//                      UnreachableInst Implementation
+//===----------------------------------------------------------------------===//
+
+UnreachableInst::UnreachableInst(LLVMContext &Context, 
+                                 Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
+                   0, 0, InsertBefore) {
+}
+UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
+                   0, 0, InsertAtEnd) {
+}
+
+unsigned UnreachableInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+
+void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
+  llvm_unreachable("UnreachableInst has no successors!");
+}
+
+BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
+  llvm_unreachable("UnreachableInst has no successors!");
+}
+
+//===----------------------------------------------------------------------===//
+//                        BranchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void BranchInst::AssertOK() {
+  if (isConditional())
+    assert(getCondition()->getType()->isIntegerTy(1) &&
+           "May only branch on boolean predicates!");
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+                   OperandTraits<BranchInst>::op_end(this) - 1,
+                   1, InsertBefore) {
+  assert(IfTrue != 0 && "Branch destination may not be null!");
+  Op<-1>() = IfTrue;
+}
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+                       Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+                   OperandTraits<BranchInst>::op_end(this) - 3,
+                   3, InsertBefore) {
+  Op<-1>() = IfTrue;
+  Op<-2>() = IfFalse;
+  Op<-3>() = Cond;
+#ifndef NDEBUG
+  AssertOK();
+#endif
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+                   OperandTraits<BranchInst>::op_end(this) - 1,
+                   1, InsertAtEnd) {
+  assert(IfTrue != 0 && "Branch destination may not be null!");
+  Op<-1>() = IfTrue;
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+           BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+                   OperandTraits<BranchInst>::op_end(this) - 3,
+                   3, InsertAtEnd) {
+  Op<-1>() = IfTrue;
+  Op<-2>() = IfFalse;
+  Op<-3>() = Cond;
+#ifndef NDEBUG
+  AssertOK();
+#endif
+}
+
+
+BranchInst::BranchInst(const BranchInst &BI) :
+  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
+                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
+                 BI.getNumOperands()) {
+  Op<-1>() = BI.Op<-1>();
+  if (BI.getNumOperands() != 1) {
+    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
+    Op<-3>() = BI.Op<-3>();
+    Op<-2>() = BI.Op<-2>();
+  }
+  SubclassOptionalData = BI.SubclassOptionalData;
+}
+
+void BranchInst::swapSuccessors() {
+  assert(isConditional() &&
+         "Cannot swap successors of an unconditional branch");
+  Op<-1>().swap(Op<-2>());
+
+  // Update profile metadata if present and it matches our structural
+  // expectations.
+  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
+  if (!ProfileData || ProfileData->getNumOperands() != 3)
+    return;
+
+  // The first operand is the name. Fetch them backwards and build a new one.
+  Value *Ops[] = {
+    ProfileData->getOperand(0),
+    ProfileData->getOperand(2),
+    ProfileData->getOperand(1)
+  };
+  setMetadata(LLVMContext::MD_prof,
+              MDNode::get(ProfileData->getContext(), Ops));
+}
+
+BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
+  return getSuccessor(idx);
+}
+unsigned BranchInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+  setSuccessor(idx, B);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                        AllocaInst Implementation
+//===----------------------------------------------------------------------===//
+
+static Value *getAISize(LLVMContext &Context, Value *Amt) {
+  if (!Amt)
+    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
+  else {
+    assert(!isa<BasicBlock>(Amt) &&
+           "Passed basic block into allocation size parameter! Use other ctor");
+    assert(Amt->getType()->isIntegerTy() &&
+           "Allocation array size is not an integer!");
+  }
+  return Amt;
+}
+
+AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
+                       const Twine &Name, Instruction *InsertBefore)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
+  setAlignment(0);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
+                       const Twine &Name, BasicBlock *InsertAtEnd)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
+  setAlignment(0);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
+                       Instruction *InsertBefore)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), 0), InsertBefore) {
+  setAlignment(0);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
+                       BasicBlock *InsertAtEnd)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), 0), InsertAtEnd) {
+  setAlignment(0);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
+                       const Twine &Name, Instruction *InsertBefore)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
+  setAlignment(Align);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
+                       const Twine &Name, BasicBlock *InsertAtEnd)
+  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
+                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
+  setAlignment(Align);
+  assert(!Ty->isVoidTy() && "Cannot allocate void!");
+  setName(Name);
+}
+
+// Out of line virtual method, so the vtable, etc has a home.
+AllocaInst::~AllocaInst() {
+}
+
+void AllocaInst::setAlignment(unsigned Align) {
+  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+  assert(Align <= MaximumAlignment &&
+         "Alignment is greater than MaximumAlignment!");
+  setInstructionSubclassData(Log2_32(Align) + 1);
+  assert(getAlignment() == Align && "Alignment representation error!");
+}
+
+bool AllocaInst::isArrayAllocation() const {
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
+    return !CI->isOne();
+  return true;
+}
+
+Type *AllocaInst::getAllocatedType() const {
+  return getType()->getElementType();
+}
+
+/// isStaticAlloca - Return true if this alloca is in the entry block of the
+/// function and is a constant size.  If so, the code generator will fold it
+/// into the prolog/epilog code, so it is basically free.
+bool AllocaInst::isStaticAlloca() const {
+  // Must be constant size.
+  if (!isa<ConstantInt>(getArraySize())) return false;
+  
+  // Must be in the entry block.
+  const BasicBlock *Parent = getParent();
+  return Parent == &Parent->getParent()->front();
+}
+
+//===----------------------------------------------------------------------===//
+//                           LoadInst Implementation
+//===----------------------------------------------------------------------===//
+
+void LoadInst::AssertOK() {
+  assert(getOperand(0)->getType()->isPointerTy() &&
+         "Ptr must have pointer type.");
+  assert(!(isAtomic() && getAlignment() == 0) &&
+         "Alignment required for atomic load");
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertBef) {
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
+                   Instruction *InsertBef)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertBef) {
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
+                   BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
+                   unsigned Align, Instruction *InsertBef)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertBef) {
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
+                   unsigned Align, BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(NotAtomic);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
+                   unsigned Align, AtomicOrdering Order,
+                   SynchronizationScope SynchScope,
+                   Instruction *InsertBef)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertBef) {
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(Order, SynchScope);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
+                   unsigned Align, AtomicOrdering Order,
+                   SynchronizationScope SynchScope,
+                   BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(Order, SynchScope);
+  AssertOK();
+  setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertBef) {
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
+                   Instruction *InsertBef)
+: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                   Load, Ptr, InsertBef) {
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  if (Name && Name[0]) setName(Name);
+}
+
+LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
+                   BasicBlock *InsertAE)
+  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                     Load, Ptr, InsertAE) {
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+  if (Name && Name[0]) setName(Name);
+}
+
+void LoadInst::setAlignment(unsigned Align) {
+  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+  assert(Align <= MaximumAlignment &&
+         "Alignment is greater than MaximumAlignment!");
+  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
+                             ((Log2_32(Align)+1)<<1));
+  assert(getAlignment() == Align && "Alignment representation error!");
+}
+
+//===----------------------------------------------------------------------===//
+//                           StoreInst Implementation
+//===----------------------------------------------------------------------===//
+
+void StoreInst::AssertOK() {
+  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
+  assert(getOperand(1)->getType()->isPointerTy() &&
+         "Ptr must have pointer type!");
+  assert(getOperand(0)->getType() ==
+                 cast<PointerType>(getOperand(1)->getType())->getElementType()
+         && "Ptr must be a pointer to Val type!");
+  assert(!(isAtomic() && getAlignment() == 0) &&
+         "Alignment required for atomic load");
+}
+
+
+StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertBefore) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(false);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     Instruction *InsertBefore)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertBefore) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     unsigned Align, Instruction *InsertBefore)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertBefore) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     unsigned Align, AtomicOrdering Order,
+                     SynchronizationScope SynchScope,
+                     Instruction *InsertBefore)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertBefore) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(Order, SynchScope);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     BasicBlock *InsertAtEnd)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(0);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     unsigned Align, BasicBlock *InsertAtEnd)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(NotAtomic);
+  AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+                     unsigned Align, AtomicOrdering Order,
+                     SynchronizationScope SynchScope,
+                     BasicBlock *InsertAtEnd)
+  : Instruction(Type::getVoidTy(val->getContext()), Store,
+                OperandTraits<StoreInst>::op_begin(this),
+                OperandTraits<StoreInst>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = val;
+  Op<1>() = addr;
+  setVolatile(isVolatile);
+  setAlignment(Align);
+  setAtomic(Order, SynchScope);
+  AssertOK();
+}
+
+void StoreInst::setAlignment(unsigned Align) {
+  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
+  assert(Align <= MaximumAlignment &&
+         "Alignment is greater than MaximumAlignment!");
+  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
+                             ((Log2_32(Align)+1) << 1));
+  assert(getAlignment() == Align && "Alignment representation error!");
+}
+
+//===----------------------------------------------------------------------===//
+//                       AtomicCmpXchgInst Implementation
+//===----------------------------------------------------------------------===//
+
+void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
+                             AtomicOrdering Ordering,
+                             SynchronizationScope SynchScope) {
+  Op<0>() = Ptr;
+  Op<1>() = Cmp;
+  Op<2>() = NewVal;
+  setOrdering(Ordering);
+  setSynchScope(SynchScope);
+
+  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
