Mercurial > hg > CbC > CbC_llvm
diff lib/Target/SystemZ/SystemZInstrFormats.td @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/SystemZ/SystemZInstrFormats.td Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,1603 @@ +//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Basic SystemZ instruction definition +//===----------------------------------------------------------------------===// + +class InstSystemZ<int size, dag outs, dag ins, string asmstr, + list<dag> pattern> : Instruction { + let Namespace = "SystemZ"; + + dag OutOperandList = outs; + dag InOperandList = ins; + let Size = size; + let Pattern = pattern; + let AsmString = asmstr; + + // Some instructions come in pairs, one having a 12-bit displacement + // and the other having a 20-bit displacement. Both instructions in + // the pair have the same DispKey and their DispSizes are "12" and "20" + // respectively. + string DispKey = ""; + string DispSize = "none"; + + // Many register-based <INSN>R instructions have a memory-based <INSN> + // counterpart. OpKey uniquely identifies <INSN>, while OpType is + // "reg" for <INSN>R and "mem" for <INSN>. + string OpKey = ""; + string OpType = "none"; + + // Many distinct-operands instructions have older 2-operand equivalents. + // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs, + // with NumOpsValue being "2" or "3" as appropriate. + string NumOpsKey = ""; + string NumOpsValue = "none"; + + // True if this instruction is a simple D(X,B) load of a register + // (with no sign or zero extension). + bit SimpleBDXLoad = 0; + + // True if this instruction is a simple D(X,B) store of a register + // (with no truncation). + bit SimpleBDXStore = 0; + + // True if this instruction has a 20-bit displacement field. + bit Has20BitOffset = 0; + + // True if addresses in this instruction have an index register. + bit HasIndex = 0; + + // True if this is a 128-bit pseudo instruction that combines two 64-bit + // operations. + bit Is128Bit = 0; + + // The access size of all memory operands in bytes, or 0 if not known. + bits<5> AccessBytes = 0; + + // If the instruction sets CC to a useful value, this gives the mask + // of all possible CC results. The mask has the same form as + // SystemZ::CCMASK_*. + bits<4> CCValues = 0; + + // The subset of CCValues that have the same meaning as they would after + // a comparison of the first operand against zero. + bits<4> CompareZeroCCMask = 0; + + // True if the instruction is conditional and if the CC mask operand + // comes first (as for BRC, etc.). + bit CCMaskFirst = 0; + + // Similar, but true if the CC mask operand comes last (as for LOC, etc.). + bit CCMaskLast = 0; + + // True if the instruction is the "logical" rather than "arithmetic" form, + // in cases where a distinction exists. + bit IsLogical = 0; + + let TSFlags{0} = SimpleBDXLoad; + let TSFlags{1} = SimpleBDXStore; + let TSFlags{2} = Has20BitOffset; + let TSFlags{3} = HasIndex; + let TSFlags{4} = Is128Bit; + let TSFlags{9-5} = AccessBytes; + let TSFlags{13-10} = CCValues; + let TSFlags{17-14} = CompareZeroCCMask; + let TSFlags{18} = CCMaskFirst; + let TSFlags{19} = CCMaskLast; + let TSFlags{20} = IsLogical; +} + +//===----------------------------------------------------------------------===// +// Mappings between instructions +//===----------------------------------------------------------------------===// + +// Return the version of an instruction that has an unsigned 12-bit +// displacement. +def getDisp12Opcode : InstrMapping { + let FilterClass = "InstSystemZ"; + let RowFields = ["DispKey"]; + let ColFields = ["DispSize"]; + let KeyCol = ["20"]; + let ValueCols = [["12"]]; +} + +// Return the version of an instruction that has a signed 20-bit displacement. +def getDisp20Opcode : InstrMapping { + let FilterClass = "InstSystemZ"; + let RowFields = ["DispKey"]; + let ColFields = ["DispSize"]; + let KeyCol = ["12"]; + let ValueCols = [["20"]]; +} + +// Return the memory form of a register instruction. +def getMemOpcode : InstrMapping { + let FilterClass = "InstSystemZ"; + let RowFields = ["OpKey"]; + let ColFields = ["OpType"]; + let KeyCol = ["reg"]; + let ValueCols = [["mem"]]; +} + +// Return the 3-operand form of a 2-operand instruction. +def getThreeOperandOpcode : InstrMapping { + let FilterClass = "InstSystemZ"; + let RowFields = ["NumOpsKey"]; + let ColFields = ["NumOpsValue"]; + let KeyCol = ["2"]; + let ValueCols = [["3"]]; +} + +//===----------------------------------------------------------------------===// +// Instruction formats +//===----------------------------------------------------------------------===// +// +// Formats are specified using operand field declarations of the form: +// +// bits<4> Rn : register input or output for operand n +// bits<m> In : immediate value of width m for operand n +// bits<4> BDn : address operand n, which has a base and a displacement +// bits<m> XBDn : address operand n, which has an index, a base and a +// displacement +// bits<4> Xn : index register for address operand n +// bits<4> Mn : mode value for operand n +// +// The operand numbers ("n" in the list above) follow the architecture manual. +// Assembly operands sometimes have a different order; in particular, R3 often +// is often