Mercurial > hg > CbC > CbC_llvm
diff lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,1462 @@ +//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the X86MCCodeEmitter class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mccodeemitter" +#include "MCTargetDesc/X86MCTargetDesc.h" +#include "MCTargetDesc/X86BaseInfo.h" +#include "MCTargetDesc/X86FixupKinds.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +namespace { +class X86MCCodeEmitter : public MCCodeEmitter { + X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION; + void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION; + const MCInstrInfo &MCII; + const MCSubtargetInfo &STI; + MCContext &Ctx; +public: + X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti, + MCContext &ctx) + : MCII(mcii), STI(sti), Ctx(ctx) { + } + + ~X86MCCodeEmitter() {} + + bool is64BitMode() const { + // FIXME: Can tablegen auto-generate this? + return (STI.getFeatureBits() & X86::Mode64Bit) != 0; + } + + bool is32BitMode() const { + // FIXME: Can tablegen auto-generate this? + return (STI.getFeatureBits() & X86::Mode64Bit) == 0; + } + + unsigned GetX86RegNum(const MCOperand &MO) const { + return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; + } + + // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range + // 0-7 and the difference between the 2 groups is given by the REX prefix. + // In the VEX prefix, registers are seen sequencially from 0-15 and encoded + // in 1's complement form, example: + // + // ModRM field => XMM9 => 1 + // VEX.VVVV => XMM9 => ~9 + // + // See table 4-35 of Intel AVX Programming Reference for details. + unsigned char getVEXRegisterEncoding(const MCInst &MI, + unsigned OpNum) const { + unsigned SrcReg = MI.getOperand(OpNum).getReg(); + unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum)); + if (X86II::isX86_64ExtendedReg(SrcReg)) + SrcRegNum |= 8; + + // The registers represented through VEX_VVVV should + // be encoded in 1's complement form. + return (~SrcRegNum) & 0xf; + } + + unsigned char getWriteMaskRegisterEncoding(const MCInst &MI, + unsigned OpNum) const { + assert(X86::K0 != MI.getOperand(OpNum).getReg() && + "Invalid mask register as write-mask!"); + unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum)); + return MaskRegNum; + } + + void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { + OS << (char)C; + ++CurByte; + } + + void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, + raw_ostream &OS) const { + // Output the constant in little endian byte order. + for (unsigned i = 0; i != Size; ++i) { + EmitByte(Val & 255, CurByte, OS); + Val >>= 8; + } + } + + void EmitImmediate(const MCOperand &Disp, SMLoc Loc, + unsigned ImmSize, MCFixupKind FixupKind, + unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups, + int ImmOffset = 0) const; + + inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, + unsigned RM) { + assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); + return RM | (RegOpcode << 3) | (Mod << 6); + } + + void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, + unsigned &CurByte, raw_ostream &OS) const { + EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); + } + + void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, + unsigned &CurByte, raw_ostream &OS) const { + // SIB byte is in the same format as the ModRMByte. + EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); + } + + + void EmitMemModRMByte(const MCInst &MI, unsigned Op, + unsigned RegOpcodeField, + uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const; + + void EncodeInstruction(const MCInst &MI, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const; + + void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, + const MCInst &MI, const MCInstrDesc &Desc, + raw_ostream &OS) const; + + void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + raw_ostream &OS) const; + + void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, + const MCInst &MI, const MCInstrDesc &Desc, + raw_ostream &OS) const; +}; + +} // end anonymous namespace + + +MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, + const MCRegisterInfo &MRI, + const MCSubtargetInfo &STI, + MCContext &Ctx) { + return new X86MCCodeEmitter(MCII, STI, Ctx); +} + +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. +static bool isDisp8(int Value) { + return Value == (signed char)Value; +} + +/// isCDisp8 - Return true if this signed displacement fits in a 8-bit +/// compressed dispacement field. +static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) { + assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) && + "Compressed 8-bit displacement is only valid for EVEX inst."); + + unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask; + unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask; + + if (CD8V == 0 && CD8E == 0) { + CValue = Value; + return isDisp8(Value); + } + + unsigned MemObjSize = 1U << CD8E; + if (CD8V & 4) { + // Fixed