+         "All operands must be non-null!");
+  assert(getOperand(0)->getType()->isPointerTy() &&
+         "Ptr must have pointer type!");
+  assert(getOperand(1)->getType() ==
+                 cast<PointerType>(getOperand(0)->getType())->getElementType()
+         && "Ptr must be a pointer to Cmp type!");
+  assert(getOperand(2)->getType() ==
+                 cast<PointerType>(getOperand(0)->getType())->getElementType()
+         && "Ptr must be a pointer to NewVal type!");
+  assert(Ordering != NotAtomic &&
+         "AtomicCmpXchg instructions must be atomic!");
+}
+
+AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
+                                     AtomicOrdering Ordering,
+                                     SynchronizationScope SynchScope,
+                                     Instruction *InsertBefore)
+  : Instruction(Cmp->getType(), AtomicCmpXchg,
+                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
+                OperandTraits<AtomicCmpXchgInst>::operands(this),
+                InsertBefore) {
+  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
+}
+
+AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
+                                     AtomicOrdering Ordering,
+                                     SynchronizationScope SynchScope,
+                                     BasicBlock *InsertAtEnd)
+  : Instruction(Cmp->getType(), AtomicCmpXchg,
+                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
+                OperandTraits<AtomicCmpXchgInst>::operands(this),
+                InsertAtEnd) {
+  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
+}
+ 
+//===----------------------------------------------------------------------===//
+//                       AtomicRMWInst Implementation
+//===----------------------------------------------------------------------===//
+
+void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
+                         AtomicOrdering Ordering,
+                         SynchronizationScope SynchScope) {
+  Op<0>() = Ptr;
+  Op<1>() = Val;
+  setOperation(Operation);
+  setOrdering(Ordering);
+  setSynchScope(SynchScope);
+
+  assert(getOperand(0) && getOperand(1) &&
+         "All operands must be non-null!");
+  assert(getOperand(0)->getType()->isPointerTy() &&
+         "Ptr must have pointer type!");
+  assert(getOperand(1)->getType() ==
+         cast<PointerType>(getOperand(0)->getType())->getElementType()
+         && "Ptr must be a pointer to Val type!");
+  assert(Ordering != NotAtomic &&
+         "AtomicRMW instructions must be atomic!");
+}
+
+AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
+                             AtomicOrdering Ordering,
+                             SynchronizationScope SynchScope,
+                             Instruction *InsertBefore)
+  : Instruction(Val->getType(), AtomicRMW,
+                OperandTraits<AtomicRMWInst>::op_begin(this),
+                OperandTraits<AtomicRMWInst>::operands(this),
+                InsertBefore) {
+  Init(Operation, Ptr, Val, Ordering, SynchScope);
+}
+
+AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
+                             AtomicOrdering Ordering,
+                             SynchronizationScope SynchScope,
+                             BasicBlock *InsertAtEnd)
+  : Instruction(Val->getType(), AtomicRMW,
+                OperandTraits<AtomicRMWInst>::op_begin(this),
+                OperandTraits<AtomicRMWInst>::operands(this),
+                InsertAtEnd) {
+  Init(Operation, Ptr, Val, Ordering, SynchScope);
+}
+
+//===----------------------------------------------------------------------===//
+//                       FenceInst Implementation
+//===----------------------------------------------------------------------===//
+
+FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
+                     SynchronizationScope SynchScope,
+                     Instruction *InsertBefore)
+  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
+  setOrdering(Ordering);
+  setSynchScope(SynchScope);
+}
+
+FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
+                     SynchronizationScope SynchScope,
+                     BasicBlock *InsertAtEnd)
+  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
+  setOrdering(Ordering);
+  setSynchScope(SynchScope);
+}
+
+//===----------------------------------------------------------------------===//
+//                       GetElementPtrInst Implementation
+//===----------------------------------------------------------------------===//
+
+void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
+                             const Twine &Name) {
+  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
+  OperandList[0] = Ptr;
+  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
+  setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
+  : Instruction(GEPI.getType(), GetElementPtr,
+                OperandTraits<GetElementPtrInst>::op_end(this)
+                - GEPI.getNumOperands(),
+                GEPI.getNumOperands()) {
+  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
+  SubclassOptionalData = GEPI.SubclassOptionalData;
+}
+
+/// getIndexedType - Returns the type of the element that would be accessed with
+/// a gep instruction with the specified parameters.
+///
+/// The Idxs pointer should point to a continuous piece of memory containing the
+/// indices, either as Value* or uint64_t.
+///
+/// A null type is returned if the indices are invalid for the specified
+/// pointer type.
+///
+template <typename IndexTy>
+static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
+  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
+  if (!PTy) return 0;   // Type isn't a pointer type!
+  Type *Agg = PTy->getElementType();
+
+  // Handle the special case of the empty set index set, which is always valid.
+  if (IdxList.empty())
+    return Agg;
+
+  // If there is at least one index, the top level type must be sized, otherwise
+  // it cannot be 'stepped over'.
+  if (!Agg->isSized())
+    return 0;
+
+  unsigned CurIdx = 1;
+  for (; CurIdx != IdxList.size(); ++CurIdx) {
+    CompositeType *CT = dyn_cast<CompositeType>(Agg);
+    if (!CT || CT->isPointerTy()) return 0;
+    IndexTy Index = IdxList[CurIdx];
+    if (!CT->indexValid(Index)) return 0;
+    Agg = CT->getTypeAtIndex(Index);
+  }
+  return CurIdx == IdxList.size() ? Agg : 0;
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
+  return getIndexedTypeInternal(Ptr, IdxList);
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ptr,
+                                        ArrayRef<Constant *> IdxList) {
+  return getIndexedTypeInternal(Ptr, IdxList);
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
+  return getIndexedTypeInternal(Ptr, IdxList);
+}
+
+/// hasAllZeroIndices - Return true if all of the indices of this GEP are
+/// zeros.  If so, the result pointer and the first operand have the same
+/// value, just potentially different types.
+bool GetElementPtrInst::hasAllZeroIndices() const {
+  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
+      if (!CI->isZero()) return false;
+    } else {
+      return false;
+    }
+  }
+  return true;
+}
+
+/// hasAllConstantIndices - Return true if all of the indices of this GEP are
+/// constant integers.  If so, the result pointer and the first operand have
+/// a constant offset between them.
+bool GetElementPtrInst::hasAllConstantIndices() const {
+  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+    if (!isa<ConstantInt>(getOperand(i)))
+      return false;
+  }
+  return true;
+}
+
+void GetElementPtrInst::setIsInBounds(bool B) {
+  cast<GEPOperator>(this)->setIsInBounds(B);
+}
+
+bool GetElementPtrInst::isInBounds() const {
+  return cast<GEPOperator>(this)->isInBounds();
+}
+
+bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
+                                                 APInt &Offset) const {
+  // Delegate to the generic GEPOperator implementation.
+  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
+}
+
+//===----------------------------------------------------------------------===//
+//                           ExtractElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+                                       const Twine &Name,
+                                       Instruction *InsertBef)
+  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+                ExtractElement,
+                OperandTraits<ExtractElementInst>::op_begin(this),
+                2, InsertBef) {
+  assert(isValidOperands(Val, Index) &&
+         "Invalid extractelement instruction operands!");
+  Op<0>() = Val;
+  Op<1>() = Index;
+  setName(Name);
+}
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+                                       const Twine &Name,
+                                       BasicBlock *InsertAE)
+  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+                ExtractElement,
+                OperandTraits<ExtractElementInst>::op_begin(this),
+                2, InsertAE) {
+  assert(isValidOperands(Val, Index) &&
+         "Invalid extractelement instruction operands!");
+
+  Op<0>() = Val;
+  Op<1>() = Index;
+  setName(Name);
+}
+
+
+bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
+  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
+    return false;
+  return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                           InsertElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+                                     const Twine &Name,
+                                     Instruction *InsertBef)
+  : Instruction(Vec->getType(), InsertElement,
+                OperandTraits<InsertElementInst>::op_begin(this),
+                3, InsertBef) {
+  assert(isValidOperands(Vec, Elt, Index) &&
+         "Invalid insertelement instruction operands!");
+  Op<0>() = Vec;
+  Op<1>() = Elt;
+  Op<2>() = Index;
+  setName(Name);
+}
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+                                     const Twine &Name,
+                                     BasicBlock *InsertAE)
+  : Instruction(Vec->getType(), InsertElement,
+                OperandTraits<InsertElementInst>::op_begin(this),
+                3, InsertAE) {
+  assert(isValidOperands(Vec, Elt, Index) &&
+         "Invalid insertelement instruction operands!");
+
+  Op<0>() = Vec;
+  Op<1>() = Elt;
+  Op<2>() = Index;
+  setName(Name);
+}
+
+bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
+                                        const Value *Index) {
+  if (!Vec->getType()->isVectorTy())
+    return false;   // First operand of insertelement must be vector type.
+  
+  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
+    return false;// Second operand of insertelement must be vector element type.
+    
+  if (!Index->getType()->isIntegerTy(32))
+    return false;  // Third operand of insertelement must be i32.
+  return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                      ShuffleVectorInst Implementation
+//===----------------------------------------------------------------------===//
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+                                     const Twine &Name,
+                                     Instruction *InsertBefore)
+: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+                cast<VectorType>(Mask->getType())->getNumElements()),
+              ShuffleVector,
+              OperandTraits<ShuffleVectorInst>::op_begin(this),
+              OperandTraits<ShuffleVectorInst>::operands(this),
+              InsertBefore) {
+  assert(isValidOperands(V1, V2, Mask) &&
+         "Invalid shuffle vector instruction operands!");
+  Op<0>() = V1;
+  Op<1>() = V2;
+  Op<2>() = Mask;
+  setName(Name);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+                                     const Twine &Name,
+                                     BasicBlock *InsertAtEnd)
+: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+                cast<VectorType>(Mask->getType())->getNumElements()),
+              ShuffleVector,
+              OperandTraits<ShuffleVectorInst>::op_begin(this),
+              OperandTraits<ShuffleVectorInst>::operands(this),
+              InsertAtEnd) {
+  assert(isValidOperands(V1, V2, Mask) &&
+         "Invalid shuffle vector instruction operands!");
+
+  Op<0>() = V1;
+  Op<1>() = V2;
+  Op<2>() = Mask;
+  setName(Name);
+}
+
+bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
+                                        const Value *Mask) {
+  // V1 and V2 must be vectors of the same type.