written between operands 1 and 2. +// +//===----------------------------------------------------------------------===// + +class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<16> I2; + + let Inst{31-24} = op{11-4}; + let Inst{23-20} = R1; + let Inst{19-16} = op{3-0}; + let Inst{15-0} = I2; +} + +class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<4> R2; + bits<4> M3; + bits<16> RI4; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-32} = R2; + let Inst{31-16} = RI4; + let Inst{15-12} = M3; + let Inst{11-8} = 0; + let Inst{7-0} = op{7-0}; +} + +class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<8> I2; + bits<4> M3; + bits<16> RI4; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-32} = M3; + let Inst{31-16} = RI4; + let Inst{15-8} = I2; + let Inst{7-0} = op{7-0}; +} + +class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<4> R3; + bits<16> I2; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-32} = R3; + let Inst{31-16} = I2; + let Inst{15-8} = 0; + let Inst{7-0} = op{7-0}; +} + +class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<4> R2; + bits<8> I3; + bits<8> I4; + bits<8> I5; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-32} = R2; + let Inst{31-24} = I3; + let Inst{23-16} = I4; + let Inst{15-8} = I5; + let Inst{7-0} = op{7-0}; +} + +class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<32> I2; + + let Inst{47-40} = op{11-4}; + let Inst{39-36} = R1; + let Inst{35-32} = op{3-0}; + let Inst{31-0} = I2; +} + +class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<2, outs, ins, asmstr, pattern> { + field bits<16> Inst; + field bits<16> SoftFail = 0; + + bits<4> R1; + bits<4> R2; + + let Inst{15-8} = op; + let Inst{7-4} = R1; + let Inst{3-0} = R2; +} + +class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<4> R3; + bits<4> R2; + + let Inst{31-16} = op; + let Inst{15-12} = R1; + let Inst{11-8} = 0; + let Inst{7-4} = R3; + let Inst{3-0} = R2; +} + +class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<4> R2; + + let Inst{31-16} = op; + let Inst{15-8} = 0; + let Inst{7-4} = R1; + let Inst{3-0} = R2; +} + +class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<4> R2; + bits<4> R3; + bits<4> R4; + + let Inst{31-16} = op; + let Inst{15-12} = R3; + let Inst{11-8} = R4; + let Inst{7-4} = R1; + let Inst{3-0} = R2; +} + +class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<20> XBD2; + + let Inst{31-24} = op; + let Inst{23-20} = R1; + let Inst{19-0} = XBD2; + + let HasIndex = 1; +} + +class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<20> XBD2; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-16} = XBD2; + let Inst{15-8} = 0; + let Inst{7-0} = op{7-0}; + + let HasIndex = 1; +} + +class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<4> R3; + bits<20> XBD2; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R3; + let Inst{35-16} = XBD2; + let Inst{15-12} = R1; + let Inst{11-8} = 0; + let Inst{7-0} = op{7-0}; + + let HasIndex = 1; +} + +class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<28> XBD2; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-8} = XBD2; + let Inst{7-0} = op{7-0}; + + let Has20BitOffset = 1; + let HasIndex = 1; +} + +class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<4> R1; + bits<4> R3; + bits<16> BD2; + + let Inst{31-24} = op; + let Inst{23-20} = R1; + let Inst{19-16} = R3; + let Inst{15-0} = BD2; +} + +class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<4> R1; + bits<4> R3; + bits<24> BD2; + + let Inst{47-40} = op{15-8}; + let Inst{39-36} = R1; + let Inst{35-32} = R3; + let Inst{31-8} = BD2; + let Inst{7-0} = op{7-0}; + + let Has20BitOffset = 1; +} + +class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<4, outs, ins, asmstr, pattern> { + field bits<32> Inst; + field bits<32> SoftFail = 0; + + bits<16> BD1; + bits<8> I2; + + let Inst{31-24} = op; + let Inst{23-16} = I2; + let Inst{15-0} = BD1; +} + +class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<16> BD1; + bits<16> I2; + + let Inst{47-32} = op; + let Inst{31-16} = BD1; + let Inst{15-0} = I2; +} + +class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<24> BD1; + bits<8> I2; + + let Inst{47-40} = op{15-8}; + let Inst{39-32} = I2; + let Inst{31-8} = BD1; + let Inst{7-0} = op{7-0}; + + let Has20BitOffset = 1; +} + +class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSystemZ<6, outs, ins, asmstr, pattern> { + field bits<48> Inst; + field bits<48> SoftFail = 0; + + bits<24> BDL1; + bits<16> BD2; + + let Inst{47-40} = op; + let Inst{39-16} = BDL1; + let Inst{15-0} = BD2; +} + +//===----------------------------------------------------------------------===// +// Instruction definitions with semantics +//===----------------------------------------------------------------------===// +// +// These classes have the form [Cond]<Category><Format>, where <Format> is one +// of the formats defined above and where <Category> describes the inputs +// and outputs. "Cond" is used if the instruction is conditional, +// in which case the 4-bit condition-code mask is added as a final operand. +// <Category> can be one of: +// +// Inherent: +// One register output operand and no input operands. +// +// BranchUnary: +// One register output operand, one register input operand