vector length + MemObjSize *= 1U << (CD8V & 0x3); + } else { + // Modified vector length + bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B; + if (!EVEX_b) { + unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0; + EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0; + assert(EVEX_LL < 3 && ""); + + unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize; + NumElems /= 1U << (CD8V & 0x3); + + MemObjSize *= NumElems; + } + } + + unsigned MemObjMask = MemObjSize - 1; + assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size."); + + if (Value & MemObjMask) // Unaligned offset + return false; + Value /= MemObjSize; + bool Ret = (Value == (signed char)Value); + + if (Ret) + CValue = Value; + return Ret; +} + +/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate +/// in an instruction with the specified TSFlags. +static MCFixupKind getImmFixupKind(uint64_t TSFlags) { + unsigned Size = X86II::getSizeOfImm(TSFlags); + bool isPCRel = X86II::isImmPCRel(TSFlags); + + return MCFixup::getKindForSize(Size, isPCRel); +} + +/// Is32BitMemOperand - Return true if the specified instruction has +/// a 32-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) { + const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} + +/// Is64BitMemOperand - Return true if the specified instruction has +/// a 64-bit memory operand. Op specifies the operand # of the memoperand. +#ifndef NDEBUG +static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) { + const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} +#endif + +/// Is16BitMemOperand - Return true if the specified instruction has +/// a 16-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) { + const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} + +/// StartsWithGlobalOffsetTable - Check if this expression starts with +/// _GLOBAL_OFFSET_TABLE_ and if it is of the form +/// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF +/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that +/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start +/// of a binary expression. +enum GlobalOffsetTableExprKind { + GOT_None, + GOT_Normal, + GOT_SymDiff +}; +static GlobalOffsetTableExprKind +StartsWithGlobalOffsetTable(const MCExpr *Expr) { + const MCExpr *RHS = 0; + if (Expr->getKind() == MCExpr::Binary) { + const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); + Expr = BE->getLHS(); + RHS = BE->getRHS(); + } + + if (Expr->getKind() != MCExpr::SymbolRef) + return GOT_None; + + const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); + const MCSymbol &S = Ref->getSymbol(); + if (S.getName() != "_GLOBAL_OFFSET_TABLE_") + return GOT_None; + if (RHS && RHS->getKind() == MCExpr::SymbolRef) + return GOT_SymDiff; + return GOT_Normal; +} + +static bool HasSecRelSymbolRef(const MCExpr *Expr) { + if (Expr->getKind() == MCExpr::SymbolRef) { + const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); + return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; + } + return false; +} + +void X86MCCodeEmitter:: +EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size, + MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { + const MCExpr *Expr = NULL; + if (DispOp.isImm()) { + // If this is a simple integer displacement that doesn't require a + // relocation, emit it now. + if (FixupKind != FK_PCRel_1 && + FixupKind != FK_PCRel_2 && + FixupKind != FK_PCRel_4) { + EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); + return; + } + Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx); + } else { + Expr = DispOp.getExpr(); + } + + // If we have an immoffset, add it to the expression. + if ((FixupKind == FK_Data_4 || + FixupKind == FK_Data_8 || + FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { + GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr); + if (Kind != GOT_None) { + assert(ImmOffset == 0); + + FixupKind = MCFixupKind(X86::reloc_global_offset_table); + if (Kind == GOT_Normal) + ImmOffset = CurByte; + } else if (Expr->getKind() == MCExpr::SymbolRef) { + if (HasSecRelSymbolRef(Expr)) { + FixupKind = MCFixupKind(FK_SecRel_4); + } + } else if (Expr->getKind() == MCExpr::Binary) { + const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr); + if (HasSecRelSymbolRef(Bin->getLHS()) + || HasSecRelSymbolRef(Bin->getRHS())) { + FixupKind = MCFixupKind(FK_SecRel_4); + } + } + } + + // If the fixup is pc-relative, we need to bias the value to be relative to + // the start of the field, not the end of the field. + if (FixupKind == FK_PCRel_4 || + FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || + FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) + ImmOffset -= 4; + if (FixupKind == FK_PCRel_2) + ImmOffset -= 2; + if (FixupKind == FK_PCRel_1) + ImmOffset -= 1; + + if (ImmOffset) + Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), + Ctx); + + // Emit a symbolic constant as a fixup and 4 