+  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
+    return false;
+  
+  // Mask must be vector of i32.
+  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
+  if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
+    return false;
+
+  // Check to see if Mask is valid.
+  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
+    return true;
+
+  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
+    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
+    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
+        if (CI->uge(V1Size*2))
+          return false;
+      } else if (!isa<UndefValue>(MV->getOperand(i))) {
+        return false;
+      }
+    }
+    return true;
+  }
+  
+  if (const ConstantDataSequential *CDS =
+        dyn_cast<ConstantDataSequential>(Mask)) {
+    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
+    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
+      if (CDS->getElementAsInteger(i) >= V1Size*2)
+        return false;
+    return true;
+  }
+  
+  // The bitcode reader can create a place holder for a forward reference
+  // used as the shuffle mask. When this occurs, the shuffle mask will
+  // fall into this case and fail. To avoid this error, do this bit of
+  // ugliness to allow such a mask pass.
+  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
+    if (CE->getOpcode() == Instruction::UserOp1)
+      return true;
+
+  return false;
+}
+
+/// getMaskValue - Return the index from the shuffle mask for the specified
+/// output result.  This is either -1 if the element is undef or a number less
+/// than 2*numelements.
+int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
+  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
+  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
+    return CDS->getElementAsInteger(i);
+  Constant *C = Mask->getAggregateElement(i);
+  if (isa<UndefValue>(C))
+    return -1;
+  return cast<ConstantInt>(C)->getZExtValue();
+}
+
+/// getShuffleMask - Return the full mask for this instruction, where each
+/// element is the element number and undef's are returned as -1.
+void ShuffleVectorInst::getShuffleMask(Constant *Mask,
+                                       SmallVectorImpl<int> &Result) {
+  unsigned NumElts = Mask->getType()->getVectorNumElements();
+  
+  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
+    for (unsigned i = 0; i != NumElts; ++i)
+      Result.push_back(CDS->getElementAsInteger(i));
+    return;
+  }    
+  for (unsigned i = 0; i != NumElts; ++i) {
+    Constant *C = Mask->getAggregateElement(i);
+    Result.push_back(isa<UndefValue>(C) ? -1 :
+                     cast<ConstantInt>(C)->getZExtValue());
+  }
+}
+
+
+//===----------------------------------------------------------------------===//
+//                             InsertValueInst Class
+//===----------------------------------------------------------------------===//
+
+void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
+                           const Twine &Name) {
+  assert(NumOperands == 2 && "NumOperands not initialized?");
+
+  // There's no fundamental reason why we require at least one index
+  // (other than weirdness with &*IdxBegin being invalid; see
+  // getelementptr's init routine for example). But there's no
+  // present need to support it.
+  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
+
+  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
+         Val->getType() && "Inserted value must match indexed type!");
+  Op<0>() = Agg;
+  Op<1>() = Val;
+
+  Indices.append(Idxs.begin(), Idxs.end());
+  setName(Name);
+}
+
+InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
+  : Instruction(IVI.getType(), InsertValue,
+                OperandTraits<InsertValueInst>::op_begin(this), 2),
+    Indices(IVI.Indices) {
+  Op<0>() = IVI.getOperand(0);
+  Op<1>() = IVI.getOperand(1);
+  SubclassOptionalData = IVI.SubclassOptionalData;
+}
+
+//===----------------------------------------------------------------------===//
+//                             ExtractValueInst Class
+//===----------------------------------------------------------------------===//
+
+void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
+  assert(NumOperands == 1 && "NumOperands not initialized?");
+
+  // There's no fundamental reason why we require at least one index.
+  // But there's no present need to support it.
+  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
+
+  Indices.append(Idxs.begin(), Idxs.end());
+  setName(Name);
+}
+
+ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
+  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
+    Indices(EVI.Indices) {
+  SubclassOptionalData = EVI.SubclassOptionalData;
+}
+
+// getIndexedType - Returns the type of the element that would be extracted
+// with an extractvalue instruction with the specified parameters.
+//
+// A null type is returned if the indices are invalid for the specified
+// pointer type.
+//
+Type *ExtractValueInst::getIndexedType(Type *Agg,
+                                       ArrayRef<unsigned> Idxs) {
+  for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
+    unsigned Index = Idxs[CurIdx];
+    // We can't use CompositeType::indexValid(Index) here.
+    // indexValid() always returns true for arrays because getelementptr allows
+    // out-of-bounds indices. Since we don't allow those for extractvalue and
+    // insertvalue we need to check array indexing manually.
+    // Since the only other types we can index into are struct types it's just
+    // as easy to check those manually as well.
+    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
+      if (Index >= AT->getNumElements())
+        return 0;
+    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
+      if (Index >= ST->getNumElements())
+        return 0;
+    } else {
+      // Not a valid type to index into.
+      return 0;
+    }
+
+    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
+  }
+  return const_cast<Type*>(Agg);
+}
+
+//===----------------------------------------------------------------------===//
+//                             BinaryOperator Class
+//===----------------------------------------------------------------------===//
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
+                               Type *Ty, const Twine &Name,
+                               Instruction *InsertBefore)
+  : Instruction(Ty, iType,
+                OperandTraits<BinaryOperator>::op_begin(this),
+                OperandTraits<BinaryOperator>::operands(this),
+                InsertBefore) {
+  Op<0>() = S1;
+  Op<1>() = S2;
+  init(iType);
+  setName(Name);
+}
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
+                               Type *Ty, const Twine &Name,
+                               BasicBlock *InsertAtEnd)
+  : Instruction(Ty, iType,
+                OperandTraits<BinaryOperator>::op_begin(this),
+                OperandTraits<BinaryOperator>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = S1;
+  Op<1>() = S2;
+  init(iType);
+  setName(Name);
+}
+
+
+void BinaryOperator::init(BinaryOps iType) {
+  Value *LHS = getOperand(0), *RHS = getOperand(1);
+  (void)LHS; (void)RHS; // Silence warnings.
+  assert(LHS->getType() == RHS->getType() &&
+         "Binary operator operand types must match!");
+#ifndef NDEBUG
+  switch (iType) {
+  case Add: case Sub:
+  case Mul:
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert(getType()->isIntOrIntVectorTy() &&
+           "Tried to create an integer operation on a non-integer type!");
+    break;
+  case FAdd: case FSub:
+  case FMul:
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert(getType()->isFPOrFPVectorTy() &&
+           "Tried to create a floating-point operation on a "
+           "non-floating-point type!");
+    break;
+  case UDiv: 
+  case SDiv: 
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
+            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
+           "Incorrect operand type (not integer) for S/UDIV");
+    break;
+  case FDiv:
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert(getType()->isFPOrFPVectorTy() &&
+           "Incorrect operand type (not floating point) for FDIV");
+    break;
+  case URem: 
+  case SRem: 
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
+            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
+           "Incorrect operand type (not integer) for S/UREM");
+    break;
+  case FRem:
+    assert(getType() == LHS->getType() &&
+           "Arithmetic operation should return same type as operands!");
+    assert(getType()->isFPOrFPVectorTy() &&
+           "Incorrect operand type (not floating point) for FREM");
+    break;
+  case Shl:
+  case LShr:
+  case AShr:
+    assert(getType() == LHS->getType() &&
+           "Shift operation should return same type as operands!");
+    assert((getType()->isIntegerTy() ||
+            (getType()->isVectorTy() && 
+             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
+           "Tried to create a shift operation on a non-integral type!");
+    break;
+  case And: case Or:
+  case Xor:
+    assert(getType() == LHS->getType() &&
+           "Logical operation should return same type as operands!");
+    assert((getType()->isIntegerTy() ||
+            (getType()->isVectorTy() && 
+             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
+           "Tried to create a logical operation on a non-integral type!");
+    break;
+  default:
+    break;
+  }
+#endif
+}
+
+BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
+                                       const Twine &Name,
+                                       Instruction *InsertBefore) {
+  assert(S1->getType() == S2->getType() &&
+         "Cannot create binary operator with two operands of differing type!");
+  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
+                                       const Twine &Name,
+                                       BasicBlock *InsertAtEnd) {
+  BinaryOperator *Res = Create(Op, S1, S2, Name);
+  InsertAtEnd->getInstList().push_back(Res);
+  return Res;
+}
+
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
+                                          Instruction *InsertBefore) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return new BinaryOperator(Instruction::Sub,
+                            zero, Op,
+                            Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
+                                          BasicBlock *InsertAtEnd) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return new BinaryOperator(Instruction::Sub,
+                            zero, Op,
+                            Op->getType(), Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
+                                             Instruction *InsertBefore) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
+                                             BasicBlock *InsertAtEnd) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
+                                             Instruction *InsertBefore) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
+                                             BasicBlock *InsertAtEnd) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
+                                           Instruction *InsertBefore) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return new BinaryOperator(Instruction::FSub, zero, Op,
+                            Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
+                                           BasicBlock *InsertAtEnd) {
+  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+  return new BinaryOperator(Instruction::FSub, zero, Op,
+                            Op->getType(), Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
+                                          Instruction *InsertBefore) {
+  Constant *C = Constant::getAllOnesValue(Op->getType());
+  return new BinaryOperator(Instruction::Xor, Op, C,
+                            Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
+                                          BasicBlock *InsertAtEnd) {
+  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
+  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
+                            Op->getType(), Name, InsertAtEnd);
+}
+
+
+// isConstantAllOnes - Helper function for several functions below
+static inline bool isConstantAllOnes(const Value *V) {
+  if (const Constant *C = dyn_cast<Constant>(V))
+    return C->isAllOnesValue();
+  return false;
+}
+
+bool BinaryOperator::isNeg(const Value *V) {
+  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+    if (Bop->getOpcode() == Instruction::Sub)
+      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
+        return C->isNegativeZeroValue();
+  return false;
+}
+
+bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
+  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+    if (Bop->getOpcode() == Instruction::FSub)
+      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
+        if (!IgnoreZeroSign)
+          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
+        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
+      }
+  return false;
+}
+
+bool BinaryOperator::isNot(const Value *V) {
+  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+    return (Bop->getOpcode() == Instruction::Xor &&
+            (isConstantAllOnes(Bop->getOperand(1)) ||
+             isConstantAllOnes(Bop->getOperand(0))));
+  return false;
+}
+
+Value *BinaryOperator::getNegArgument(Value *BinOp) {
+  return cast<BinaryOperator>(BinOp)->getOperand(1);
+}
+
+const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
+  return getNegArgument(const_cast<Value*>(BinOp));
+}
+
+Value *BinaryOperator::getFNegArgument(Value *BinOp) {
+  return cast<BinaryOperator>(BinOp)->getOperand(1);
+}
+
+const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
+  return getFNegArgument(const_cast<Value*>(BinOp));
+}
+
+Value *BinaryOperator::getNotArgument(Value *BinOp) {
+  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
+  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
+  Value *Op0 = BO->getOperand(0);
+  Value *Op1 = BO->getOperand(1);
+  if (isConstantAllOnes(Op0)) return Op1;
+
+  assert(isConstantAllOnes(Op1));
+  return Op0;
+}
+
+const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
+  return getNotArgument(const_cast<Value*>(BinOp));
+}
+
+
+// swapOperands - Exchange the two operands to this instruction.  This
+// instruction is safe to use on any binary instruction and does not
+// modify the semantics of the instruction.  If the instruction is
+// order dependent (SetLT f.e.) the opcode is changed.