and +// one branch displacement. The instructions stores a modified +// form of the source register in the destination register and +// branches on the result. +// +// Store: +// One register or immediate input operand and one address input operand. +// The instruction stores the first operand to the address. +// +// This category is used for both pure and truncating stores. +// +// LoadMultiple: +// One address input operand and two explicit output operands. +// The instruction loads a range of registers from the address, +// with the explicit operands giving the first and last register +// to load. Other loaded registers are added as implicit definitions. +// +// StoreMultiple: +// Two explicit input register operands and an address operand. +// The instruction stores a range of registers to the address, +// with the explicit operands giving the first and last register +// to store. Other stored registers are added as implicit uses. +// +// Unary: +// One register output operand and one input operand. The input +// operand may be a register, immediate or memory. +// +// Binary: +// One register output operand and two input operands. The first +// input operand is always a register and he second may be a register, +// immediate or memory. +// +// Shift: +// One register output operand and two input operands. The first +// input operand is a register and the second has the same form as +// an address (although it isn't actually used to address memory). +// +// Compare: +// Two input operands. The first operand is always a register, +// the second may be a register, immediate or memory. +// +// Ternary: +// One register output operand and three register input operands. +// +// CmpSwap: +// One output operand and three input operands. The first two +// operands are registers and the third is an address. The instruction +// both reads from and writes to the address. +// +// RotateSelect: +// One output operand and five input operands. The first two operands +// are registers and the other three are immediates. +// +// Prefetch: +// One 4-bit immediate operand and one address operand. The immediate +// operand is 1 for a load prefetch and 2 for a store prefetch. +// +// The format determines which input operands are tied to output operands, +// and also determines the shape of any address operand. +// +// Multiclasses of the form <Category><Format>Pair define two instructions, +// one with <Category><Format> and one with <Category><Format>Y. The name +// of the first instruction has no suffix, the name of the second has +// an extra "y". +// +//===----------------------------------------------------------------------===// + +class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls, + dag src> + : InstRRE<opcode, (outs cls:$R1), (ins), + mnemonic#"\t$R1", + [(set cls:$R1, src)]> { + let R2 = 0; +} + +class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls> + : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2), + mnemonic##"\t$R1, $I2", []> { + let isBranch = 1; + let isTerminator = 1; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls> + : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2), + mnemonic#"\t$R1, $R3, $BD2", []> { + let mayLoad = 1; +} + +class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls> + : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2), + mnemonic#"\t$R1, $I2", + [(operator cls:$R1, pcrel32:$I2)]> { + let mayStore = 1; + // We want PC-relative addresses to be tried ahead of BD and BDX addresses. + // However, BDXs have two extra operands and are therefore 6 units more + // complex. + let AddedComplexity = 7; +} + +class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdxaddr12only> + : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(operator cls:$R1, mode:$XBD2)]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let mayStore = 1; + let AccessBytes = bytes; +} + +class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(operator cls:$R1, mode:$XBD2)]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let mayStore = 1; + let AccessBytes = bytes; +} + +multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode, + SDPatternOperator operator, RegisterOperand cls, + bits<5> bytes> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>; + let DispSize = "20" in + def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes, + bdxaddr20pair>; + } +} + +class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls> + : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2), + mnemonic#"\t$R1, $R3, $BD2", []> { + let mayStore = 1; +} + +// StoreSI* instructions are used to store an integer to memory, but the +// addresses are more restricted than for normal stores. If we are in the +// situation of having to force either the address into a register or the +// constant into a register, it's usually better to do the latter. +// We therefore match the address in the same way as a normal store and +// only use the StoreSI* instruction if the matched address is suitable. +class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator, + Immediate imm> + : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator imm:$I2, mviaddr12pair:$BD1)]> { + let mayStore = 1; +} + +class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + Immediate imm> + : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator imm:$I2, mviaddr20pair:$BD1)]> { + let mayStore = 1; +} + +class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator, + Immediate imm> + : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator imm:$I2, mviaddr12pair:$BD1)]> { + let mayStore = 1; +} + +multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode, + SDPatternOperator operator, Immediate imm> { + let DispKey = mnemonic in { + let DispSize = "12" in + def "" : StoreSI<mnemonic, siOpcode, operator, imm>; + let DispSize = "20" in + def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>; + } +} + +class CondStoreRSY<string mnemonic, bits<16> opcode, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3), + mnemonic#"$R3\t$R1, $BD2", []>, + Requires<[FeatureLoadStoreOnCond]> { + let mayStore = 1; + let AccessBytes = bytes; + let CCMaskLast = 1; +} + +// Like CondStoreRSY, but used for the raw assembly form. The condition-code +// mask is the third operand rather than being part of the mnemonic. +class AsmCondStoreRSY<string mnemonic, bits<16> opcode, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, uimm8zx4:$R3), + mnemonic#"\t$R1, $BD2, $R3", []>, + Requires<[FeatureLoadStoreOnCond]> { + let mayStore = 1; + let AccessBytes = bytes; +} + +// Like CondStoreRSY, but with a fixed CC mask. +class FixedCondStoreRSY<string mnemonic, bits<16> opcode, + RegisterOperand cls, bits<4> ccmask, bits<5> bytes, + AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2), + mnemonic#"\t$R1, $BD2", []>, + Requires<[FeatureLoadStoreOnCond]> { + let mayStore = 1; + let AccessBytes = bytes; + let R3 = ccmask; +} + +class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(set cls1:$R1, (operator cls2:$R2))]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; +} + +class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(set cls1:$R1, (operator cls2:$R2))]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; +} + +class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2), + mnemonic#"r\t$R1, $R3, $R2", []> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let R4 = 0; +} + +class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2, uimm8zx4:$R4), + mnemonic#"\t$R1, $R3, $R2, $R4", []>; + +// These instructions are generated by if conversion. The old value of R1 +// is added as an implicit use. +class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3), + mnemonic#"r$R3\t$R1, $R2", []>, + Requires<[FeatureLoadStoreOnCond]> { + let CCMaskLast = 1; + let R4 = 0; +} + +// Like CondUnaryRRF, but used for the raw assembly form. The condition-code +// mask is the third operand rather than being part of the mnemonic. +class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, uimm8zx4:$R3), + mnemonic#"r\t$R1, $R2, $R3", []>, + Requires<[FeatureLoadStoreOnCond]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let R4 = 0; +} + +// Like CondUnaryRRF, but with a fixed CC mask. +class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2, bits<4> ccmask> + : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2), + mnemonic#"\t$R1, $R2", []>, + Requires<[FeatureLoadStoreOnCond]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let R3 = ccmask; + let R4 = 0; +} + +class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRI<opcode, (outs cls:$R1), (ins imm:$I2), + mnemonic#"\t$R1, $I2", + [(set cls:$R1, (operator imm:$I2))]>; + +class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2), + mnemonic#"\t$R1, $I2", + [(set cls:$R1, (operator imm:$I2))]>; + +class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls> + : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2), + mnemonic#"\t$R1, $I2", + [(set cls:$R1, (operator pcrel32:$I2))]> { + let mayLoad = 1; + // We want PC-relative addresses to be tried ahead of BD and BDX addresses. + // However, BDXs have two extra operands and are therefore 6 units more + // complex. + let AddedComplexity = 7; +} + +class CondUnaryRSY<string mnemonic, bits<16> opcode, + SDPatternOperator operator, RegisterOperand cls, + bits<5> bytes, AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs cls:$R1), + (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3), + mnemonic#"$R3\t$R1, $BD2", + [(set cls:$R1, + (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src, + cond4:$valid, cond4:$R3))]>, + Requires<[FeatureLoadStoreOnCond]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let AccessBytes = bytes; + let CCMaskLast = 1; +} + +// Like CondUnaryRSY, but used for the raw assembly form. The condition-code +// mask is the third operand rather than being part of the mnemonic. +class AsmCondUnaryRSY<string mnemonic, bits<16> opcode, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, uimm8zx4:$R3), + mnemonic#"\t$R1, $BD2, $R3", []>, + Requires<[FeatureLoadStoreOnCond]> { + let mayLoad = 1; + let AccessBytes = bytes; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +// Like CondUnaryRSY, but with a fixed CC mask. +class FixedCondUnaryRSY<string mnemonic, bits<16> opcode, + RegisterOperand cls, bits<4> ccmask, bits<5> bytes, + AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2), + mnemonic#"\t$R1, $BD2", []>, + Requires<[FeatureLoadStoreOnCond]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let