diff lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,1462 @@
+//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86MCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "mccodeemitter"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+class X86MCCodeEmitter : public MCCodeEmitter {
+  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
+  const MCInstrInfo &MCII;
+  const MCSubtargetInfo &STI;
+  MCContext &Ctx;
+public:
+  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
+                   MCContext &ctx)
+    : MCII(mcii), STI(sti), Ctx(ctx) {
+  }
+
+  ~X86MCCodeEmitter() {}
+
+  bool is64BitMode() const {
+    // FIXME: Can tablegen auto-generate this?
+    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
+  }
+
+  bool is32BitMode() const {
+    // FIXME: Can tablegen auto-generate this?
+    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
+  }
+
+  unsigned GetX86RegNum(const MCOperand &MO) const {
+    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
+  }
+
+  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+  // 0-7 and the difference between the 2 groups is given by the REX prefix.
+  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+  // in 1's complement form, example:
+  //
+  //  ModRM field => XMM9 => 1
+  //  VEX.VVVV    => XMM9 => ~9
+  //
+  // See table 4-35 of Intel AVX Programming Reference for details.
+  unsigned char getVEXRegisterEncoding(const MCInst &MI,
+                                       unsigned OpNum) const {
+    unsigned SrcReg = MI.getOperand(OpNum).getReg();
+    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
+    if (X86II::isX86_64ExtendedReg(SrcReg))
+      SrcRegNum |= 8;
+
+    // The registers represented through VEX_VVVV should
+    // be encoded in 1's complement form.
+    return (~SrcRegNum) & 0xf;
+  }
+
+  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
+                                             unsigned OpNum) const {
+    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
+           "Invalid mask register as write-mask!");
+    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
+    return MaskRegNum;
+  }
+
+  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
+    OS << (char)C;
+    ++CurByte;
+  }
+
+  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
+                    raw_ostream &OS) const {
+    // Output the constant in little endian byte order.
+    for (unsigned i = 0; i != Size; ++i) {
+      EmitByte(Val & 255, CurByte, OS);
+      Val >>= 8;
+    }
+  }
+
+  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
+                     unsigned ImmSize, MCFixupKind FixupKind,
+                     unsigned &CurByte, raw_ostream &OS,
+                     SmallVectorImpl<MCFixup> &Fixups,
+                     int ImmOffset = 0) const;
+
+  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
+                                        unsigned RM) {
+    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
+    return RM | (RegOpcode << 3) | (Mod << 6);
+  }
+
+  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
+                        unsigned &CurByte, raw_ostream &OS) const {
+    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
+  }
+
+  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
+                   unsigned &CurByte, raw_ostream &OS) const {
+    // SIB byte is in the same format as the ModRMByte.
+    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
+  }
+
+
+  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
+                        unsigned RegOpcodeField,
+                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
+                        SmallVectorImpl<MCFixup> &Fixups) const;
+
+  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+                         SmallVectorImpl<MCFixup> &Fixups) const;
+
+  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+                           const MCInst &MI, const MCInstrDesc &Desc,
+                           raw_ostream &OS) const;
+
+  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
+                                 int MemOperand, const MCInst &MI,
+                                 raw_ostream &OS) const;
+
+  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+                        const MCInst &MI, const MCInstrDesc &Desc,
+                        raw_ostream &OS) const;
+};
+
+} // end anonymous namespace
+
+
+MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
+                                            const MCRegisterInfo &MRI,
+                                            const MCSubtargetInfo &STI,
+                                            MCContext &Ctx) {
+  return new X86MCCodeEmitter(MCII, STI, Ctx);
+}
+
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
+static bool isDisp8(int Value) {
+  return Value == (signed char)Value;
+}
+
+/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
+/// compressed dispacement field.
+static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
+  assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) &&
+         "Compressed 8-bit displacement is only valid for EVEX inst.");
+
+  unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
+  unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
+
+  if (CD8V == 0 && CD8E == 0) {
+    CValue = Value;
+    return isDisp8(Value);
+  }
+  
+  unsigned MemObjSize = 1U << CD8E;
+  if (CD8V & 4) {
+    // Fixed vector length
+    MemObjSize *= 1U << (CD8V & 0x3);
+  } else {
+    // Modified vector length
+    bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
+    if (!EVEX_b) {
+      unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
+      EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
+      assert(EVEX_LL < 3 && "");
+
+      unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
+      NumElems /= 1U << (CD8V & 0x3);
+
+      MemObjSize *= NumElems;
+    }
+  }
+
+  unsigned MemObjMask = MemObjSize - 1;
+  assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
+
+  if (Value & MemObjMask) // Unaligned offset
+    return false;
+  Value /= MemObjSize;
+  bool Ret = (Value == (signed char)Value);
+
+  if (Ret)
+    CValue = Value;
+  return Ret;
+}
+
+/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
+/// in an instruction with the specified TSFlags.