zeros. + Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc)); + EmitConstant(0, Size, CurByte, OS); +} + +void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, + unsigned RegOpcodeField, + uint64_t TSFlags, unsigned &CurByte, + raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const{ + const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); + const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg); + const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt); + const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + unsigned BaseReg = Base.getReg(); + bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX; + + // Handle %rip relative addressing. + if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode + assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode"); + assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); + EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); + + unsigned FixupKind = X86::reloc_riprel_4byte; + + // movq loads are handled with a special relocation form which allows the + // linker to eliminate some loads for GOT references which end up in the + // same linkage unit. + if (MI.getOpcode() == X86::MOV64rm) + FixupKind = X86::reloc_riprel_4byte_movq_load; + + // rip-relative addressing is actually relative to the *next* instruction. + // Since an immediate can follow the mod/rm byte for an instruction, this + // means that we need to bias the immediate field of the instruction with + // the size of the immediate field. If we have this case, add it into the + // expression to emit. + int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; + + EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), + CurByte, OS, Fixups, -ImmSize); + return; + } + + unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; + + // Determine whether a SIB byte is needed. + // If no BaseReg, issue a RIP relative instruction only if the MCE can + // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table + // 2-7) and absolute references. + + if (// The SIB byte must be used if there is an index register. + IndexReg.getReg() == 0 && + // The SIB byte must be used if the base is ESP/RSP/R12, all of which + // encode to an R/M value of 4, which indicates that a SIB byte is + // present. + BaseRegNo != N86::ESP && + // If there is no base register and we're in 64-bit mode, we need a SIB + // byte to emit an addr that is just 'disp32' (the non-RIP relative form). + (!is64BitMode() || BaseReg != 0)) { + + if (BaseReg == 0) { // [disp32] in X86-32 mode + EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); + EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups); + return; + } + + // If the base is not EBP/ESP and there is no displacement, use simple + // indirect register encoding, this handles addresses like [EAX]. The + // encoding for [EBP] with no displacement means [disp32] so we handle it + // by emitting a displacement of 0 below. + if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { + EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); + return; + } + + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. + if (Disp.isImm()) { + if (!HasEVEX && isDisp8(Disp.getImm())) { + EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); + EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); + return; + } + // Try EVEX compressed 8-bit displacement first; if failed, fall back to + // 32-bit displacement. + int CDisp8 = 0; + if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { + EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); + EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, + CDisp8 - Disp.getImm()); + return; + } + } + + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] + EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); + EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, + Fixups); + return; + } + + // We need a SIB byte, so start by outputting the ModR/M byte first + assert(IndexReg.getReg() != X86::ESP && + IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + + bool ForceDisp32 = false; + bool ForceDisp8 = false; + int CDisp8 = 0; + int ImmOffset = 0; + if (BaseReg == 0) { + // If there is no base register, we emit the special case SIB byte with + // MOD=0, BASE=5, to JUST get the index, scale, and displacement. + EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); + ForceDisp32 = true; + } else if (!Disp.isImm()) { + // Emit the normal disp32 encoding. + EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); + ForceDisp32 = true; + } else if (Disp.getImm() == 0 && + // Base reg can't be anything that ends up with '5' as the base + // reg, it is the magic [*] nomenclature that indicates no base. + BaseRegNo != N86::EBP) { + // Emit no displacement ModR/M byte + EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); + } else if (!HasEVEX && isDisp8(Disp.getImm())) { + // Emit the disp8 encoding. + EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); + ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP + } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { + // Emit the disp8 encoding. + EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); + ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP + ImmOffset = CDisp8 - Disp.getImm(); + } else { + // Emit the normal disp32 encoding. + EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); + } + + // Calculate what the SS field value should be... + static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; + unsigned SS = SSTable[Scale.getImm()]; + + if (BaseReg == 0) { + // Handle the SIB byte for the case where there is no base, see Intel + // Manual 2A, table 2-7. The displacement has already been output. + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = GetX86RegNum(IndexReg); + else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) + IndexRegNo = 4; + EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); + } else { + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = GetX86RegNum(IndexReg); + else + IndexRegNo = 4; // For example [ESP+1*<noreg>+4] + EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); + } + + // Do we need to output a displacement? + if (ForceDisp8) + EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset); + else if (ForceDisp32 || Disp.getImm() != 0) + EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), + CurByte, OS, Fixups); +} + +/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix +/// called VEX. +void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + const MCInstrDesc &Desc, + raw_ostream &OS) const { + bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX; + bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K); + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + + // VEX_R: opcode externsion equivalent to REX.R in + // 1's complement (inverted) form + // + // 1: Same as REX_R=0 (must be 1 in 32-bit mode) + // 0: Same as REX_R=1 (64 bit mode only) + // + unsigned char VEX_R = 0x1; + unsigned char EVEX_R2 = 0x1; + + // VEX_X: equivalent to REX.X, only used when a + // register is used for index in SIB Byte. + // + // 1: Same as REX.X=0 (must be 1 in 32-bit mode) + // 0: Same as REX.X=1 (64-bit mode only) + unsigned char VEX_X = 0x1; + + // VEX_B: + // + // 1: Same as REX_B=0 (ignored in 32-bit mode) + // 0: Same as REX_B=1 (64 bit mode only) + // + unsigned char VEX_B = 0x1; + + // VEX_W: opcode specific (use like REX.W, or used for + // opcode extension, or ignored, depending on the opcode byte) + unsigned char VEX_W = 0; + + // XOP: Use XOP prefix byte 0x8f instead of VEX. + bool XOP = false; + + // VEX_5M (VEX m-mmmmm field): + // + // 0b00000: Reserved for future use + // 0b00001: implied 0F leading opcode + // 0b00010: implied 0F 38 leading opcode bytes + // 0b00011: implied 0F 3A leading opcode bytes + // 0b00100-0b11111: Reserved for future use + // 0b01000: XOP map select - 08h instructions with imm byte + // 0b01001: XOP map select - 09h instructions with no imm byte + // 0b01010: XOP map select - 0Ah instructions with imm dword + unsigned char VEX_5M = 0x1; + + // VEX_4V (VEX vvvv field): a register specifier + // (in 1's complement form) or 1111 if unused. + unsigned char VEX_4V = 0xf; + unsigned char EVEX_V2 = 0x1; + + // VEX_L (Vector Length): + // + // 0: scalar or 128-bit vector + // 1: 256-bit vector + // + unsigned char VEX_L = 0; + unsigned char EVEX_L2 = 0; + + // VEX_PP: opcode extension providing equivalent + // functionality of a SIMD prefix + // + // 0b00: None + // 0b01: 66 + // 0b10: F3 + // 0b11: F2 + // + unsigned char VEX_PP = 0; + + // EVEX_U + unsigned char EVEX_U = 1; // Always '1' so far + + // EVEX_z + unsigned char EVEX_z = 0; + + // EVEX_b + unsigned char EVEX_b = 0; + + // EVEX_aaa + unsigned char EVEX_aaa = 0; + + // Encode the operand size opcode prefix as needed. + if (TSFlags & X86II::OpSize) + VEX_PP = 0x01; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) + VEX_W = 1; + + if ((TSFlags >> X86II::VEXShift) & X86II::XOP) + XOP = true; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) + VEX_L = 1; + if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2)) + EVEX_L2 = 1; + + if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z)) + EVEX_z = 1; + + if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B)) + EVEX_b = 1; + + switch (TSFlags & X86II::Op0Mask) { + default: llvm_unreachable("Invalid prefix!"); + case X86II::T8: // 0F 38 + VEX_5M = 0x2; + break; + case X86II::TA: // 0F 3A + VEX_5M = 0x3; + break; + case X86II::T8XS: // F3 0F 38 + VEX_PP = 0x2; + VEX_5M = 0x2; + break; + case X86II::T8XD: // F2 0F 38 + VEX_PP = 0x3; + VEX_5M = 0x2; + break; + case X86II::TAXD: // F2 0F 3A + VEX_PP = 0x3; + VEX_5M = 0x3; + break; + case X86II::XS: // F3 0F + VEX_PP = 0x2; + break; + case X86II::XD: // F2 0F + VEX_PP = 0x3; + break; + case X86II::XOP8: + VEX_5M = 0x8; + break; + case X86II::XOP9: + VEX_5M = 0x9; + break; + case X86II::XOPA: + VEX_5M = 0xA; + break; + case