+//
+bool BinaryOperator::swapOperands() {
+  if (!isCommutative())
+    return true; // Can't commute operands
+  Op<0>().swap(Op<1>());
+  return false;
+}
+
+void BinaryOperator::setHasNoUnsignedWrap(bool b) {
+  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
+}
+
+void BinaryOperator::setHasNoSignedWrap(bool b) {
+  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
+}
+
+void BinaryOperator::setIsExact(bool b) {
+  cast<PossiblyExactOperator>(this)->setIsExact(b);
+}
+
+bool BinaryOperator::hasNoUnsignedWrap() const {
+  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
+}
+
+bool BinaryOperator::hasNoSignedWrap() const {
+  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
+}
+
+bool BinaryOperator::isExact() const {
+  return cast<PossiblyExactOperator>(this)->isExact();
+}
+
+//===----------------------------------------------------------------------===//
+//                             FPMathOperator Class
+//===----------------------------------------------------------------------===//
+
+/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
+/// An accuracy of 0.0 means that the operation should be performed with the
+/// default precision.
+float FPMathOperator::getFPAccuracy() const {
+  const MDNode *MD =
+    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
+  if (!MD)
+    return 0.0;
+  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
+  return Accuracy->getValueAPF().convertToFloat();
+}
+
+
+//===----------------------------------------------------------------------===//
+//                                CastInst Class
+//===----------------------------------------------------------------------===//
+
+void CastInst::anchor() {}
+
+// Just determine if this cast only deals with integral->integral conversion.
+bool CastInst::isIntegerCast() const {
+  switch (getOpcode()) {
+    default: return false;
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::Trunc:
+      return true;
+    case Instruction::BitCast:
+      return getOperand(0)->getType()->isIntegerTy() &&
+        getType()->isIntegerTy();
+  }
+}
+
+bool CastInst::isLosslessCast() const {
+  // Only BitCast can be lossless, exit fast if we're not BitCast
+  if (getOpcode() != Instruction::BitCast)
+    return false;
+
+  // Identity cast is always lossless
+  Type* SrcTy = getOperand(0)->getType();
+  Type* DstTy = getType();
+  if (SrcTy == DstTy)
+    return true;
+  
+  // Pointer to pointer is always lossless.
+  if (SrcTy->isPointerTy())
+    return DstTy->isPointerTy();
+  return false;  // Other types have no identity values
+}
+
+/// This function determines if the CastInst does not require any bits to be
+/// changed in order to effect the cast. Essentially, it identifies cases where
+/// no code gen is necessary for the cast, hence the name no-op cast.  For 
+/// example, the following are all no-op casts:
+/// # bitcast i32* %x to i8*
+/// # bitcast <2 x i32> %x to <4 x i16> 
+/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
+/// @brief Determine if the described cast is a no-op.
+bool CastInst::isNoopCast(Instruction::CastOps Opcode,
+                          Type *SrcTy,
+                          Type *DestTy,
+                          Type *IntPtrTy) {
+  switch (Opcode) {
+    default: llvm_unreachable("Invalid CastOp");
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt: 
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+    case Instruction::AddrSpaceCast:
+      // TODO: Target informations may give a more accurate answer here.
+      return false;
+    case Instruction::BitCast:
+      return true;  // BitCast never modifies bits.
+    case Instruction::PtrToInt:
+      return IntPtrTy->getScalarSizeInBits() ==
+             DestTy->getScalarSizeInBits();
+    case Instruction::IntToPtr:
+      return IntPtrTy->getScalarSizeInBits() ==
+             SrcTy->getScalarSizeInBits();
+  }
+}
+
+/// @brief Determine if a cast is a no-op.
+bool CastInst::isNoopCast(Type *IntPtrTy) const {
+  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
+}
+
+/// This function determines if a pair of casts can be eliminated and what 
+/// opcode should be used in the elimination. This assumes that there are two 
+/// instructions like this:
+/// *  %F = firstOpcode SrcTy %x to MidTy
+/// *  %S = secondOpcode MidTy %F to DstTy
+/// The function returns a resultOpcode so these two casts can be replaced with:
+/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
+/// If no such cast is permited, the function returns 0.
+unsigned CastInst::isEliminableCastPair(
+  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
+  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
+  Type *DstIntPtrTy) {
+  // Define the 144 possibilities for these two cast instructions. The values
+  // in this matrix determine what to do in a given situation and select the
+  // case in the switch below.  The rows correspond to firstOp, the columns 
+  // correspond to secondOp.  In looking at the table below, keep in  mind
+  // the following cast properties:
+  //
+  //          Size Compare       Source               Destination
+  // Operator  Src ? Size   Type       Sign         Type       Sign
+  // -------- ------------ -------------------   ---------------------
+  // TRUNC         >       Integer      Any        Integral     Any
+  // ZEXT          <       Integral   Unsigned     Integer      Any
+  // SEXT          <       Integral    Signed      Integer      Any
+  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
+  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
+  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
+  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
+  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
+  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
+  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
+  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
+  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
+  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
+  //
+  // NOTE: some transforms are safe, but we consider them to be non-profitable.
+  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
+  // into "fptoui double to i64", but this loses information about the range
+  // of the produced value (we no longer know the top-part is all zeros).
+  // Further this conversion is often much more expensive for typical hardware,
+  // and causes issues when building libgcc.  We disallow fptosi+sext for the
+  // same reason.
+  const unsigned numCastOps =
+    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
+  static const uint8_t CastResults[numCastOps][numCastOps] = {
+    // T        F  F  U  S  F  F  P  I  B  A  -+
+    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
+    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
+    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
+    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
+    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
+    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt           |
+    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
+    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
+    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
+    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
+    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
+    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc        |
+    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
+    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
+    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
+    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
+    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
+  };
+
+  // If either of the casts are a bitcast from scalar to vector, disallow the
+  // merging. However, bitcast of A->B->A are allowed.
+  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
+  bool isSecondBitcast = (secondOp == Instruction::BitCast);
+  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
+
+  // Check if any of the bitcasts convert scalars<->vectors.
+  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
+      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
+    // Unless we are bitcasing to the original type, disallow optimizations.
+    if (!chainedBitcast) return 0;
+
+  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
+                            [secondOp-Instruction::CastOpsBegin];
+  switch (ElimCase) {
+    case 0: 
+      // Categorically disallowed.
+      return 0;
+    case 1: 
+      // Allowed, use first cast's opcode.
+      return firstOp;
+    case 2: 
+      // Allowed, use second cast's opcode.
+      return secondOp;
+    case 3: 
+      // No-op cast in second op implies firstOp as long as the DestTy
+      // is integer and we are not converting between a vector and a
+      // non vector type.
+      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
+        return firstOp;
+      return 0;
+    case 4:
+      // No-op cast in second op implies firstOp as long as the DestTy
+      // is floating point.
+      if (DstTy->isFloatingPointTy())
+        return firstOp;
+      return 0;
+    case 5: 
+      // No-op cast in first op implies secondOp as long as the SrcTy
+      // is an integer.
+      if (SrcTy->isIntegerTy())
+        return secondOp;
+      return 0;
+    case 6:
+      // No-op cast in first op implies secondOp as long as the SrcTy
+      // is a floating point.
+      if (SrcTy->isFloatingPointTy())
+        return secondOp;
+      return 0;
+    case 7: {
+      // Cannot simplify if address spaces are different!
+      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
+        return 0;
+
+      unsigned MidSize = MidTy->getScalarSizeInBits();
+      // We can still fold this without knowing the actual sizes as long we
+      // know that the intermediate pointer is the largest possible
+      // pointer size.
+      // FIXME: Is this always true?