+static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
+  unsigned Size = X86II::getSizeOfImm(TSFlags);
+  bool isPCRel = X86II::isImmPCRel(TSFlags);
+
+  return MCFixup::getKindForSize(Size, isPCRel);
+}
+
+/// Is32BitMemOperand - Return true if the specified instruction has
+/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
+  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
+  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+  if ((BaseReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+      (IndexReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
+    return true;
+  return false;
+}
+
+/// Is64BitMemOperand - Return true if the specified instruction has
+/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
+#ifndef NDEBUG
+static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
+  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
+  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+  if ((BaseReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
+      (IndexReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
+    return true;
+  return false;
+}
+#endif
+
+/// Is16BitMemOperand - Return true if the specified instruction has
+/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
+  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
+  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+  if ((BaseReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+      (IndexReg.getReg() != 0 &&
+       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+    return true;
+  return false;
+}
+
+/// StartsWithGlobalOffsetTable - Check if this expression starts with
+///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
+///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
+/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
+/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
+/// of a binary expression.
+enum GlobalOffsetTableExprKind {
+  GOT_None,
+  GOT_Normal,
+  GOT_SymDiff
+};
+static GlobalOffsetTableExprKind
+StartsWithGlobalOffsetTable(const MCExpr *Expr) {
+  const MCExpr *RHS = 0;
+  if (Expr->getKind() == MCExpr::Binary) {
+    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
+    Expr = BE->getLHS();
+    RHS = BE->getRHS();
+  }
+
+  if (Expr->getKind() != MCExpr::SymbolRef)
+    return GOT_None;
+
+  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+  const MCSymbol &S = Ref->getSymbol();
+  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
+    return GOT_None;
+  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
+    return GOT_SymDiff;
+  return GOT_Normal;
+}
+
+static bool HasSecRelSymbolRef(const MCExpr *Expr) {
+  if (Expr->getKind() == MCExpr::SymbolRef) {
+    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
+  }
+  return false;
+}
+
+void X86MCCodeEmitter::
+EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
+              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
+              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
+  const MCExpr *Expr = NULL;
+  if (DispOp.isImm()) {
+    // If this is a simple integer displacement that doesn't require a
+    // relocation, emit it now.
+    if (FixupKind != FK_PCRel_1 &&
+        FixupKind != FK_PCRel_2 &&
+        FixupKind != FK_PCRel_4) {
+      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
+      return;
+    }
+    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
+  } else {
+    Expr = DispOp.getExpr();
+  }
+
+  // If we have an immoffset, add it to the expression.
+  if ((FixupKind == FK_Data_4 ||
+       FixupKind == FK_Data_8 ||
+       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
+    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
+    if (Kind != GOT_None) {
+      assert(ImmOffset == 0);
+
+      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
+      if (Kind == GOT_Normal)
+        ImmOffset = CurByte;
+    } else if (Expr->getKind() == MCExpr::SymbolRef) {
+      if (HasSecRelSymbolRef(Expr)) {
+        FixupKind = MCFixupKind(FK_SecRel_4);
+      }
+    } else if (Expr->getKind() == MCExpr::Binary) {
+      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
+      if (HasSecRelSymbolRef(Bin->getLHS())
+          || HasSecRelSymbolRef(Bin->getRHS())) {
+        FixupKind = MCFixupKind(FK_SecRel_4);
+      }
+    }
+  }
+
+  // If the fixup is pc-relative, we need to bias the value to be relative to
+  // the start of the field, not the end of the field.
+  if (FixupKind == FK_PCRel_4 ||
+      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
+      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
+    ImmOffset -= 4;
+  if (FixupKind == FK_PCRel_2)
+    ImmOffset -= 2;
+  if (FixupKind == FK_PCRel_1)
+    ImmOffset -= 1;
+
+  if (ImmOffset)
+    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
+                                   Ctx);
+
+  // Emit a symbolic constant as a fixup and 4 zeros.
+  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
+  EmitConstant(0, Size, CurByte, OS);
+}
+
+void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
+                                        unsigned RegOpcodeField,
+                                        uint64_t TSFlags, unsigned &CurByte,
+                                        raw_ostream &OS,
+                                        SmallVectorImpl<MCFixup> &Fixups) const{
+  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
+  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
+  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
+  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+  unsigned BaseReg = Base.getReg();
+  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
+
+  // Handle %rip relative addressing.
+  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
+    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
+    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
+    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+
+    unsigned FixupKind = X86::reloc_riprel_4byte;
+
+    // movq loads are handled with a special relocation form which allows the
+    // linker to eliminate some loads for GOT references which end up in the
+    // same linkage unit.
+    if (MI.getOpcode() == X86::MOV64rm)
+      FixupKind = X86::reloc_riprel_4byte_movq_load;
+
+    // rip-relative addressing is actually relative to the *next* instruction.
+    // Since an immediate can follow the mod/rm byte for an instruction, this
+    // means that we need to bias the immediate field of the instruction with
+    // the size of the immediate field.  If we have this case, add it into the
+    // expression to emit.
+    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
+
+    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
+                  CurByte, OS, Fixups, -ImmSize);
+    return;
+  }
+
+  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
+
+  // Determine whether a SIB byte is needed.
+  // If no BaseReg, issue a RIP relative instruction only if the MCE can
+  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
+  // 2-7) and absolute references.
+
+  if (// The SIB byte must be used if there is an index register.
+      IndexReg.getReg() == 0 &&
+      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
+      // encode to an R/M value of 4, which indicates that a SIB byte is
+      // present.