R3 = ccmask; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdxaddr12only> + : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator mode:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes> + : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator mode:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode, + SDPatternOperator operator, RegisterOperand cls, + bits<5> bytes> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>; + let DispSize = "20" in + def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes, + bdxaddr20pair>; + } +} + +class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2), + mnemonic#"r\t$R1, $R3, $R2", + [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let R4 = 0; +} + +class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3), + mnemonic#"rk\t$R1, $R2, $R3", + [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> { + let R4 = 0; +} + +multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2, + SDPatternOperator operator, RegisterOperand cls1, + RegisterOperand cls2> { + let NumOpsKey = mnemonic in { + let NumOpsValue = "3" in + def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>, + Requires<[FeatureDistinctOps]>; + let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in + def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>; + } +} + +multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2, + SDPatternOperator operator, RegisterOperand cls1, + RegisterOperand cls2> { + let NumOpsKey = mnemonic in { + let NumOpsValue = "3" in + def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>, + Requires<[FeatureDistinctOps]>; + let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in + def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>; + } +} + +class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2), + mnemonic#"\t$R1, $I2", + [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2), + mnemonic#"\t$R1, $R3, $I2", + [(set cls:$R1, (operator cls:$R3, imm:$I2))]>; + +multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2, + SDPatternOperator operator, RegisterOperand cls, + Immediate imm> { + let NumOpsKey = mnemonic in { + let NumOpsValue = "3" in + def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>, + Requires<[FeatureDistinctOps]>; + let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in + def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>; + } +} + +class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2), + mnemonic#"\t$R1, $I2", + [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes, + AddressingMode mode = bdxaddr12only> + : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes> + : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator cls:$R1src, + (load bdxaddr12only:$XBD2)))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode, + SDPatternOperator operator, RegisterOperand cls, + SDPatternOperator load, bits<5> bytes> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes, + bdxaddr12pair>; + let DispSize = "20" in + def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes, + bdxaddr20pair>; + } +} + +class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator, + Operand imm, AddressingMode mode = bdaddr12only> + : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> { + let mayLoad = 1; + let mayStore = 1; +} + +class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + Operand imm, AddressingMode mode = bdaddr20only> + : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> { + let mayLoad = 1; + let mayStore = 1; +} + +multiclass BinarySIPair<string mnemonic, bits<8> siOpcode, + bits<16> siyOpcode, SDPatternOperator operator, + Operand imm> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>; + let DispSize = "20" in + def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>; + } +} + +class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls> + : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2), + mnemonic#"\t$R1, $BD2", + [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> { + let R3 = 0; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls> + : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2), + mnemonic#"\t$R1, $R3, $BD2", + [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>; + +multiclass ShiftRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2, + SDPatternOperator operator, RegisterOperand cls> { + let NumOpsKey = mnemonic in { + let NumOpsValue = "3" in + def K : ShiftRSY<mnemonic##"k", opcode2, null_frag, cls>, + Requires<[FeatureDistinctOps]>; + let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in + def "" : ShiftRS<mnemonic, opcode1, operator, cls>; + } +} + +class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(operator cls1:$R1, cls2:$R2)]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let isCompare = 1; +} + +class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2), + mnemonic#"r\t$R1, $R2", + [(operator cls1:$R1, cls2:$R2)]> { + let OpKey = mnemonic ## cls1; + let OpType = "reg"; + let isCompare = 1; +} + +class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2), + mnemonic#"\t$R1, $I2", + [(operator cls:$R1, imm:$I2)]> { + let isCompare = 