+      if (MidSize == 64)
+        return Instruction::BitCast;
+
+      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
+      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
+        return 0;
+      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
+      if (MidSize >= PtrSize)
+        return Instruction::BitCast;
+      return 0;
+    }
+    case 8: {
+      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
+      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
+      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
+      unsigned SrcSize = SrcTy->getScalarSizeInBits();
+      unsigned DstSize = DstTy->getScalarSizeInBits();
+      if (SrcSize == DstSize)
+        return Instruction::BitCast;
+      else if (SrcSize < DstSize)
+        return firstOp;
+      return secondOp;
+    }
+    case 9:
+      // zext, sext -> zext, because sext can't sign extend after zext
+      return Instruction::ZExt;
+    case 10:
+      // fpext followed by ftrunc is allowed if the bit size returned to is
+      // the same as the original, in which case its just a bitcast
+      if (SrcTy == DstTy)
+        return Instruction::BitCast;
+      return 0; // If the types are not the same we can't eliminate it.
+    case 11: {
+      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+      if (!MidIntPtrTy)
+        return 0;
+      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
+      unsigned SrcSize = SrcTy->getScalarSizeInBits();
+      unsigned DstSize = DstTy->getScalarSizeInBits();
+      if (SrcSize <= PtrSize && SrcSize == DstSize)
+        return Instruction::BitCast;
+      return 0;
+    }
+    case 12: {
+      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
+      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
+      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
+        return Instruction::AddrSpaceCast;
+      return Instruction::BitCast;
+    }
+    case 13:
+      // FIXME: this state can be merged with (1), but the following assert
+      // is useful to check the correcteness of the sequence due to semantic
+      // change of bitcast.
+      assert(
+        SrcTy->isPtrOrPtrVectorTy() &&
+        MidTy->isPtrOrPtrVectorTy() &&
+        DstTy->isPtrOrPtrVectorTy() &&
+        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
+        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
+        "Illegal addrspacecast, bitcast sequence!");
+      // Allowed, use first cast's opcode
+      return firstOp;
+    case 14:
+      // FIXME: this state can be merged with (2), but the following assert
+      // is useful to check the correcteness of the sequence due to semantic
+      // change of bitcast.
+      assert(
+        SrcTy->isPtrOrPtrVectorTy() &&
+        MidTy->isPtrOrPtrVectorTy() &&
+        DstTy->isPtrOrPtrVectorTy() &&
+        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
+        MidTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace() &&
+        "Illegal bitcast, addrspacecast sequence!");
+      // Allowed, use second cast's opcode
+      return secondOp;
+    case 15:
+      // FIXME: this state can be merged with (1), but the following assert
+      // is useful to check the correcteness of the sequence due to semantic
+      // change of bitcast.
+      assert(
+        SrcTy->isIntOrIntVectorTy() &&
+        MidTy->isPtrOrPtrVectorTy() &&
+        DstTy->isPtrOrPtrVectorTy() &&
+        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
+        "Illegal inttoptr, bitcast sequence!");
+      // Allowed, use first cast's opcode
+      return firstOp;
+    case 16:
+      // FIXME: this state can be merged with (2), but the following assert
+      // is useful to check the correcteness of the sequence due to semantic
+      // change of bitcast.
+      assert(
+        SrcTy->isPtrOrPtrVectorTy() &&
+        MidTy->isPtrOrPtrVectorTy() &&
+        DstTy->isIntOrIntVectorTy() &&
+        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
+        "Illegal bitcast, ptrtoint sequence!");
+      // Allowed, use second cast's opcode
+      return secondOp;
+    case 99: 
+      // Cast combination can't happen (error in input). This is for all cases
+      // where the MidTy is not the same for the two cast instructions.
+      llvm_unreachable("Invalid Cast Combination");
+    default:
+      llvm_unreachable("Error in CastResults table!!!");
+  }
+}
+
+CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
+  const Twine &Name, Instruction *InsertBefore) {
+  assert(castIsValid(op, S, Ty) && "Invalid cast!");
+  // Construct and return the appropriate CastInst subclass
+  switch (op) {
+  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
+  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
+  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
+  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
+  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
+  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
+  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
+  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
+  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
+  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
+  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
+  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
+  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
+  default: llvm_unreachable("Invalid opcode provided");
+  }
+}
+
+CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
+  const Twine &Name, BasicBlock *InsertAtEnd) {
+  assert(castIsValid(op, S, Ty) && "Invalid cast!");
+  // Construct and return the appropriate CastInst subclass
+  switch (op) {
+  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
+  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
+  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
+  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
+  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
+  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
+  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
+  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
+  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
+  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
+  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
+  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
+  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
+  default: llvm_unreachable("Invalid opcode provided");
+  }
+}
+
+CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
+                                        const Twine &Name,
+                                        Instruction *InsertBefore) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
+                                        const Twine &Name,
+                                        BasicBlock *InsertAtEnd) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
+                                        const Twine &Name,
+                                        Instruction *InsertBefore) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
+                                        const Twine &Name,
+                                        BasicBlock *InsertAtEnd) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
+                                         const Twine &Name,
+                                         Instruction *InsertBefore) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
+                                         const Twine &Name, 
+                                         BasicBlock *InsertAtEnd) {
+  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
+                                      const Twine &Name,
+                                      BasicBlock *InsertAtEnd) {
+  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
+         "Invalid cast");
+  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
+  assert((!Ty->isVectorTy() ||
+          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
+         "Invalid cast");
+
+  if (Ty->isIntOrIntVectorTy())
+    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
+
+  Type *STy = S->getType();
+  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
+    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
+
+  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+}
+
+/// @brief Create a BitCast or a PtrToInt cast instruction
+CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
+                                      const Twine &Name,
+                                      Instruction *InsertBefore) {
+  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
+         "Invalid cast");
+  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
+  assert((!Ty->isVectorTy() ||
+          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
+         "Invalid cast");
+
+  if (Ty->isIntOrIntVectorTy())
+    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
+
+  Type *STy = S->getType();
+  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
+    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
+
+  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
+                                      bool isSigned, const Twine &Name,
+                                      Instruction *InsertBefore) {
+  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
+         "Invalid integer cast");
+  unsigned SrcBits = C->getType()->getScalarSizeInBits();
+  unsigned DstBits = Ty->getScalarSizeInBits();
+  Instruction::CastOps opcode =
+    (SrcBits == DstBits ? Instruction::BitCast :
+     (SrcBits > DstBits ? Instruction::Trunc :
+      (isSigned ? Instruction::SExt : Instruction::ZExt)));
+  return Create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
+                                      bool isSigned, const Twine &Name,
+                                      BasicBlock *InsertAtEnd) {
+  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
+         "Invalid cast");
+  unsigned SrcBits = C->getType()->getScalarSizeInBits();
+  unsigned DstBits = Ty->getScalarSizeInBits();
+  Instruction::CastOps opcode =
+    (SrcBits == DstBits ? Instruction::BitCast :
+     (SrcBits > DstBits ? Instruction::Trunc :
+      (isSigned ? Instruction::SExt : Instruction::ZExt)));
+  return Create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
+                                 const Twine &Name, 
+                                 Instruction *InsertBefore) {
+  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
+         "Invalid cast");
+  unsigned SrcBits = C->getType()->getScalarSizeInBits();
+  unsigned DstBits = Ty->getScalarSizeInBits();
+  Instruction::CastOps opcode =
+    (SrcBits == DstBits ? Instruction::BitCast :
+     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+  return Create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
+                                 const Twine &Name, 
+                                 BasicBlock *InsertAtEnd) {
+  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
+         "Invalid cast");
+  unsigned SrcBits = C->getType()->getScalarSizeInBits();
+  unsigned DstBits = Ty->getScalarSizeInBits();
+  Instruction::CastOps opcode =
+    (SrcBits == DstBits ? Instruction::BitCast :
+     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+  return Create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+// Check whether it is valid to call getCastOpcode for these types.
+// This routine must be kept in sync with getCastOpcode.
+bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
+  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
+    return false;
+
+  if (SrcTy == DestTy)
+    return true;
+
+  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
+    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
+      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
+        // An element by element cast.  Valid if casting the elements is valid.
+        SrcTy = SrcVecTy->getElementType();
+        DestTy = DestVecTy->getElementType();
+      }
+
+  // Get the bit sizes, we'll need these
+  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
+  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
+
+  // Run through the possibilities ...
+  if (DestTy->isIntegerTy()) {               // Casting to integral
+    if (SrcTy->isIntegerTy()) {                // Casting from integral
+        return true;
+    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
+      return true;
+    } else if (SrcTy->isVectorTy()) {          // Casting from vector
+      return DestBits == SrcBits;
+    } else {                                   // Casting from something else
+      return SrcTy->isPointerTy();
+    }
+  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
+    if (SrcTy->isIntegerTy()) {                // Casting from integral
+      return true;
+    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
+      return true;
+    } else if (SrcTy->isVectorTy()) {          // Casting from vector
+      return DestBits == SrcBits;
+    } else {                                   // Casting from something else
+      return false;
+    }
+  } else if (DestTy->isVectorTy()) {         // Casting to vector
+    return DestBits == SrcBits;
+  } else if (DestTy->isPointerTy()) {        // Casting to pointer
+    if (SrcTy->isPointerTy()) {                // Casting from pointer
+      return true;
+    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
+      return true;
+    } else {                                   // Casting from something else
+      return false;
+    }
+  } else if (DestTy->isX86_MMXTy()) {
+    if (SrcTy->isVectorTy()) {
+      return DestBits == SrcBits;       // 64-bit vector to MMX
+    } else {
+      return false;
+    }
+  } else {                                   // Casting to something else
+    return false;
+  }
+}
+
+bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
+  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
+    return false;
+
+  if (SrcTy == DestTy)
+    return true;
+
+  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
+    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
+      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
+        // An element by element cast. Valid if casting the elements is valid.