+      BaseRegNo != N86::ESP &&
+      // If there is no base register and we're in 64-bit mode, we need a SIB
+      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
+      (!is64BitMode() || BaseReg != 0)) {
+
+    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
+      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
+      return;
+    }
+
+    // If the base is not EBP/ESP and there is no displacement, use simple
+    // indirect register encoding, this handles addresses like [EAX].  The
+    // encoding for [EBP] with no displacement means [disp32] so we handle it
+    // by emitting a displacement of 0 below.
+    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
+      return;
+    }
+
+    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
+    if (Disp.isImm()) {
+      if (!HasEVEX && isDisp8(Disp.getImm())) {
+        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+        return;
+      }
+      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
+      // 32-bit displacement.
+      int CDisp8 = 0;
+      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+        EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+        EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
+                      CDisp8 - Disp.getImm());
+        return;
+      }
+    }
+
+    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
+    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
+    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
+                  Fixups);
+    return;
+  }
+
+  // We need a SIB byte, so start by outputting the ModR/M byte first
+  assert(IndexReg.getReg() != X86::ESP &&
+         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
+
+  bool ForceDisp32 = false;
+  bool ForceDisp8  = false;
+  int CDisp8 = 0;
+  int ImmOffset = 0;
+  if (BaseReg == 0) {
+    // If there is no base register, we emit the special case SIB byte with
+    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
+    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+    ForceDisp32 = true;
+  } else if (!Disp.isImm()) {
+    // Emit the normal disp32 encoding.
+    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+    ForceDisp32 = true;
+  } else if (Disp.getImm() == 0 &&
+             // Base reg can't be anything that ends up with '5' as the base
+             // reg, it is the magic [*] nomenclature that indicates no base.
+             BaseRegNo != N86::EBP) {
+    // Emit no displacement ModR/M byte
+    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
+    // Emit the disp8 encoding.
+    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
+  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+    // Emit the disp8 encoding.
+    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
+    ImmOffset = CDisp8 - Disp.getImm();
+  } else {
+    // Emit the normal disp32 encoding.
+    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+  }
+
+  // Calculate what the SS field value should be...
+  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
+  unsigned SS = SSTable[Scale.getImm()];
+
+  if (BaseReg == 0) {
+    // Handle the SIB byte for the case where there is no base, see Intel
+    // Manual 2A, table 2-7. The displacement has already been output.
+    unsigned IndexRegNo;
+    if (IndexReg.getReg())
+      IndexRegNo = GetX86RegNum(IndexReg);
+    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
+      IndexRegNo = 4;
+    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
+  } else {
+    unsigned IndexRegNo;
+    if (IndexReg.getReg())
+      IndexRegNo = GetX86RegNum(IndexReg);
+    else
+      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
+    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
+  }
+
+  // Do we need to output a displacement?
+  if (ForceDisp8)
+    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
+  else if (ForceDisp32 || Disp.getImm() != 0)
+    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
+                  CurByte, OS, Fixups);
+}
+
+/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
+/// called VEX.
+void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+                                           int MemOperand, const MCInst &MI,
+                                           const MCInstrDesc &Desc,
+                                           raw_ostream &OS) const {
+  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
+  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+
+  // VEX_R: opcode externsion equivalent to REX.R in
+  // 1's complement (inverted) form
+  //
+  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
+  //  0: Same as REX_R=1 (64 bit mode only)
+  //
+  unsigned char VEX_R = 0x1;
+  unsigned char EVEX_R2 = 0x1;
+
+  // VEX_X: equivalent to REX.X, only used when a
+  // register is used for index in SIB Byte.
+  //
+  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
+  //  0: Same as REX.X=1 (64-bit mode only)
+  unsigned char VEX_X = 0x1;
+
+  // VEX_B:
+  //
+  //  1: Same as REX_B=0 (ignored in 32-bit mode)
+  //  0: Same as REX_B=1 (64 bit mode only)
+  //
+  unsigned char VEX_B = 0x1;
+
+  // VEX_W: opcode specific (use like REX.W, or used for
+  // opcode extension, or ignored, depending on the opcode byte)
+  unsigned char VEX_W = 0;
+
+  // XOP: Use XOP prefix byte 0x8f instead of VEX.
+  bool XOP = false;
+
+  // VEX_5M (VEX m-mmmmm field):
+  //
+  //  0b00000: Reserved for future use
+  //  0b00001: implied 0F leading opcode
+  //  0b00010: implied 0F 38 leading opcode bytes
+  //  0b00011: implied 0F 3A leading opcode bytes
+  //  0b00100-0b11111: Reserved for future use
+  //  0b01000: XOP map select - 08h instructions with imm byte
+  //  0b01001: XOP map select - 09h instructions with no imm byte
+  //  0b01010: XOP map select - 0Ah instructions with imm dword
+  unsigned char VEX_5M = 0x1;
+
+  // VEX_4V (VEX vvvv field): a register specifier
+  // (in 1's complement form) or 1111 if unused.