1; +} + +class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> + : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2), + mnemonic#"\t$R1, $I2", + [(operator cls:$R1, imm:$I2)]> { + let isCompare = 1; +} + +class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load> + : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2), + mnemonic#"\t$R1, $I2", + [(operator cls:$R1, (load pcrel32:$I2))]> { + let isCompare = 1; + let mayLoad = 1; + // We want PC-relative addresses to be tried ahead of BD and BDX addresses. + // However, BDXs have two extra operands and are therefore 6 units more + // complex. + let AddedComplexity = 7; +} + +class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes, + AddressingMode mode = bdxaddr12only> + : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(operator cls:$R1, (load mode:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let isCompare = 1; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes> + : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let isCompare = 1; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2), + mnemonic#"\t$R1, $XBD2", + [(operator cls:$R1, (load mode:$XBD2))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let isCompare = 1; + let mayLoad = 1; + let AccessBytes = bytes; +} + +multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode, + SDPatternOperator operator, RegisterOperand cls, + SDPatternOperator load, bits<5> bytes> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : CompareRX<mnemonic, rxOpcode, operator, cls, + load, bytes, bdxaddr12pair>; + let DispSize = "20" in + def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls, + load, bytes, bdxaddr20pair>; + } +} + +class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator, + SDPatternOperator load, Immediate imm, + AddressingMode mode = bdaddr12only> + : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator (load mode:$BD1), imm:$I2)]> { + let isCompare = 1; + let mayLoad = 1; +} + +class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator, + SDPatternOperator load, Immediate imm> + : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator (load bdaddr12only:$BD1), imm:$I2)]> { + let isCompare = 1; + let mayLoad = 1; +} + +class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + SDPatternOperator load, Immediate imm, + AddressingMode mode = bdaddr20only> + : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2), + mnemonic#"\t$BD1, $I2", + [(operator (load mode:$BD1), imm:$I2)]> { + let isCompare = 1; + let mayLoad = 1; +} + +multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode, + SDPatternOperator operator, SDPatternOperator load, + Immediate imm> { + let DispKey = mnemonic in { + let DispSize = "12" in + def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>; + let DispSize = "20" in + def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm, + bdaddr20pair>; + } +} + +class TernaryRRD<string mnemonic, bits<16> opcode, + SDPatternOperator operator, RegisterOperand cls> + : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2), + mnemonic#"r\t$R1, $R3, $R2", + [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> { + let OpKey = mnemonic ## cls; + let OpType = "reg"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, SDPatternOperator load, bits<5> bytes> + : InstRXF<opcode, (outs cls:$R1), + (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2), + mnemonic#"\t$R1, $R3, $XBD2", + [(set cls:$R1, (operator cls:$R1src, cls:$R3, + (load bdxaddr12only:$XBD2)))]> { + let OpKey = mnemonic ## cls; + let OpType = "mem"; + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let AccessBytes = bytes; +} + +class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator, + RegisterOperand cls, AddressingMode mode = bdaddr12only> + : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2), + mnemonic#"\t$R1, $R3, $BD2", + [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let mayStore = 1; +} + +class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator, + RegisterOperand cls, AddressingMode mode = bdaddr20only> + : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2), + mnemonic#"\t$R1, $R3, $BD2", + [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; + let mayLoad = 1; + let mayStore = 1; +} + +multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode, + SDPatternOperator operator, RegisterOperand cls> { + let DispKey = mnemonic ## #cls in { + let DispSize = "12" in + def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>; + let DispSize = "20" in + def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>; + } +} + +class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1, + RegisterOperand cls2> + : InstRIEf<opcode, (outs cls1:$R1), + (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5), + mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator> + : InstRXY<opcode, (outs), (ins uimm8zx4:$R1, bdxaddr20only:$XBD2), + mnemonic##"\t$R1, $XBD2", + [(operator uimm8zx4:$R1, bdxaddr20only:$XBD2)]>; + +class PrefetchRILPC<string mnemonic, bits<12> opcode, + SDPatternOperator operator> + : InstRIL<opcode, (outs), (ins uimm8zx4:$R1, pcrel32:$I2), + mnemonic##"\t$R1, $I2", + [(operator uimm8zx4:$R1, pcrel32:$I2)]> { + // We want PC-relative addresses to be tried ahead of BD and BDX