+        SrcTy = SrcVecTy->getElementType();
+        DestTy = DestVecTy->getElementType();
+      }
+    }
+  }
+
+  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
+    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
+      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
+    }
+  }
+
+  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
+  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
+
+  // Could still have vectors of pointers if the number of elements doesn't
+  // match
+  if (SrcBits == 0 || DestBits == 0)
+    return false;
+
+  if (SrcBits != DestBits)
+    return false;
+
+  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
+    return false;
+
+  return true;
+}
+
+// Provide a way to get a "cast" where the cast opcode is inferred from the
+// types and size of the operand. This, basically, is a parallel of the
+// logic in the castIsValid function below.  This axiom should hold:
+//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
+// should not assert in castIsValid. In other words, this produces a "correct"
+// casting opcode for the arguments passed to it.
+// This routine must be kept in sync with isCastable.
+Instruction::CastOps
+CastInst::getCastOpcode(
+  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
+  Type *SrcTy = Src->getType();
+
+  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
+         "Only first class types are castable!");
+
+  if (SrcTy == DestTy)
+    return BitCast;
+
+  // FIXME: Check address space sizes here
+  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
+    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
+      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
+        // An element by element cast.  Find the appropriate opcode based on the
+        // element types.
+        SrcTy = SrcVecTy->getElementType();
+        DestTy = DestVecTy->getElementType();
+      }
+
+  // Get the bit sizes, we'll need these
+  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
+  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
+
+  // Run through the possibilities ...
+  if (DestTy->isIntegerTy()) {                      // Casting to integral
+    if (SrcTy->isIntegerTy()) {                     // Casting from integral
+      if (DestBits < SrcBits)
+        return Trunc;                               // int -> smaller int
+      else if (DestBits > SrcBits) {                // its an extension
+        if (SrcIsSigned)
+          return SExt;                              // signed -> SEXT
+        else
+          return ZExt;                              // unsigned -> ZEXT
+      } else {
+        return BitCast;                             // Same size, No-op cast
+      }
+    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
+      if (DestIsSigned) 
+        return FPToSI;                              // FP -> sint
+      else
+        return FPToUI;                              // FP -> uint 
+    } else if (SrcTy->isVectorTy()) {
+      assert(DestBits == SrcBits &&
+             "Casting vector to integer of different width");
+      return BitCast;                             // Same size, no-op cast
+    } else {
+      assert(SrcTy->isPointerTy() &&
+             "Casting from a value that is not first-class type");
+      return PtrToInt;                              // ptr -> int
+    }
+  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
+    if (SrcTy->isIntegerTy()) {                     // Casting from integral
+      if (SrcIsSigned)
+        return SIToFP;                              // sint -> FP
+      else
+        return UIToFP;                              // uint -> FP
+    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
+      if (DestBits < SrcBits) {
+        return FPTrunc;                             // FP -> smaller FP
+      } else if (DestBits > SrcBits) {
+        return FPExt;                               // FP -> larger FP
+      } else  {
+        return BitCast;                             // same size, no-op cast
+      }
+    } else if (SrcTy->isVectorTy()) {
+      assert(DestBits == SrcBits &&
+             "Casting vector to floating point of different width");
+      return BitCast;                             // same size, no-op cast
+    }
+    llvm_unreachable("Casting pointer or non-first class to float");
+  } else if (DestTy->isVectorTy()) {
+    assert(DestBits == SrcBits &&
+           "Illegal cast to vector (wrong type or size)");
+    return BitCast;
+  } else if (DestTy->isPointerTy()) {
+    if (SrcTy->isPointerTy()) {
+      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
+        return AddrSpaceCast;
+      return BitCast;                               // ptr -> ptr
+    } else if (SrcTy->isIntegerTy()) {
+      return IntToPtr;                              // int -> ptr
+    }
+    llvm_unreachable("Casting pointer to other than pointer or int");
+  } else if (DestTy->isX86_MMXTy()) {
+    if (SrcTy->isVectorTy()) {
+      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
+      return BitCast;                               // 64-bit vector to MMX
+    }
+    llvm_unreachable("Illegal cast to X86_MMX");
+  }
+  llvm_unreachable("Casting to type that is not first-class");
+}
+
+//===----------------------------------------------------------------------===//
+//                    CastInst SubClass Constructors
+//===----------------------------------------------------------------------===//
+
+/// Check that the construction parameters for a CastInst are correct. This
+/// could be broken out into the separate constructors but it is useful to have
+/// it in one place and to eliminate the redundant code for getting the sizes
+/// of the types involved.
+bool 
+CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
+
+  // Check for type sanity on the arguments
+  Type *SrcTy = S->getType();
+
+  // If this is a cast to the same type then it's trivially true.
+  if (SrcTy == DstTy)
+    return true;
+
+  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
+      SrcTy->isAggregateType() || DstTy->isAggregateType())
+    return false;
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+  unsigned DstBitSize = DstTy->getScalarSizeInBits();
+
+  // If these are vector types, get the lengths of the vectors (using zero for
+  // scalar types means that checking that vector lengths match also checks that
+  // scalars are not being converted to vectors or vectors to scalars).
+  unsigned SrcLength = SrcTy->isVectorTy() ?
+    cast<VectorType>(SrcTy)->getNumElements() : 0;
+  unsigned DstLength = DstTy->isVectorTy() ?
+    cast<VectorType>(DstTy)->getNumElements() : 0;
+
+  // Switch on the opcode provided
+  switch (op) {
+  default: return false; // This is an input error
+  case Instruction::Trunc:
+    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+      SrcLength == DstLength && SrcBitSize > DstBitSize;
+  case Instruction::ZExt:
+    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+      SrcLength == DstLength && SrcBitSize < DstBitSize;
+  case Instruction::SExt: 
+    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+      SrcLength == DstLength && SrcBitSize < DstBitSize;
+  case Instruction::FPTrunc:
+    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
+      SrcLength == DstLength && SrcBitSize > DstBitSize;
+  case Instruction::FPExt:
+    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
+      SrcLength == DstLength && SrcBitSize < DstBitSize;
+  case Instruction::UIToFP:
+  case Instruction::SIToFP:
+    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
+      SrcLength == DstLength;
+  case Instruction::FPToUI:
+  case Instruction::FPToSI:
+    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
+      SrcLength == DstLength;
+  case Instruction::PtrToInt:
+    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
+      return false;
+    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
+      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
+        return false;
+    return SrcTy->getScalarType()->isPointerTy() &&
+           DstTy->getScalarType()->isIntegerTy();
+  case Instruction::IntToPtr:
+    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
+      return false;
+    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
+      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
+        return false;
+    return SrcTy->getScalarType()->isIntegerTy() &&
+           DstTy->getScalarType()->isPointerTy();
+  case Instruction::BitCast:
+    // BitCast implies a no-op cast of type only. No bits change.
+    // However, you can't cast pointers to anything but pointers.
+    if (SrcTy->isPtrOrPtrVectorTy() != DstTy->isPtrOrPtrVectorTy())
+      return false;
+
+    // For non pointer cases, the cast is okay if the source and destination bit
+    // widths are identical.
+    if (!SrcTy->isPtrOrPtrVectorTy())
+      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
+
+    // If both are pointers then the address spaces must match and vector of
+    // pointers must have the same number of elements.