+  unsigned char VEX_4V = 0xf;
+  unsigned char EVEX_V2 = 0x1;
+
+  // VEX_L (Vector Length):
+  //
+  //  0: scalar or 128-bit vector
+  //  1: 256-bit vector
+  //
+  unsigned char VEX_L = 0;
+  unsigned char EVEX_L2 = 0;
+
+  // VEX_PP: opcode extension providing equivalent
+  // functionality of a SIMD prefix
+  //
+  //  0b00: None
+  //  0b01: 66
+  //  0b10: F3
+  //  0b11: F2
+  //
+  unsigned char VEX_PP = 0;
+
+  // EVEX_U
+  unsigned char EVEX_U = 1; // Always '1' so far
+
+  // EVEX_z
+  unsigned char EVEX_z = 0;
+
+  // EVEX_b
+  unsigned char EVEX_b = 0;
+
+  // EVEX_aaa
+  unsigned char EVEX_aaa = 0;
+
+  // Encode the operand size opcode prefix as needed.
+  if (TSFlags & X86II::OpSize)
+    VEX_PP = 0x01;
+
+  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
+    VEX_W = 1;
+
+  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
+    XOP = true;
+
+  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
+    VEX_L = 1;
+  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
+    EVEX_L2 = 1;
+
+  if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
+    EVEX_z = 1;
+
+  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
+    EVEX_b = 1;
+
+  switch (TSFlags & X86II::Op0Mask) {
+  default: llvm_unreachable("Invalid prefix!");
+  case X86II::T8:  // 0F 38
+    VEX_5M = 0x2;
+    break;
+  case X86II::TA:  // 0F 3A
+    VEX_5M = 0x3;
+    break;
+  case X86II::T8XS: // F3 0F 38
+    VEX_PP = 0x2;
+    VEX_5M = 0x2;
+    break;
+  case X86II::T8XD: // F2 0F 38
+    VEX_PP = 0x3;
+    VEX_5M = 0x2;
+    break;
+  case X86II::TAXD: // F2 0F 3A
+    VEX_PP = 0x3;
+    VEX_5M = 0x3;
+    break;
+  case X86II::XS:  // F3 0F
+    VEX_PP = 0x2;
+    break;
+  case X86II::XD:  // F2 0F
+    VEX_PP = 0x3;
+    break;
+  case X86II::XOP8:
+    VEX_5M = 0x8;
+    break;
+  case X86II::XOP9:
+    VEX_5M = 0x9;
+    break;
+  case X86II::XOPA:
+    VEX_5M = 0xA;
+    break;
+  case X86II::TB: // VEX_5M/VEX_PP already correct
+    break;
+  }
+
+
+  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
+  unsigned NumOps = Desc.getNumOperands();
+  unsigned CurOp = 0;
+  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
+    ++CurOp;
+  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
+    // Special case for AVX-512 GATHER with 2 TIED_TO operands
+    // Skip the first 2 operands: dst, mask_wb
+    CurOp += 2;
+  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+           Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
+    // Special case for GATHER with 2 TIED_TO operands
+    // Skip the first 2 operands: dst, mask_wb
+    CurOp += 2;
+  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
+    // SCATTER
+    ++CurOp;
+
+  switch (TSFlags & X86II::FormMask) {
+  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
+  case X86II::MRMDestMem: {
+    // MRMDestMem instructions forms:
+    //  MemAddr, src1(ModR/M)
+    //  MemAddr, src1(VEX_4V), src2(ModR/M)
+    //  MemAddr, src1(ModR/M), imm8
+    //
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand + 
+                                                 X86::AddrBaseReg).getReg()))
+      VEX_B = 0x0;
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+                                                 X86::AddrIndexReg).getReg()))
+      VEX_X = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+                                          X86::AddrIndexReg).getReg()))
+      EVEX_V2 = 0x0;
+
+    CurOp += X86::AddrNumOperands;
+
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+        EVEX_V2 = 0x0;
+      CurOp++;
+    }
+
+    const MCOperand &MO = MI.getOperand(CurOp);
+    if (MO.isReg()) {
+      if (X86II::isX86_64ExtendedReg(MO.getReg()))
+        VEX_R = 0x0;
+      if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
+        EVEX_R2 = 0x0;
+    }
+    break;
+  }
+  case X86II::MRMSrcMem:
+    // MRMSrcMem instructions forms:
+    //  src1(ModR/M), MemAddr
+    //  src1(ModR/M), src2(VEX_4V), MemAddr
+    //  src1(ModR/M), MemAddr, imm8
+    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+    //
+    //  FMA4:
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_R = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      EVEX_R2 = 0x0;
+    CurOp++;
+
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+        EVEX_V2 = 0x0;
+      CurOp++;
+    }
+
+    if (X86II::isX86_64ExtendedReg(
+               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+      VEX_B = 0x0;
+    if (X86II::isX86_64ExtendedReg(
+               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+      VEX_X = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+                                          X86::AddrIndexReg).getReg()))
+      EVEX_V2 = 0x0;
+
+    if (HasVEX_4VOp3)
+      // Instruction format for 4VOp3:
+      //   src1(ModR/M), MemAddr, src3(VEX_4V)
+      // CurOp points to start of the MemoryOperand,
+      //   it skips TIED_TO operands if exist, then increments past src1.
+      // CurOp + X86::AddrNumOperands will point to src3.