X86II::TB: // VEX_5M/VEX_PP already correct + break; + } + + + // Classify VEX_B, VEX_4V, VEX_R, VEX_X + unsigned NumOps = Desc.getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) + ++CurOp; + else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) + // Special case for AVX-512 GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1) + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0) + // SCATTER + ++CurOp; + + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!"); + case X86II::MRMDestMem: { + // MRMDestMem instructions forms: + // MemAddr, src1(ModR/M) + // MemAddr, src1(VEX_4V), src2(ModR/M) + // MemAddr, src1(ModR/M), imm8 + // + if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand + + X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand + + X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand + + X86::AddrIndexReg).getReg())) + EVEX_V2 = 0x0; + + CurOp += X86::AddrNumOperands; + + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + + const MCOperand &MO = MI.getOperand(CurOp); + if (MO.isReg()) { + if (X86II::isX86_64ExtendedReg(MO.getReg())) + VEX_R = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MO.getReg())) + EVEX_R2 = 0x0; + } + break; + } + case X86II::MRMSrcMem: + // MRMSrcMem instructions forms: + // src1(ModR/M), MemAddr + // src1(ModR/M), src2(VEX_4V), MemAddr + // src1(ModR/M), MemAddr, imm8 + // src1(ModR/M), MemAddr, src2(VEX_I8IMM) + // + // FMA4: + // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_R2 = 0x0; + CurOp++; + + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand + + X86::AddrIndexReg).getReg())) + EVEX_V2 = 0x0; + + if (HasVEX_4VOp3) + // Instruction format for 4VOp3: + // src1(ModR/M), MemAddr, src3(VEX_4V) + // CurOp points to start of the MemoryOperand, + // it skips TIED_TO operands if exist, then increments past src1. + // CurOp + X86::AddrNumOperands will point to src3. + VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands); + break; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + // MRM[0-9]m instructions forms: + // MemAddr + // src1(VEX_4V), MemAddr + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + break; + } + case X86II::MRMSrcReg: + // MRMSrcReg instructions forms: + // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M), src1(ModR/M) + // dst(ModR/M), src1(ModR/M), imm8 + // + // FMA4: + // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_R2 = 0x0; + CurOp++; + + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + CurOp++; + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_X = 0x0; + CurOp++; + if (HasVEX_4VOp3) + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + break; + case X86II::MRMDestReg: + // MRMDestReg instructions forms: + // dst(ModR/M), src(ModR/M) + // dst(ModR/M), src(ModR/M), imm8 + // dst(ModR/M), src1(VEX_4V), src2(ModR/M) + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_X = 0x0; + CurOp++; + + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_R2 = 0x0; + break; + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + // MRM0r-MRM7r instructions forms: + // dst(VEX_4V), src(ModR/M), imm8 + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + EVEX_V2 = 0x0; + CurOp++; + } + if (HasEVEX_K) + EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_X = 0x0; + break; + default: // RawFrm + break; + } + + // Emit segment override opcode prefix as needed. + EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); + + if (!HasEVEX) { + // VEX opcode prefix can have 2 or 3 bytes + // + // 3 bytes: + // +-----+ +--------------+ +-------------------+ + // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + // 2 bytes: + // +-----+ +-------------------+ + // | C5h | | R | vvvv | L | pp | + // +-----+ +-------------------+ + // + unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); + + if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix + EmitByte(0xC5, CurByte, OS); + EmitByte(LastByte | (VEX_R << 7), CurByte, OS); + return; + } + + // 3 byte VEX prefix + EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS); + EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); + EmitByte(LastByte | (VEX_W << 7), CurByte, OS); + } else { + // EVEX opcode prefix can have 4 bytes + // + // +-----+ +--------------+ +-------------------+ +------------------------+ + // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | + // +-----+ +--------------+ +-------------------+ +------------------------+ + assert((VEX_5M & 0x3) == VEX_5M + && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!"); + + VEX_5M &= 0x3; + + EmitByte(0x62, CurByte, OS); + EmitByte((VEX_R << 7) | + (VEX_X << 6) | + (VEX_B << 5) | + (EVEX_R2 << 4) | + VEX_5M, CurByte, OS); + EmitByte((VEX_W << 7) | + (VEX_4V << 3) | + (EVEX_U << 2) | + VEX_PP, CurByte, OS); + EmitByte((EVEX_z << 7) | + (EVEX_L2 << 6) | + (VEX_L << 5) | + (EVEX_b << 4) | + (EVEX_V2 << 3) | + EVEX_aaa, CurByte, OS); + } +} + +/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 +/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand +/// size, and 3) use of X86-64 extended registers. +static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, + const MCInstrDesc &Desc) { + unsigned REX = 0; + if (TSFlags & X86II::REX_W) + REX |= 1 << 3; // set REX.W + + if (MI.getNumOperands() == 0) return REX; + + unsigned NumOps = MI.getNumOperands(); + // FIXME: MCInst should explicitize the two-addrness. + bool isTwoAddr = NumOps > 1 && + Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; + + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. + unsigned i = isTwoAddr ? 