+    return SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
+           SrcTy->isVectorTy() == DstTy->isVectorTy() &&
+           (!SrcTy->isVectorTy() ||
+            SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements());
+
+  case Instruction::AddrSpaceCast:
+    return SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
+           SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace() &&
+           SrcTy->isVectorTy() == DstTy->isVectorTy() &&
+           (!SrcTy->isVectorTy() ||
+            SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements());
+  }
+}
+
+TruncInst::TruncInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+TruncInst::TruncInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+ZExtInst::ZExtInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+)  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+
+ZExtInst::ZExtInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+SExtInst::SExtInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+SExtInst::SExtInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+FPTruncInst::FPTruncInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPTruncInst::FPTruncInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPExtInst::FPExtInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+FPExtInst::FPExtInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+UIToFPInst::UIToFPInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+UIToFPInst::UIToFPInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+FPToUIInst::FPToUIInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToUIInst::FPToUIInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToSIInst::FPToSIInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+FPToSIInst::FPToSIInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+PtrToIntInst::PtrToIntInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+PtrToIntInst::PtrToIntInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+IntToPtrInst::IntToPtrInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+IntToPtrInst::IntToPtrInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+BitCastInst::BitCastInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+BitCastInst::BitCastInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+AddrSpaceCastInst::AddrSpaceCastInst(
+  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
+}
+
+AddrSpaceCastInst::AddrSpaceCastInst(
+  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
+  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
+}
+
+//===----------------------------------------------------------------------===//
+//                               CmpInst Classes
+//===----------------------------------------------------------------------===//
+
+void CmpInst::anchor() {}
+
+CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
+                 Value *LHS, Value *RHS, const Twine &Name,
+                 Instruction *InsertBefore)
+  : Instruction(ty, op,
+                OperandTraits<CmpInst>::op_begin(this),
+                OperandTraits<CmpInst>::operands(this),
+                InsertBefore) {
+    Op<0>() = LHS;
+    Op<1>() = RHS;
+  setPredicate((Predicate)predicate);
+  setName(Name);
+}
+
+CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
+                 Value *LHS, Value *RHS, const Twine &Name,
+                 BasicBlock *InsertAtEnd)
+  : Instruction(ty, op,
+                OperandTraits<CmpInst>::op_begin(this),
+                OperandTraits<CmpInst>::operands(this),
+                InsertAtEnd) {
+  Op<0>() = LHS;
+  Op<1>() = RHS;
+  setPredicate((Predicate)predicate);
+  setName(Name);
+}
+
+CmpInst *
+CmpInst::Create(OtherOps Op, unsigned short predicate,
+                Value *S1, Value *S2, 
+                const Twine &Name, Instruction *InsertBefore) {
+  if (Op == Instruction::ICmp) {
+    if (InsertBefore)
+      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
+                          S1, S2, Name);
+    else
+      return new ICmpInst(CmpInst::Predicate(predicate),
+                          S1, S2, Name);
+  }
+  
+  if (InsertBefore)
+    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
+                        S1, S2, Name);
+  else
+    return new FCmpInst(CmpInst::Predicate(predicate),
+                        S1, S2, Name);
+}
+
+CmpInst *
+CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
+                const Twine &Name, BasicBlock *InsertAtEnd) {
+  if (Op == Instruction::ICmp) {
+    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+                        S1, S2, Name);
+  }
+  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+                      S1, S2, Name);
+}
+
+void CmpInst::swapOperands() {
+  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
+    IC->swapOperands();
+  else
+    cast<FCmpInst>(this)->swapOperands();
+}
+
+bool CmpInst::isCommutative() const {
+  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
+    return IC->isCommutative();
+  return cast<FCmpInst>(this)->isCommutative();
+}
+
+bool CmpInst::isEquality() const {
+  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
+    return IC->isEquality();
+  return cast<FCmpInst>(this)->isEquality();
+}
+
+
+CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
+  switch (pred) {
+    default: llvm_unreachable("Unknown cmp predicate!");
+    case ICMP_EQ: return ICMP_NE;
+    case ICMP_NE: return ICMP_EQ;
+    case ICMP_UGT: return ICMP_ULE;
+    case ICMP_ULT: return ICMP_UGE;
+    case ICMP_UGE: return ICMP_ULT;
+    case ICMP_ULE: return ICMP_UGT;
+    case ICMP_SGT: return ICMP_SLE;
+    case ICMP_SLT: return ICMP_SGE;
+    case ICMP_SGE: return ICMP_SLT;
+    case ICMP_SLE: return ICMP_SGT;
+
+    case FCMP_OEQ: return FCMP_UNE;
+    case FCMP_ONE: return FCMP_UEQ;
+    case FCMP_OGT: return FCMP_ULE;
+    case FCMP_OLT: return FCMP_UGE;
+    case FCMP_OGE: return FCMP_ULT;
+    case FCMP_OLE: return FCMP_UGT;
+    case FCMP_UEQ: return FCMP_ONE;
+    case FCMP_UNE: return FCMP_OEQ;
+    case FCMP_UGT: return FCMP_OLE;
+    case FCMP_ULT: return FCMP_OGE;
+    case FCMP_UGE: return FCMP_OLT;
+    case FCMP_ULE: return FCMP_OGT;
+    case FCMP_ORD: return FCMP_UNO;
+    case FCMP_UNO: return FCMP_ORD;
+    case FCMP_TRUE: return FCMP_FALSE;
+    case FCMP_FALSE: return FCMP_TRUE;
+  }
+}
+
+ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
+  switch (pred) {
+    default: llvm_unreachable("Unknown icmp predicate!");
+    case ICMP_EQ: case ICMP_NE: 
+    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
+       return pred;
+    case ICMP_UGT: return ICMP_SGT;
+    case ICMP_ULT: return ICMP_SLT;
+    case ICMP_UGE: return ICMP_SGE;
+    case ICMP_ULE: return ICMP_SLE;
+  }
+}
+
+ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
+  switch (pred) {
+    default: llvm_unreachable("Unknown icmp predicate!");
+    case ICMP_EQ: case ICMP_NE: 
+    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
+       return pred;
+    case ICMP_SGT: return ICMP_UGT;
+    case ICMP_SLT: return ICMP_ULT;
+    case ICMP_SGE: return ICMP_UGE;
+    case ICMP_SLE: return ICMP_ULE;
+  }
+}
+
+/// Initialize a set of values that all satisfy the condition with C.
+///
+ConstantRange 
+ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
+  APInt Lower(C);
+  APInt Upper(C);
+  uint32_t BitWidth = C.getBitWidth();
+  switch (pred) {
+  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
+  case ICmpInst::ICMP_EQ: ++Upper; break;
+  case ICmpInst::ICMP_NE: ++Lower; break;
+  case ICmpInst::ICMP_ULT:
+    Lower = APInt::getMinValue(BitWidth);
+    // Check for an empty-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/false);
+    break;
+  case ICmpInst::ICMP_SLT:
+    Lower = APInt::getSignedMinValue(BitWidth);
+    // Check for an empty-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/false);
+    break;
+  case ICmpInst::ICMP_UGT: 
+    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
+    // Check for an empty-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/false);
+    break;
+  case ICmpInst::ICMP_SGT:
+    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
+    // Check for an empty-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/false);
+    break;
+  case ICmpInst::ICMP_ULE: 
+    Lower = APInt::getMinValue(BitWidth); ++Upper; 
+    // Check for a full-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/true);
+    break;
+  case ICmpInst::ICMP_SLE: 
+    Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 
+    // Check for a full-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/true);
+    break;
+  case ICmpInst::ICMP_UGE:
+    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
+    // Check for a full-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/true);
+    break;
+  case ICmpInst::ICMP_SGE:
+    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
+    // Check for a full-set condition.
+    if (Lower == Upper)
+      return ConstantRange(BitWidth, /*isFullSet=*/true);
+    break;
+  }
+  return ConstantRange(Lower, Upper);
+}
+
+CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
+  switch (pred) {
+    default: llvm_unreachable("Unknown cmp predicate!");
+    case ICMP_EQ: case ICMP_NE:
+      return pred;
+    case ICMP_SGT: return ICMP_SLT;
+    case ICMP_SLT: return ICMP_SGT;
+    case ICMP_SGE: return ICMP_SLE;
+    case ICMP_SLE: return ICMP_SGE;
+    case ICMP_UGT: return ICMP_ULT;
+    case ICMP_ULT: return ICMP_UGT;
+    case ICMP_UGE: return ICMP_ULE;
+    case ICMP_ULE: return ICMP_UGE;
+  
+    case FCMP_FALSE: case FCMP_TRUE:
+    case FCMP_OEQ: case FCMP_ONE:
+    case FCMP_UEQ: case FCMP_UNE:
+    case FCMP_ORD: case FCMP_UNO:
+      return pred;
+    case FCMP_OGT: return FCMP_OLT;
+    case FCMP_OLT: return FCMP_OGT;
+    case FCMP_OGE: return FCMP_OLE;
+    case FCMP_OLE: return FCMP_OGE;
+    case FCMP_UGT: return FCMP_ULT;
+    case FCMP_ULT: return FCMP_UGT;
+    case FCMP_UGE: return FCMP_ULE;
+    case FCMP_ULE: return FCMP_UGE;
+  }
+}
+
+bool CmpInst::isUnsigned(unsigned short predicate) {
+  switch (predicate) {
+    default: return false;
+    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
+    case ICmpInst::ICMP_UGE: return true;
+  }
+}
+
+bool CmpInst::isSigned(unsigned short predicate) {
+  switch (predicate) {
+    default: return false;
+    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
+    case ICmpInst::ICMP_SGE: return true;
+  }
+}
+
+bool CmpInst::isOrdered(unsigned short predicate) {
+  switch (predicate) {
+    default: return false;
+    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
+    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
+    case FCmpInst::FCMP_ORD: return true;
+  }
+}
+      
+bool CmpInst::isUnordered(unsigned short predicate) {
+  switch (predicate) {
+    default: return false;
+    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
+    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
+    case FCmpInst::FCMP_UNO: return true;
+  }
+}
+
+bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
+  switch(predicate) {
+    default: return false;
+    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
+    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
+  }
+}
+
+bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
+  switch(predicate) {
+  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
+  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
+  default: return false;
+  }
+}
+
+
+//===----------------------------------------------------------------------===//
+//                        SwitchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
+  assert(Value && Default && NumReserved);
+  ReservedSpace = NumReserved;
+  NumOperands = 2;
+  OperandList = allocHungoffUses(ReservedSpace);
+
+  OperandList[0] = Value;
+  OperandList[1] = Default;
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination.  The number of additional cases can
+/// be specified here to make memory allocation more efficient.  This
+/// constructor can also autoinsert before another instruction.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+                       Instruction *InsertBefore)
+  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+                   0, 0, InsertBefore) {
+  init(Value, Default, 2+NumCases*2);
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination.  The number of additional cases can
+/// be specified here to make memory allocation more efficient.  This
+/// constructor also autoinserts at the end of the specified BasicBlock.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+                       BasicBlock *InsertAtEnd)
+  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+                   0, 0, InsertAtEnd) {
+  init(Value, Default, 2+NumCases*2);
+}
+
+SwitchInst::SwitchInst(const SwitchInst &SI)
+  : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
+  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
+  NumOperands = SI.getNumOperands();
+  Use *OL = OperandList, *InOL = SI.OperandList;
+  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
+    OL[i] = InOL[i];
+    OL[i+1] = InOL[i+1];
+  }
+  SubclassOptionalData = SI.SubclassOptionalData;
+}
+
+SwitchInst::~SwitchInst() {
+  dropHungoffUses();
+}
+
+
+/// addCase - Add an entry to the switch instruction...
+///
+void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
+  unsigned NewCaseIdx = getNumCases(); 
+  unsigned OpNo = NumOperands;
+  if (OpNo+2 > ReservedSpace)
+    growOperands();  // Get more space!
+  // Initialize some new operands.
+  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
+  NumOperands = OpNo+2;
+  CaseIt Case(this, NewCaseIdx);
+  Case.setValue(OnVal);
+  Case.setSuccessor(Dest);
+}
+
+/// removeCase - This method removes the specified case and its successor
+/// from the switch instruction.