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
+    break;
+  case X86II::MRM0m: case X86II::MRM1m:
+  case X86II::MRM2m: case X86II::MRM3m:
+  case X86II::MRM4m: case X86II::MRM5m:
+  case X86II::MRM6m: case X86II::MRM7m: {
+    // MRM[0-9]m instructions forms:
+    //  MemAddr
+    //  src1(VEX_4V), MemAddr
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+        EVEX_V2 = 0x0;
+      CurOp++;
+    }
+
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (X86II::isX86_64ExtendedReg(
+               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+      VEX_B = 0x0;
+    if (X86II::isX86_64ExtendedReg(
+               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+      VEX_X = 0x0;
+    break;
+  }
+  case X86II::MRMSrcReg:
+    // MRMSrcReg instructions forms:
+    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+    //  dst(ModR/M), src1(ModR/M)
+    //  dst(ModR/M), src1(ModR/M), imm8
+    //
+    //  FMA4:
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_R = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      EVEX_R2 = 0x0;
+    CurOp++;
+
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+        EVEX_V2 = 0x0;
+      CurOp++;
+    }
+
+    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+      CurOp++;
+
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_B = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_X = 0x0;
+    CurOp++;
+    if (HasVEX_4VOp3)
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+    break;
+  case X86II::MRMDestReg:
+    // MRMDestReg instructions forms:
+    //  dst(ModR/M), src(ModR/M)
+    //  dst(ModR/M), src(ModR/M), imm8
+    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_B = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_X = 0x0;
+    CurOp++;
+
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+        EVEX_V2 = 0x0;
+      CurOp++;
+    }
+
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_R = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      EVEX_R2 = 0x0;
+    break;
+  case X86II::MRM0r: case X86II::MRM1r:
+  case X86II::MRM2r: case X86II::MRM3r:
+  case X86II::MRM4r: case X86II::MRM5r:
+  case X86II::MRM6r: case X86II::MRM7r:
+    // MRM0r-MRM7r instructions forms:
+    //  dst(VEX_4V), src(ModR/M), imm8
+    if (HasVEX_4V) {
+      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+      if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+          EVEX_V2 = 0x0;
+      CurOp++;
+    }    
+    if (HasEVEX_K)
+      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_B = 0x0;
+    if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+      VEX_X = 0x0;
+    break;
+  default: // RawFrm
+    break;
+  }
+
+  // Emit segment override opcode prefix as needed.
+  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
+
+  if (!HasEVEX) {
+    // VEX opcode prefix can have 2 or 3 bytes
+    //
+    //  3 bytes:
+    //    +-----+ +--------------+ +-------------------+
+    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+    //    +-----+ +--------------+ +-------------------+
+    //  2 bytes:
+    //    +-----+ +-------------------+
+    //    | C5h | | R | vvvv | L | pp |
+    //    +-----+ +-------------------+
+    //
+    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+    if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
+      EmitByte(0xC5, CurByte, OS);
+      EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
+      return;
+    }
+
+    // 3 byte VEX prefix
+    EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
+    EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
+    EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
+  } else {
+    // EVEX opcode prefix can have 4 bytes
+    //
+    // +-----+ +--------------+ +-------------------+ +------------------------+
+    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
+    // +-----+ +--------------+ +-------------------+ +------------------------+
+    assert((VEX_5M & 0x3) == VEX_5M
+           && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
+
+    VEX_5M &= 0x3;
+
+    EmitByte(0x62, CurByte, OS);
+    EmitByte((VEX_R   << 7) |
+             (VEX_X   << 6) |
+             (VEX_B   << 5) |
+             (EVEX_R2 << 4) |
+             VEX_5M, CurByte, OS);
+    EmitByte((VEX_W   << 7) |
+             (VEX_4V  << 3) |
+             (EVEX_U  << 2) |
+             VEX_PP, CurByte, OS);
+    EmitByte((EVEX_z  << 7) |
+             (EVEX_L2 << 6) |
+             (VEX_L   << 5) |
+             (EVEX_b  << 4) |
+             (EVEX_V2 << 3) |
+             EVEX_aaa, CurByte, OS);
+  }
+}
+
+/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
+/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
+/// size, and 3) use of X86-64 extended registers.
+static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
+                                   const MCInstrDesc &Desc) {
+  unsigned REX = 0;
+  if (TSFlags & X86II::REX_W)
+    REX |= 1 << 3; // set REX.W
+
+  if (MI.getNumOperands() == 0) return REX;
+
+  unsigned NumOps = MI.getNumOperands();
+  // FIXME: MCInst should explicitize the two-addrness.
+  bool isTwoAddr = NumOps > 1 &&
+                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
+  unsigned i = isTwoAddr ? 1 : 0;
+  for (; i != NumOps; ++i) {
+    const MCOperand &MO = MI.getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
+    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
+    // that returns non-zero.