addresses. + // However, BDXs have two extra operands and are therefore 6 units more + // complex. + let AddedComplexity = 7; +} + +// A floating-point load-and test operation. Create both a normal unary +// operation and one that acts as a comparison against zero. +multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode, + RegisterOperand cls> { + def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>; + let isCodeGenOnly = 1 in + def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>; +} + +//===----------------------------------------------------------------------===// +// Pseudo instructions +//===----------------------------------------------------------------------===// +// +// Convenience instructions that get lowered to real instructions +// by either SystemZTargetLowering::EmitInstrWithCustomInserter() +// or SystemZInstrInfo::expandPostRAPseudo(). +// +//===----------------------------------------------------------------------===// + +class Pseudo<dag outs, dag ins, list<dag> pattern> + : InstSystemZ<0, outs, ins, "", pattern> { + let isPseudo = 1; + let isCodeGenOnly = 1; +} + +// Like UnaryRI, but expanded after RA depending on the choice of register. +class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Pseudo<(outs cls:$R1), (ins imm:$I2), + [(set cls:$R1, (operator imm:$I2))]>; + +// Like UnaryRXY, but expanded after RA depending on the choice of register. +class UnaryRXYPseudo<string key, SDPatternOperator operator, + RegisterOperand cls, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : Pseudo<(outs cls:$R1), (ins mode:$XBD2), + [(set cls:$R1, (operator mode:$XBD2))]> { + let OpKey = key ## cls; + let OpType = "mem"; + let mayLoad = 1; + let Has20BitOffset = 1; + let HasIndex = 1; + let AccessBytes = bytes; +} + +// Like UnaryRR, but expanded after RA depending on the choice of registers. +class UnaryRRPseudo<string key, SDPatternOperator operator, + RegisterOperand cls1, RegisterOperand cls2> + : Pseudo<(outs cls1:$R1), (ins cls2:$R2), + [(set cls1:$R1, (operator cls2:$R2))]> { + let OpKey = key ## cls1; + let OpType = "reg"; +} + +// Like BinaryRI, but expanded after RA depending on the choice of register. +class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2), + [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> { + let Constraints = "$R1 = $R1src"; +} + +// Like BinaryRIE, but expanded after RA depending on the choice of register. +class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2), + [(set cls:$R1, (operator cls:$R3, imm:$I2))]>; + +// Like BinaryRIAndK, but expanded after RA depending on the choice of register. +multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator, + RegisterOperand cls, Immediate imm> { + let NumOpsKey = key in { + let NumOpsValue = "3" in + def K : BinaryRIEPseudo<null_frag, cls, imm>, + Requires<[FeatureHighWord, FeatureDistinctOps]>; + let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in + def "" : BinaryRIPseudo<operator, cls, imm>, + Requires<[FeatureHighWord]>; + } +} + +// Like CompareRI, but expanded after RA depending on the choice of register. +class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>; + +// Like CompareRXY, but expanded after RA depending on the choice of register. +class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls, + SDPatternOperator load, bits<5> bytes, + AddressingMode mode = bdxaddr20only> + : Pseudo<(outs), (ins cls:$R1, mode:$XBD2), + [(operator cls:$R1, (load mode:$XBD2))]> { + let mayLoad = 1; + let Has20BitOffset = 1; + let HasIndex = 1; + let AccessBytes = bytes; +} + +// Like StoreRXY, but expanded after RA depending on the choice of register. +class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls, + bits<5> bytes, AddressingMode mode = bdxaddr20only> + : Pseudo<(outs), (ins cls:$R1, mode:$XBD2), + [(operator cls:$R1, mode:$XBD2)]> { + let mayStore = 1; + let Has20BitOffset = 1; + let HasIndex = 1; + let AccessBytes = bytes; +} + +// Like RotateSelectRIEf, but expanded after RA depending on the choice +// of registers. +class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2> + : Pseudo<(outs cls1:$R1), + (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5), + []> { + let Constraints = "$R1 = $R1src"; + let DisableEncoding = "$R1src"; +} + +// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is +// the value of the PSW's 2-bit condition code field. +class SelectWrapper<RegisterOperand cls> + : Pseudo<(outs cls:$dst), + (ins cls:$src1, cls:$src2, uimm8zx4:$valid, uimm8zx4:$cc), + [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2, + uimm8zx4:$valid, uimm8zx4:$cc))]> { + let usesCustomInserter = 1; + // Although the instructions used by these nodes do not in themselves + // change CC, the insertion requires new blocks, and CC cannot be live + // across them. + let Defs = [CC]; + let Uses = [CC]; +} + +// Stores $new to $addr if $cc is true ("" case) or false (Inv case). +multiclass CondStores<RegisterOperand cls, SDPatternOperator store, + SDPatternOperator load, AddressingMode mode> { + let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in { + def "" : Pseudo<(outs), + (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc), + [(store (z_select_ccmask cls:$new, (load