+void SwitchInst::removeCase(CaseIt i) {
+  unsigned idx = i.getCaseIndex();
+  
+  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
+
+  unsigned NumOps = getNumOperands();
+  Use *OL = OperandList;
+
+  // Overwrite this case with the end of the list.
+  if (2 + (idx + 1) * 2 != NumOps) {
+    OL[2 + idx * 2] = OL[NumOps - 2];
+    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
+  }
+
+  // Nuke the last value.
+  OL[NumOps-2].set(0);
+  OL[NumOps-2+1].set(0);
+  NumOperands = NumOps-2;
+}
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation.  This grows the number of ops by 3 times.
+///
+void SwitchInst::growOperands() {
+  unsigned e = getNumOperands();
+  unsigned NumOps = e*3;
+
+  ReservedSpace = NumOps;
+  Use *NewOps = allocHungoffUses(NumOps);
+  Use *OldOps = OperandList;
+  for (unsigned i = 0; i != e; ++i) {
+      NewOps[i] = OldOps[i];
+  }
+  OperandList = NewOps;
+  Use::zap(OldOps, OldOps + e, true);
+}
+
+
+BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
+  return getSuccessor(idx);
+}
+unsigned SwitchInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+  setSuccessor(idx, B);
+}
+
+//===----------------------------------------------------------------------===//
+//                        IndirectBrInst Implementation
+//===----------------------------------------------------------------------===//
+
+void IndirectBrInst::init(Value *Address, unsigned NumDests) {
+  assert(Address && Address->getType()->isPointerTy() &&
+         "Address of indirectbr must be a pointer");
+  ReservedSpace = 1+NumDests;
+  NumOperands = 1;
+  OperandList = allocHungoffUses(ReservedSpace);
+  
+  OperandList[0] = Address;
+}
+
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation.  This grows the number of ops by 2 times.
+///
+void IndirectBrInst::growOperands() {
+  unsigned e = getNumOperands();
+  unsigned NumOps = e*2;
+  
+  ReservedSpace = NumOps;
+  Use *NewOps = allocHungoffUses(NumOps);
+  Use *OldOps = OperandList;
+  for (unsigned i = 0; i != e; ++i)
+    NewOps[i] = OldOps[i];
+  OperandList = NewOps;
+  Use::zap(OldOps, OldOps + e, true);
+}
+
+IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
+                               Instruction *InsertBefore)
+: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
+                 0, 0, InsertBefore) {
+  init(Address, NumCases);
+}
+
+IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
+                               BasicBlock *InsertAtEnd)
+: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
+                 0, 0, InsertAtEnd) {
+  init(Address, NumCases);
+}
+
+IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
+  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
+                   allocHungoffUses(IBI.getNumOperands()),
+                   IBI.getNumOperands()) {
+  Use *OL = OperandList, *InOL = IBI.OperandList;
+  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
+    OL[i] = InOL[i];
+  SubclassOptionalData = IBI.SubclassOptionalData;
+}
+
+IndirectBrInst::~IndirectBrInst() {
+  dropHungoffUses();
+}
+
+/// addDestination - Add a destination.
+///
+void IndirectBrInst::addDestination(BasicBlock *DestBB) {
+  unsigned OpNo = NumOperands;
+  if (OpNo+1 > ReservedSpace)
+    growOperands();  // Get more space!
+  // Initialize some new operands.
+  assert(OpNo < ReservedSpace && "Growing didn't work!");
+  NumOperands = OpNo+1;
+  OperandList[OpNo] = DestBB;
+}
+
+/// removeDestination - This method removes the specified successor from the
+/// indirectbr instruction.
+void IndirectBrInst::removeDestination(unsigned idx) {
+  assert(idx < getNumOperands()-1 && "Successor index out of range!");
+  
+  unsigned NumOps = getNumOperands();
+  Use *OL = OperandList;
+
+  // Replace this value with the last one.
+  OL[idx+1] = OL[NumOps-1];
+  
+  // Nuke the last value.
+  OL[NumOps-1].set(0);
+  NumOperands = NumOps-1;
+}
+
+BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
+  return getSuccessor(idx);
+}
+unsigned IndirectBrInst::getNumSuccessorsV() const {
+  return getNumSuccessors();
+}
+void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
+  setSuccessor(idx, B);
+}
+
+//===----------------------------------------------------------------------===//
+//                           clone_impl() implementations
+//===----------------------------------------------------------------------===//
+
+// Define these methods here so vtables don't get emitted into every translation
+// unit that uses these classes.
+
+GetElementPtrInst *GetElementPtrInst::clone_impl() const {
+  return new (getNumOperands()) GetElementPtrInst(*this);
+}
+
+BinaryOperator *BinaryOperator::clone_impl() const {
+  return Create(getOpcode(), Op<0>(), Op<1>());
+}
+
+FCmpInst* FCmpInst::clone_impl() const {
+  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
+}
+
+ICmpInst* ICmpInst::clone_impl() const {
+  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
+}
+
+ExtractValueInst *ExtractValueInst::clone_impl() const {
+  return new ExtractValueInst(*this);
+}
+
+InsertValueInst *InsertValueInst::clone_impl() const {
+  return new InsertValueInst(*this);
+}
+
+AllocaInst *AllocaInst::clone_impl() const {
+  return new AllocaInst(getAllocatedType(),
+                        (Value*)getOperand(0),
+                        getAlignment());
+}
+
+LoadInst *LoadInst::clone_impl() const {
+  return new LoadInst(getOperand(0), Twine(), isVolatile(),
+                      getAlignment(), getOrdering(), getSynchScope());
+}
+
+StoreInst *StoreInst::clone_impl() const {
+  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
+                       getAlignment(), getOrdering(), getSynchScope());
+  
+}
+
+AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
+  AtomicCmpXchgInst *Result =
+    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
+                          getOrdering(), getSynchScope());
+  Result->setVolatile(isVolatile());
+  return Result;
+}
+
+AtomicRMWInst *AtomicRMWInst::clone_impl() const {
+  AtomicRMWInst *Result =
+    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
+                      getOrdering(), getSynchScope());
+  Result->setVolatile(isVolatile());
+  return Result;
+}
+
+FenceInst *FenceInst::clone_impl() const {
+  return new FenceInst(getContext(), getOrdering(), getSynchScope());
+}
+
+TruncInst *TruncInst::clone_impl() const {
+  return new TruncInst(getOperand(0), getType());
+}
+
+ZExtInst *ZExtInst::clone_impl() const {
+  return new ZExtInst(getOperand(0), getType());
+}
+
+SExtInst *SExtInst::clone_impl() const {
+  return new SExtInst(getOperand(0), getType());
+}
+
+FPTruncInst *FPTruncInst::clone_impl() const {
+  return new FPTruncInst(getOperand(0), getType());
+}
+
+FPExtInst *FPExtInst::clone_impl() const {
+  return new FPExtInst(getOperand(0), getType());
+}
+
+UIToFPInst *UIToFPInst::clone_impl() const {
+  return new UIToFPInst(getOperand(0), getType());
+}
+
+SIToFPInst *SIToFPInst::clone_impl() const {
+  return new SIToFPInst(getOperand(0), getType());
+}
+
+FPToUIInst *FPToUIInst::clone_impl() const {
+  return new FPToUIInst(getOperand(0), getType());
+}
+
+FPToSIInst *FPToSIInst::clone_impl() const {
+  return new FPToSIInst(getOperand(0), getType());
+}
+
+PtrToIntInst *PtrToIntInst::clone_impl() const {
+  return new PtrToIntInst(getOperand(0), getType());
+}
+
+IntToPtrInst *IntToPtrInst::clone_impl() const {
+  return new IntToPtrInst(getOperand(0), getType());
+}
+
+BitCastInst *BitCastInst::clone_impl() const {
+  return new BitCastInst(getOperand(0), getType());
+}
+
+AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
+  return new AddrSpaceCastInst(getOperand(0), getType());
+}
+
+CallInst *CallInst::clone_impl() const {
+  return  new(getNumOperands()) CallInst(*this);
+}
+
+SelectInst *SelectInst::clone_impl() const {
+  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
+}
+
+VAArgInst *VAArgInst::clone_impl() const {
+  return new VAArgInst(getOperand(0), getType());
+}
+
+ExtractElementInst *ExtractElementInst::clone_impl() const {
+  return ExtractElementInst::Create(getOperand(0), getOperand(1));
+}
+
+InsertElementInst *InsertElementInst::clone_impl() const {
+  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
+}
+
+ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
+  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
+}
+
+PHINode *PHINode::clone_impl() const {
+  return new PHINode(*this);
+}
+
+LandingPadInst *LandingPadInst::clone_impl() const {
+  return new LandingPadInst(*this);
+}
+
+ReturnInst *ReturnInst::clone_impl() const {
+  return new(getNumOperands()) ReturnInst(*this);
+}
+
+BranchInst *BranchInst::clone_impl() const {
+  return new(getNumOperands()) BranchInst(*this);
+}
+
+SwitchInst *SwitchInst::clone_impl() const {
+  return new SwitchInst(*this);
+}
+
+IndirectBrInst *IndirectBrInst::clone_impl() const {
+  return new IndirectBrInst(*this);
+}
+
+
+InvokeInst *InvokeInst::clone_impl() const {
+  return new(getNumOperands()) InvokeInst(*this);
+}
+
+ResumeInst *ResumeInst::clone_impl() const {
+  return new(1) ResumeInst(*this);
+}
+
+UnreachableInst *UnreachableInst::clone_impl() const {
+  LLVMContext &Context = getContext();
+  return new UnreachableInst(Context);
+}