+    REX |= 0x40; // REX fixed encoding prefix
+    break;
+  }
+
+  switch (TSFlags & X86II::FormMask) {
+  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
+  case X86II::MRMSrcReg:
+    if (MI.getOperand(0).isReg() &&
+        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+      REX |= 1 << 2; // set REX.R
+    i = isTwoAddr ? 2 : 1;
+    for (; i != NumOps; ++i) {
+      const MCOperand &MO = MI.getOperand(i);
+      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+        REX |= 1 << 0; // set REX.B
+    }
+    break;
+  case X86II::MRMSrcMem: {
+    if (MI.getOperand(0).isReg() &&
+        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+      REX |= 1 << 2; // set REX.R
+    unsigned Bit = 0;
+    i = isTwoAddr ? 2 : 1;
+    for (; i != NumOps; ++i) {
+      const MCOperand &MO = MI.getOperand(i);
+      if (MO.isReg()) {
+        if (X86II::isX86_64ExtendedReg(MO.getReg()))
+          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
+        Bit++;
+      }
+    }
+    break;
+  }
+  case X86II::MRM0m: case X86II::MRM1m:
+  case X86II::MRM2m: case X86II::MRM3m:
+  case X86II::MRM4m: case X86II::MRM5m:
+  case X86II::MRM6m: case X86II::MRM7m:
+  case X86II::MRMDestMem: {
+    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
+    i = isTwoAddr ? 1 : 0;
+    if (NumOps > e && MI.getOperand(e).isReg() &&
+        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
+      REX |= 1 << 2; // set REX.R
+    unsigned Bit = 0;
+    for (; i != e; ++i) {
+      const MCOperand &MO = MI.getOperand(i);
+      if (MO.isReg()) {
+        if (X86II::isX86_64ExtendedReg(MO.getReg()))
+          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
+        Bit++;
+      }
+    }
+    break;
+  }
+  default:
+    if (MI.getOperand(0).isReg() &&
+        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+      REX |= 1 << 0; // set REX.B
+    i = isTwoAddr ? 2 : 1;
+    for (unsigned e = NumOps; i != e; ++i) {
+      const MCOperand &MO = MI.getOperand(i);
+      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+        REX |= 1 << 2; // set REX.R
+    }
+    break;
+  }
+  return REX;
+}
+
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
+                                        unsigned &CurByte, int MemOperand,
+                                        const MCInst &MI,
+                                        raw_ostream &OS) const {
+  switch (TSFlags & X86II::SegOvrMask) {
+  default: llvm_unreachable("Invalid segment!");
+  case 0:
+    // No segment override, check for explicit one on memory operand.
+    if (MemOperand != -1) {   // If the instruction has a memory operand.
+      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
+      default: llvm_unreachable("Unknown segment register!");
+      case 0: break;
+      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
+      case X86::SS: EmitByte(0x36, CurByte, OS); break;
+      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
+      case X86::ES: EmitByte(0x26, CurByte, OS); break;
+      case X86::FS: EmitByte(0x64, CurByte, OS); break;
+      case X86::GS: EmitByte(0x65, CurByte, OS); break;
+      }
+    }
+    break;
+  case X86II::FS:
+    EmitByte(0x64, CurByte, OS);
+    break;
+  case X86II::GS:
+    EmitByte(0x65, CurByte, OS);
+    break;
+  }
+}
+
+/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
+///
+/// MemOperand is the operand # of the start of a memory operand if present.  If
+/// Not present, it is -1.
+void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+                                        int MemOperand, const MCInst &MI,
+                                        const MCInstrDesc &Desc,
+                                        raw_ostream &OS) const {
+
+  // Emit the lock opcode prefix as needed.
+  if (TSFlags & X86II::LOCK)
+    EmitByte(0xF0, CurByte, OS);
+
+  // Emit segment override opcode prefix as needed.
+  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
+
+  // Emit the repeat opcode prefix as needed.
+  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
+    EmitByte(0xF3, CurByte, OS);
+
+  // Emit the address size opcode prefix as needed.
+  bool need_address_override;
+  if (TSFlags & X86II::AdSize) {
+    need_address_override = true;
+  } else if (MemOperand == -1) {
+    need_address_override = false;
+  } else if (is64BitMode()) {
+    assert(!Is16BitMemOperand(MI, MemOperand));
+    need_address_override = Is32BitMemOperand(MI, MemOperand);
+  } else if (is32BitMode()) {
+    assert(!Is64BitMemOperand(MI, MemOperand));
+    need_address_override = Is16BitMemOperand(MI, MemOperand);
+  } else {
+    need_address_override = false;
+  }
+
+  if (need_address_override)
+    EmitByte(0x67, CurByte, OS);
+
+  // Emit the operand size opcode prefix as needed.
+  if (TSFlags & X86II::OpSize)
+    EmitByte(0x66, CurByte, OS);
+
+  bool Need0FPrefix = false;
+  switch (TSFlags & X86II::Op0Mask) {
+  default: llvm_unreachable("Invalid prefix!");
+  case 0: break;  // No prefix!
+  case X86II::REP: break; // already handled.
+  case X86II::TB:  // Two-byte opcode prefix
+  case X86II::T8:  // 0F 38
+  case X86II::TA:  // 0F 3A
+  case X86II::A6:  // 0F A6
+  case X86II::A7:  // 0F A7
+    Need0FPrefix = true;
+    break;
+  case X86II::T8XS: // F3 0F 38
+    EmitByte(0xF3, CurByte, OS);
+    Need0FPrefix = true;
+    break;
+  case X86II::T8XD: // F2 0F 38
+    EmitByte(0xF2, CurByte, OS);
+    Need0FPrefix = true;
+    break;
+  case X86II::TAXD: // F2 0F 3A
+    EmitByte(0xF2, CurByte, OS);
+    Need0FPrefix = true;
+    break;
+  case X86II::XS:   // F3 0F
+    EmitByte(0xF3, CurByte, OS);
+    Need0FPrefix = true;
+    break;
+  case X86II::XD:   // F2 0F
+    EmitByte(0xF2, CurByte, OS);
+    Need0FPrefix = true;
+    break;
+  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
+  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
+  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
+  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
+  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
+  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
+  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
+  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
+  }
+
+  // Handle REX prefix.
