diff lib/Transforms/Instrumentation/ThreadSanitizer.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children e4204d083e25
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Transforms/Instrumentation/ThreadSanitizer.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,581 @@
+//===-- ThreadSanitizer.cpp - race detector -------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer, a race detector.
+//
+// The tool is under development, for the details about previous versions see
+// http://code.google.com/p/data-race-test
+//
+// The instrumentation phase is quite simple:
+//   - Insert calls to run-time library before every memory access.
+//      - Optimizations may apply to avoid instrumenting some of the accesses.
+//   - Insert calls at function entry/exit.
+// The rest is handled by the run-time library.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "tsan"
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include "llvm/Transforms/Utils/SpecialCaseList.h"
+
+using namespace llvm;
+
+static cl::opt<std::string>  ClBlacklistFile("tsan-blacklist",
+       cl::desc("Blacklist file"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentMemoryAccesses(
+    "tsan-instrument-memory-accesses", cl::init(true),
+    cl::desc("Instrument memory accesses"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentFuncEntryExit(
+    "tsan-instrument-func-entry-exit", cl::init(true),
+    cl::desc("Instrument function entry and exit"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentAtomics(
+    "tsan-instrument-atomics", cl::init(true),
+    cl::desc("Instrument atomics"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentMemIntrinsics(
+    "tsan-instrument-memintrinsics", cl::init(true),
+    cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
+
+STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
+STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
+STATISTIC(NumOmittedReadsBeforeWrite,
+          "Number of reads ignored due to following writes");
+STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
+STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
+STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
+STATISTIC(NumOmittedReadsFromConstantGlobals,
+          "Number of reads from constant globals");
+STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
+
+namespace {
+
+/// ThreadSanitizer: instrument the code in module to find races.
+struct ThreadSanitizer : public FunctionPass {
+  ThreadSanitizer(StringRef BlacklistFile = StringRef())
+      : FunctionPass(ID),
+        TD(0),
+        BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+                                            : BlacklistFile) { }
+  const char *getPassName() const;
+  bool runOnFunction(Function &F);
+  bool doInitialization(Module &M);
+  static char ID;  // Pass identification, replacement for typeid.
+
+ private:
+  void initializeCallbacks(Module &M);
+  bool instrumentLoadOrStore(Instruction *I);
+  bool instrumentAtomic(Instruction *I);
+  bool instrumentMemIntrinsic(Instruction *I);
+  void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
+                                      SmallVectorImpl<Instruction*> &All);
+  bool addrPointsToConstantData(Value *Addr);
+  int getMemoryAccessFuncIndex(Value *Addr);
+
+  DataLayout *TD;
+  Type *IntptrTy;
+  SmallString<64> BlacklistFile;
+  OwningPtr<SpecialCaseList> BL;
+  IntegerType *OrdTy;
+  // Callbacks to run-time library are computed in doInitialization.
+  Function *TsanFuncEntry;
+  Function *TsanFuncExit;
+  // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
+  static const size_t kNumberOfAccessSizes = 5;
+  Function *TsanRead[kNumberOfAccessSizes];
+  Function *TsanWrite[kNumberOfAccessSizes];
+  Function *TsanAtomicLoad[kNumberOfAccessSizes];
+  Function *TsanAtomicStore[kNumberOfAccessSizes];
+  Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
+  Function *TsanAtomicCAS[kNumberOfAccessSizes];
+  Function *TsanAtomicThreadFence;
+  Function *TsanAtomicSignalFence;
+  Function *TsanVptrUpdate;
+  Function *TsanVptrLoad;
+  Function *MemmoveFn, *MemcpyFn, *MemsetFn;
+};
+}  // namespace
+
+char ThreadSanitizer::ID = 0;
+INITIALIZE_PASS(ThreadSanitizer, "tsan",
+    "ThreadSanitizer: detects data races.",
+    false, false)
+
+const char *ThreadSanitizer::getPassName() const {
+  return "ThreadSanitizer";
+}
+
+FunctionPass *llvm::createThreadSanitizerPass(StringRef BlacklistFile) {
+  return new ThreadSanitizer(BlacklistFile);
+}
+
+static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
+  if (Function *F = dyn_cast<Function>(FuncOrBitcast))
+     return F;
+  FuncOrBitcast->dump();
+  report_fatal_error("ThreadSanitizer interface function redefined");
+}
+
+void ThreadSanitizer::initializeCallbacks(Module &M) {
+  IRBuilder<> IRB(M.getContext());
+  // Initialize the callbacks.