mode:$addr), + uimm8zx4:$valid, uimm8zx4:$cc), + mode:$addr)]>; + def Inv : Pseudo<(outs), + (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc), + [(store (z_select_ccmask (load mode:$addr), cls:$new, + uimm8zx4:$valid, uimm8zx4:$cc), + mode:$addr)]>; + } +} + +// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND +// describe the second (non-memory) operand. +class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls, + dag pat, DAGOperand operand> + : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2), + [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> { + let Defs = [CC]; + let Has20BitOffset = 1; + let mayLoad = 1; + let mayStore = 1; + let usesCustomInserter = 1; +} + +// Specializations of AtomicLoadWBinary. +class AtomicLoadBinaryReg32<SDPatternOperator operator> + : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>; +class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm> + : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>; +class AtomicLoadBinaryReg64<SDPatternOperator operator> + : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>; +class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm> + : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>; + +// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND +// describe the second (non-memory) operand. +class AtomicLoadWBinary<SDPatternOperator operator, dag pat, + DAGOperand operand> + : Pseudo<(outs GR32:$dst), + (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift, + ADDR32:$negbitshift, uimm32:$bitsize), + [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift, + ADDR32:$negbitshift, uimm32:$bitsize))]> { + let Defs = [CC]; + let Has20BitOffset = 1; + let mayLoad = 1; + let mayStore = 1; + let usesCustomInserter = 1; +} + +// Specializations of AtomicLoadWBinary. +class AtomicLoadWBinaryReg<SDPatternOperator operator> + : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>; +class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm> + : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>; + +// Define an instruction that operates on two fixed-length blocks of memory, +// and associated pseudo instructions for operating on blocks of any size. +// The Sequence form uses a straight-line sequence of instructions and +// the Loop form uses a loop of length-256 instructions followed by +// another instruction to handle the excess. +multiclass MemorySS<string mnemonic, bits<8> opcode, + SDPatternOperator sequence, SDPatternOperator loop> { + def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1, + bdaddr12only:$BD2), + mnemonic##"\t$BDL1, $BD2", []>; + let usesCustomInserter = 1 in { + def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src, + imm64:$length), + [(sequence bdaddr12only:$dest, bdaddr12only:$src, + imm64:$length)]>; + def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src, + imm64:$length, GR64:$count256), + [(loop bdaddr12only:$dest, bdaddr12only:$src, + imm64:$length, GR64:$count256)]>; + } +} + +// Define an instruction that operates on two strings, both terminated +// by the character in R0. The instruction processes a CPU-determinated +// number of bytes at a time and sets CC to 3 if the instruction needs +// to be repeated. Also define a pseudo instruction that represents +// the full loop (the main instruction plus the branch on CC==3). +multiclass StringRRE<string mnemonic, bits<16> opcode, + SDPatternOperator operator> { + def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2), + (ins GR64:$R1src, GR64:$R2src), + mnemonic#"\t$R1, $R2", []> { + let Constraints = "$R1 = $R1src, $R2 = $R2src"; + let DisableEncoding = "$R1src, $R2src"; + } + let usesCustomInserter = 1 in + def Loop : Pseudo<(outs GR64:$end), + (ins GR64:$start1, GR64:$start2, GR32:$char), + [(set GR64:$end, (operator GR64:$start1, GR64:$start2, + GR32:$char))]>; +} + +// A pseudo instruction that is a direct alias of a real instruction. +// These aliases are used in cases where a particular register operand is +// fixed or where the same instruction is used with different register sizes. +// The size parameter is the size in bytes of the associated real instruction. +class Alias<int size, dag outs, dag ins, list<dag> pattern> + : InstSystemZ<size, outs, ins, "", pattern> { + let isPseudo = 1; + let isCodeGenOnly = 1; +} + +// An alias of a BinaryRI, but with different register sizes. +class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2), + [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> { + let Constraints = "$R1 = $R1src"; +} + +// An alias of a BinaryRIL, but with different register sizes. +class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2), + [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> { + let Constraints = "$R1 = $R1src"; +} + +// An alias of a CompareRI, but with different register sizes. +class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls, + Immediate imm> + : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> { + let isCompare = 1; +} + +// An alias of a RotateSelectRIEf, but with different register sizes. +class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2> + : Alias<6, (outs cls1:$R1), + (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5), []> { + let Constraints = "$R1 = $R1src"; +}