+  // FIXME: Can this come before F2 etc to simplify emission?
+  if (is64BitMode()) {
+    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
+      EmitByte(0x40 | REX, CurByte, OS);
+  }
+
+  // 0x0F escape code must be emitted just before the opcode.
+  if (Need0FPrefix)
+    EmitByte(0x0F, CurByte, OS);
+
+  // FIXME: Pull this up into previous switch if REX can be moved earlier.
+  switch (TSFlags & X86II::Op0Mask) {
+  case X86II::T8XS:  // F3 0F 38
+  case X86II::T8XD:  // F2 0F 38
+  case X86II::T8:    // 0F 38
+    EmitByte(0x38, CurByte, OS);
+    break;
+  case X86II::TAXD:  // F2 0F 3A
+  case X86II::TA:    // 0F 3A
+    EmitByte(0x3A, CurByte, OS);
+    break;
+  case X86II::A6:    // 0F A6
+    EmitByte(0xA6, CurByte, OS);
+    break;
+  case X86II::A7:    // 0F A7
+    EmitByte(0xA7, CurByte, OS);
+    break;
+  }
+}
+
+void X86MCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+                  SmallVectorImpl<MCFixup> &Fixups) const {
+  unsigned Opcode = MI.getOpcode();
+  const MCInstrDesc &Desc = MCII.get(Opcode);
+  uint64_t TSFlags = Desc.TSFlags;
+
+  // Pseudo instructions don't get encoded.
+  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
+    return;
+
+  unsigned NumOps = Desc.getNumOperands();
+  unsigned CurOp = X86II::getOperandBias(Desc);
+
+  // Keep track of the current byte being emitted.
+  unsigned CurByte = 0;
+
+  // Is this instruction encoded using the AVX VEX prefix?
+  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
+
+  // It uses the VEX.VVVV field?
+  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+  const unsigned MemOp4_I8IMMOperand = 2;
+
+  // It uses the EVEX.aaa field?
+  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
+  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+
+  // Determine where the memory operand starts, if present.
+  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+  if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+  if (!HasVEXPrefix)
+    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+  else
+    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+
+  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
+
+  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
+
+  unsigned SrcRegNum = 0;
+  switch (TSFlags & X86II::FormMask) {
+  case X86II::MRMInitReg:
+    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
+  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
+    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
+  case X86II::Pseudo:
+    llvm_unreachable("Pseudo instruction shouldn't be emitted");
+  case X86II::RawFrm:
+    EmitByte(BaseOpcode, CurByte, OS);
+    break;
+  case X86II::RawFrmImm8:
+    EmitByte(BaseOpcode, CurByte, OS);
+    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+                  CurByte, OS, Fixups);
+    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
+                  OS, Fixups);
+    break;
+  case X86II::RawFrmImm16:
+    EmitByte(BaseOpcode, CurByte, OS);
+    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+                  CurByte, OS, Fixups);
+    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
+                  OS, Fixups);
+    break;
+
+  case X86II::AddRegFrm:
+    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
+    break;
+
+  case X86II::MRMDestReg:
+    EmitByte(BaseOpcode, CurByte, OS);
+    SrcRegNum = CurOp + 1;
+
+    if (HasEVEX_K) // Skip writemask
+      SrcRegNum++;
+
+    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+      ++SrcRegNum;
+
+    EmitRegModRMByte(MI.getOperand(CurOp),
+                     GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
+    CurOp = SrcRegNum + 1;
+    break;
+
+  case X86II::MRMDestMem:
+    EmitByte(BaseOpcode, CurByte, OS);
+    SrcRegNum = CurOp + X86::AddrNumOperands;
+
+    if (HasEVEX_K) // Skip writemask
+      SrcRegNum++;
+
+    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+      ++SrcRegNum;
+
+    EmitMemModRMByte(MI, CurOp,
+                     GetX86RegNum(MI.getOperand(SrcRegNum)),
+                     TSFlags, CurByte, OS, Fixups);
+    CurOp = SrcRegNum + 1;
+    break;
+
+  case X86II::MRMSrcReg:
+    EmitByte(BaseOpcode, CurByte, OS);
+    SrcRegNum = CurOp + 1;
+
+    if (HasEVEX_K) // Skip writemask
+      SrcRegNum++;
+
+    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+      ++SrcRegNum;
+
+    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
+      ++SrcRegNum;
+
+    EmitRegModRMByte(MI.getOperand(SrcRegNum),
+                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+
+    // 2 operands skipped with HasMemOp4, compensate accordingly
+    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
+    if (HasVEX_4VOp3)
+      ++CurOp;
+    break;
+
+  case X86II::MRMSrcMem: {
+    int AddrOperands = X86::AddrNumOperands;
+    unsigned FirstMemOp = CurOp+1;
+
+    if (HasEVEX_K) { // Skip writemask
+      ++AddrOperands;
+      ++FirstMemOp;
+    }
+
+    if (HasVEX_4V) {
+      ++AddrOperands;
+      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