1 : 0; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue; + // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything + // that returns non-zero. + REX |= 0x40; // REX fixed encoding prefix + break; + } + + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!"); + case X86II::MRMSrcReg: + if (MI.getOperand(0).isReg() && + X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 2; // set REX.R + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << 0; // set REX.B + } + break; + case X86II::MRMSrcMem: { + if (MI.getOperand(0).isReg() && + X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 2; // set REX.R + unsigned Bit = 0; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86II::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1) + Bit++; + } + } + break; + } + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: { + unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); + i = isTwoAddr ? 1 : 0; + if (NumOps > e && MI.getOperand(e).isReg() && + X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg())) + REX |= 1 << 2; // set REX.R + unsigned Bit = 0; + for (; i != e; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86II::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1) + Bit++; + } + } + break; + } + default: + if (MI.getOperand(0).isReg() && + X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 0; // set REX.B + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << 2; // set REX.R + } + break; + } + return REX; +} + +/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed +void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags, + unsigned &CurByte, int MemOperand, + const MCInst &MI, + raw_ostream &OS) const { + switch (TSFlags & X86II::SegOvrMask) { + default: llvm_unreachable("Invalid segment!"); + case 0: + // No segment override, check for explicit one on memory operand. + if (MemOperand != -1) { // If the instruction has a memory operand. + switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { + default: llvm_unreachable("Unknown segment register!"); + case 0: break; + case X86::CS: EmitByte(0x2E, CurByte, OS); break; + case X86::SS: EmitByte(0x36, CurByte, OS); break; + case X86::DS: EmitByte(0x3E, CurByte, OS); break; + case X86::ES: EmitByte(0x26, CurByte, OS); break; + case X86::FS: EmitByte(0x64, CurByte, OS); break; + case X86::GS: EmitByte(0x65, CurByte, OS); break; + } + } + break; + case X86II::FS: + EmitByte(0x64, CurByte, OS); + break; + case X86II::GS: + EmitByte(0x65, CurByte, OS); + break; + } +} + +/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode. +/// +/// MemOperand is the operand # of the start of a memory operand if present. If +/// Not present, it is -1. +void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + const MCInstrDesc &Desc, + raw_ostream &OS) const { + + // Emit the lock opcode prefix as needed. + if (TSFlags & X86II::LOCK) + EmitByte(0xF0, CurByte, OS); + + // Emit segment override opcode prefix as needed. + EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); + + // Emit the repeat opcode prefix as needed. + if ((TSFlags & X86II::Op0Mask) == X86II::REP) + EmitByte(0xF3, CurByte, OS); + + // Emit the address size opcode prefix as needed. + bool need_address_override; + if (TSFlags & X86II::AdSize) { + need_address_override = true; + } else if (MemOperand == -1) { + need_address_override = false; + } else if (is64BitMode()) { + assert(!Is16BitMemOperand(MI, MemOperand)); + need_address_override = Is32BitMemOperand(MI, MemOperand); + } else if (is32BitMode()) { + assert(!Is64BitMemOperand(MI, MemOperand)); + need_address_override = Is16BitMemOperand(MI, MemOperand); + } else { + need_address_override = false; + } + + if (need_address_override) + EmitByte(0x67, CurByte, OS); + + // Emit the operand size opcode prefix as needed. + if (TSFlags & X86II::OpSize) + EmitByte(0x66, CurByte, OS); + + bool Need0FPrefix = false; + switch (TSFlags & X86II::Op0Mask) { + default: llvm_unreachable("Invalid prefix!"); + case 0: break; // No prefix! + case X86II::REP: break; // already handled. + case X86II::TB: // Two-byte opcode prefix + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A + case X86II::A6: // 0F A6 + case X86II::A7: // 0F A7 + Need0FPrefix = true; + break; + case X86II::T8XS: // F3 0F 38 + EmitByte(0xF3, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::T8XD: // F2 0F 38 + EmitByte(0xF2, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::TAXD: // F2 0F 3A + EmitByte(0xF2, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::XS: // F3 0F + EmitByte(0xF3, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::XD: // F2 0F + EmitByte(0xF2, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::D8: EmitByte(0xD8, CurByte, OS); break; + case X86II::D9: EmitByte(0xD9, CurByte, OS); break; + case X86II::DA: EmitByte(0xDA, CurByte, OS); break; + case X86II::DB: EmitByte(0xDB, CurByte, OS); break; + case X86II::DC: EmitByte(0xDC, CurByte, OS); break; + case X86II::DD: EmitByte(0xDD, CurByte, OS); break; + case X86II::DE: EmitByte(0xDE, CurByte, OS); break; + case X86II::DF: EmitByte(0xDF, CurByte, OS); break; + } + + // Handle REX prefix. + // FIXME: Can this come before F2 etc to simplify emission? + if (is64BitMode()) { + if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) + EmitByte(0x40 | REX, CurByte, OS); + } + + // 0x0F escape code must be emitted just before the opcode. + if (Need0FPrefix) + EmitByte(0x0F, CurByte, OS); + + // FIXME: Pull this up into previous switch if REX can be moved earlier. + switch (TSFlags & X86II::Op0Mask) { + case X86II::T8XS: // F3 0F 38 + case X86II::T8XD: // F2 0F 38 + case X86II::T8: // 0F 38 + EmitByte(0x38, CurByte, OS); + break; + case X86II::TAXD: // F2 0F 3A + case X86II::TA: // 0F 3A + EmitByte(0x3A, CurByte, OS); + break; + case X86II::A6: // 0F A6 + EmitByte(0xA6, CurByte, OS); + break; + case X86II::A7: // 0F A7 + EmitByte(0xA7, CurByte, OS); + break; + } +} + +void X86MCCodeEmitter:: +EncodeInstruction(const MCInst &MI, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const { + unsigned Opcode = MI.getOpcode(); + const MCInstrDesc &Desc = MCII.get(Opcode); + uint64_t TSFlags = Desc.TSFlags; + + // Pseudo instructions don't get encoded. + if ((TSFlags & X86II::FormMask) == X86II::Pseudo) + return; + + unsigned NumOps = Desc.getNumOperands(); + unsigned CurOp = X86II::getOperandBias(Desc); + + // Keep track of the current byte being emitted. + unsigned CurByte = 0; + + // Is this instruction encoded using the AVX VEX prefix? + bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX; + + // It uses the VEX.VVVV field? + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + const unsigned MemOp4_I8IMMOperand = 2; + + // It uses the EVEX.aaa field? + bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX; + bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K); + + // Determine where the memory operand starts, if present. + int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode); + if (MemoryOperand != -1) MemoryOperand += CurOp; + + if (!HasVEXPrefix) + EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); + else + EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); + + unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); + + if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) + BaseOpcode = 0x0F; // Weird 3DNow! encoding. + + unsigned SrcRegNum = 0; + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: + llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); + default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; + llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); + case X86II::Pseudo: + llvm_unreachable("Pseudo instruction shouldn't be emitted"); + case X86II::RawFrm: + EmitByte(BaseOpcode, CurByte, OS); + break; + case X86II::RawFrmImm8: + EmitByte(BaseOpcode, CurByte, OS); + EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), + X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), + CurByte, OS, Fixups); + EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte, + OS, Fixups); + break; + case X86II::RawFrmImm16: + EmitByte(BaseOpcode, CurByte, OS); + EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), + X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), + CurByte, OS, Fixups); + EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte, + OS, Fixups); + break; + + case X86II::AddRegFrm: + EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); + break; + + case X86II::MRMDestReg: + EmitByte(BaseOpcode, CurByte, OS); + SrcRegNum = CurOp + 1; + + if (HasEVEX_K) // Skip writemask + SrcRegNum++; + + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + + EmitRegModRMByte(MI.getOperand(CurOp), + GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS); + CurOp = SrcRegNum + 1; + break; + + case X86II::MRMDestMem: + EmitByte(BaseOpcode, CurByte, OS); + SrcRegNum = CurOp + X86::AddrNumOperands; + + if (HasEVEX_K) // Skip writemask + SrcRegNum++; + + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + + EmitMemModRMByte(MI, CurOp, + GetX86RegNum(MI.getOperand(SrcRegNum)), + TSFlags, CurByte, OS, Fixups); + CurOp = SrcRegNum + 1; + break; + + case X86II::MRMSrcReg: + EmitByte(BaseOpcode, CurByte, OS); + SrcRegNum = CurOp + 1; + + if (HasEVEX_K) // Skip writemask + SrcRegNum++; + + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + + if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM) + ++SrcRegNum; + + EmitRegModRMByte(MI.getOperand(SrcRegNum), + GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); + + // 2 operands skipped with HasMemOp4, compensate accordingly + CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1; + if (HasVEX_4VOp3) + ++CurOp; + break; + + case X86II::MRMSrcMem: { + int AddrOperands = X86::AddrNumOperands; + unsigned FirstMemOp = CurOp+1; + + if (HasEVEX_K) { // Skip writemask + ++AddrOperands; + ++FirstMemOp; + } + + if (HasVEX_4V) { + ++AddrOperands; + ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). + } + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + ++FirstMemOp; + + EmitByte(BaseOpcode, CurByte, OS); + + EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), + TSFlags, CurByte, OS, Fixups); + CurOp += AddrOperands + 1; + if (HasVEX_4VOp3) + ++CurOp; + break; + } + + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; + EmitByte(BaseOpcode, CurByte, OS); + EmitRegModRMByte(MI.getOperand(CurOp++), + (TSFlags & X86II::FormMask)-X86II::MRM0r, + CurByte, OS); + break; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; + EmitByte(BaseOpcode, CurByte, OS); + EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, + TSFlags, CurByte, OS, Fixups); + CurOp += X86::AddrNumOperands; + break; + case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: + case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9: + case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0: + case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5: + case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9: + case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: + case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: + case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8: + case X86II::MRM_F9: + EmitByte(BaseOpcode, CurByte, OS); + + unsigned char MRM; + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Invalid Form"); + case X86II::MRM_C1: MRM = 0xC1; break; + case X86II::MRM_C2: MRM = 0xC2; break; + case X86II::MRM_C3: MRM = 0xC3; break; + case X86II::MRM_C4: MRM = 0xC4; break; + case X86II::MRM_C8: MRM = 0xC8; break; + case X86II::MRM_C9: MRM = 0xC9; break; + case X86II::MRM_CA: MRM = 0xCA; break; + case X86II::MRM_CB: MRM = 0xCB; break; + case X86II::MRM_D0: MRM = 0xD0; break; + case X86II::MRM_D1: MRM = 0xD1; break; + case X86II::MRM_D4: MRM = 0xD4; break; + case X86II::MRM_D5: MRM = 0xD5; break; + case X86II::MRM_D6: MRM = 0xD6; break; + case X86II::MRM_D8: MRM = 0xD8; break; + case X86II::MRM_D9: MRM = 0xD9; break; + case X86II::MRM_DA: MRM = 0xDA; break; + case X86II::MRM_DB: MRM = 0xDB; break; + case X86II::MRM_DC: MRM = 0xDC; break; + case X86II::MRM_DD: MRM = 0xDD; break; + case X86II::MRM_DE: MRM = 0xDE; break; + case X86II::MRM_DF: MRM = 0xDF; break; + case X86II::MRM_E8: MRM = 0xE8; break; + case X86II::MRM_F0: MRM = 0xF0; break; + case X86II::MRM_F8: MRM = 0xF8; break; + case X86II::MRM_F9: MRM = 0xF9; break; + } + EmitByte(MRM, CurByte, OS); + break; + } + + // If there is a remaining operand, it must be a trailing immediate. Emit it + // according to the right size for the instruction. Some instructions + // (SSE4a extrq and insertq) have two trailing immediates. + while (CurOp != NumOps && NumOps - CurOp <= 2) { + // The last source register of a 4 operand instruction in AVX is encoded + // in bits[7:4] of a immediate byte. + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { + const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand + : CurOp); + ++CurOp; + unsigned RegNum = GetX86RegNum(MO) << 4; + if (X86II::isX86_64ExtendedReg(MO.getReg())) + RegNum |= 1 << 7; + // If there is an additional 5th operand it must be an immediate, which + // is encoded in bits[3:0] + if (CurOp != NumOps) { + const MCOperand &MIMM = MI.getOperand(CurOp++); + if (MIMM.isImm()) { + unsigned Val = MIMM.getImm(); + assert(Val < 16 && "Immediate operand value out of range"); + RegNum |= Val; + } + } + EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1, + CurByte, OS, Fixups); + } else { + unsigned FixupKind; + // FIXME: Is there a better way to know that we need a signed relocation? + if (MI.getOpcode() == X86::ADD64ri32 || + MI.getOpcode() == X86::MOV64ri32 || + MI.getOpcode() == X86::MOV64mi32 || + MI.getOpcode() == X86::PUSH64i32) + FixupKind = X86::reloc_signed_4byte; + else + FixupKind = getImmFixupKind(TSFlags); + EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), + X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind), + CurByte, OS, Fixups); + } + } + + if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) + EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); + +#ifndef NDEBUG + // FIXME: Verify. + if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { + errs() << "Cannot encode all operands of: "; + MI.dump(); + errs() << '\n'; + abort(); + } +#endif +}