+    }
+    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+      ++FirstMemOp;
+
+    EmitByte(BaseOpcode, CurByte, OS);
+
+    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+                     TSFlags, CurByte, OS, Fixups);
+    CurOp += AddrOperands + 1;
+    if (HasVEX_4VOp3)
+      ++CurOp;
+    break;
+  }
+
+  case X86II::MRM0r: case X86II::MRM1r:
+  case X86II::MRM2r: case X86II::MRM3r:
+  case X86II::MRM4r: case X86II::MRM5r:
+  case X86II::MRM6r: case X86II::MRM7r:
+    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+      ++CurOp;
+    EmitByte(BaseOpcode, CurByte, OS);
+    EmitRegModRMByte(MI.getOperand(CurOp++),
+                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
+                     CurByte, OS);
+    break;
+  case X86II::MRM0m: case X86II::MRM1m:
+  case X86II::MRM2m: case X86II::MRM3m:
+  case X86II::MRM4m: case X86II::MRM5m:
+  case X86II::MRM6m: case X86II::MRM7m:
+    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+      ++CurOp;
+    EmitByte(BaseOpcode, CurByte, OS);
+    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
+                     TSFlags, CurByte, OS, Fixups);
+    CurOp += X86::AddrNumOperands;
+    break;
+  case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
+  case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
+  case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
+  case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
+  case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
+  case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
+  case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
+  case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
+  case X86II::MRM_F9:
+    EmitByte(BaseOpcode, CurByte, OS);
+
+    unsigned char MRM;
+    switch (TSFlags & X86II::FormMask) {
+    default: llvm_unreachable("Invalid Form");
+    case X86II::MRM_C1: MRM = 0xC1; break;
+    case X86II::MRM_C2: MRM = 0xC2; break;
+    case X86II::MRM_C3: MRM = 0xC3; break;
+    case X86II::MRM_C4: MRM = 0xC4; break;
+    case X86II::MRM_C8: MRM = 0xC8; break;
+    case X86II::MRM_C9: MRM = 0xC9; break;
+    case X86II::MRM_CA: MRM = 0xCA; break;
+    case X86II::MRM_CB: MRM = 0xCB; break;
+    case X86II::MRM_D0: MRM = 0xD0; break;
+    case X86II::MRM_D1: MRM = 0xD1; break;
+    case X86II::MRM_D4: MRM = 0xD4; break;
+    case X86II::MRM_D5: MRM = 0xD5; break;
+    case X86II::MRM_D6: MRM = 0xD6; break;
+    case X86II::MRM_D8: MRM = 0xD8; break;
+    case X86II::MRM_D9: MRM = 0xD9; break;
+    case X86II::MRM_DA: MRM = 0xDA; break;
+    case X86II::MRM_DB: MRM = 0xDB; break;
+    case X86II::MRM_DC: MRM = 0xDC; break;
+    case X86II::MRM_DD: MRM = 0xDD; break;
+    case X86II::MRM_DE: MRM = 0xDE; break;
+    case X86II::MRM_DF: MRM = 0xDF; break;
+    case X86II::MRM_E8: MRM = 0xE8; break;
+    case X86II::MRM_F0: MRM = 0xF0; break;
+    case X86II::MRM_F8: MRM = 0xF8; break;
+    case X86II::MRM_F9: MRM = 0xF9; break;
+    }
+    EmitByte(MRM, CurByte, OS);
+    break;
+  }
+
+  // If there is a remaining operand, it must be a trailing immediate.  Emit it
+  // according to the right size for the instruction. Some instructions
+  // (SSE4a extrq and insertq) have two trailing immediates.
+  while (CurOp != NumOps && NumOps - CurOp <= 2) {
+    // The last source register of a 4 operand instruction in AVX is encoded
+    // in bits[7:4] of a immediate byte.
+    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
+      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
+                                                    : CurOp);
+      ++CurOp;
+      unsigned RegNum = GetX86RegNum(MO) << 4;
+      if (X86II::isX86_64ExtendedReg(MO.getReg()))
+        RegNum |= 1 << 7;
+      // If there is an additional 5th operand it must be an immediate, which
+      // is encoded in bits[3:0]
+      if (CurOp != NumOps) {
+        const MCOperand &MIMM = MI.getOperand(CurOp++);
+        if (MIMM.isImm()) {
+          unsigned Val = MIMM.getImm();
+          assert(Val < 16 && "Immediate operand value out of range");
+          RegNum |= Val;
+        }
+      }
+      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
+                    CurByte, OS, Fixups);
+    } else {
+      unsigned FixupKind;
+      // FIXME: Is there a better way to know that we need a signed relocation?
+      if (MI.getOpcode() == X86::ADD64ri32 ||
+          MI.getOpcode() == X86::MOV64ri32 ||
+          MI.getOpcode() == X86::MOV64mi32 ||
+          MI.getOpcode() == X86::PUSH64i32)
+        FixupKind = X86::reloc_signed_4byte;
+      else
+        FixupKind = getImmFixupKind(TSFlags);
+      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
+                    CurByte, OS, Fixups);
+    }
+  }
+
+  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
+
+#ifndef NDEBUG
+  // FIXME: Verify.
+  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
+    errs() << "Cannot encode all operands of: ";
+    MI.dump();
+    errs() << '\n';
+    abort();
+  }
+#endif
+}