+  TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+  TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_func_exit", IRB.getVoidTy(), NULL));
+  OrdTy = IRB.getInt32Ty();
+  for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
+    const size_t ByteSize = 1 << i;
+    const size_t BitSize = ByteSize * 8;
+    SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
+    TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
+        ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+
+    SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
+    TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
+        WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+
+    Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
+    Type *PtrTy = Ty->getPointerTo();
+    SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
+                                   "_load");
+    TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
+        AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
+
+    SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
+                                    "_store");
+    TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
+        AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
+        NULL));
+
+    for (int op = AtomicRMWInst::FIRST_BINOP;
+        op <= AtomicRMWInst::LAST_BINOP; ++op) {
+      TsanAtomicRMW[op][i] = NULL;
+      const char *NamePart = NULL;
+      if (op == AtomicRMWInst::Xchg)
+        NamePart = "_exchange";
+      else if (op == AtomicRMWInst::Add)
+        NamePart = "_fetch_add";
+      else if (op == AtomicRMWInst::Sub)
+        NamePart = "_fetch_sub";
+      else if (op == AtomicRMWInst::And)
+        NamePart = "_fetch_and";
+      else if (op == AtomicRMWInst::Or)
+        NamePart = "_fetch_or";
+      else if (op == AtomicRMWInst::Xor)
+        NamePart = "_fetch_xor";
+      else if (op == AtomicRMWInst::Nand)
+        NamePart = "_fetch_nand";
+      else
+        continue;
+      SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
+      TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
+          RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
+    }
+
+    SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
+                                  "_compare_exchange_val");
+    TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
+        AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
+  }
+  TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
+      IRB.getInt8PtrTy(), NULL));
+  TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+  TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
+  TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+
+  MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IRB.getInt8PtrTy(), IntptrTy, NULL));
+  MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IntptrTy, NULL));
+  MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+    IntptrTy, NULL));
+}
+
+bool ThreadSanitizer::doInitialization(Module &M) {
+  TD = getAnalysisIfAvailable<DataLayout>();
+  if (!TD)
+    return false;
+  BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
+
+  // Always insert a call to __tsan_init into the module's CTORs.
+  IRBuilder<> IRB(M.getContext());
+  IntptrTy = IRB.getIntPtrTy(TD);
+  Value *TsanInit = M.getOrInsertFunction("__tsan_init",
+                                          IRB.getVoidTy(), NULL);
+  appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
+
+  return true;
+}
+
+static bool isVtableAccess(Instruction *I) {
+  if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
+    return Tag->isTBAAVtableAccess();
+  return false;
+}
+
+bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
+  // If this is a GEP, just analyze its pointer operand.
+  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
+    Addr = GEP->getPointerOperand();
+
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
+    if (GV->isConstant()) {
+      // Reads from constant globals can not race with any writes.
+      NumOmittedReadsFromConstantGlobals++;
+      return true;
+    }
+  } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
+    if (isVtableAccess(L)) {
+      // Reads from a vtable pointer can not race with any writes.
+      NumOmittedReadsFromVtable++;
+      return true;
+    }
+  }
+  return false;
+}
+
+// Instrumenting some of the accesses may be proven redundant.
+// Currently handled:
+//  - read-before-write (within same BB, no calls between)
+//
+// We do not handle some of the patterns that should not survive
+// after the classic compiler optimizations.
+// E.g. two reads from the same temp should be eliminated by CSE,
+// two writes should be eliminated by DSE, etc.
+//
+// 'Local' is a vector of insns within the same BB (no calls between).
+// 'All' is a vector of insns that will be instrumented.
+void ThreadSanitizer::chooseInstructionsToInstrument(
+    SmallVectorImpl<Instruction*> &Local,
+    SmallVectorImpl<Instruction*> &All) {
+  SmallSet<Value*, 8> WriteTargets;
+  // Iterate from the end.
+  for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
+       E = Local.rend(); It != E; ++It) {
+    Instruction *I = *It;
+    if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
+      WriteTargets.insert(Store->getPointerOperand());
+    } else {
+      LoadInst *Load = cast<LoadInst>(I);
+      Value *Addr = Load->getPointerOperand();
+      if (WriteTargets.count(Addr)) {
+        // We will write to this temp, so no reason to analyze the read.
+        NumOmittedReadsBeforeWrite++;
+        continue;
+      }
+      if (addrPointsToConstantData(Addr)) {
+        // Addr points to some constant data -- it can not race with any writes.
+        continue;
+      }
+    }
+    All.push_back(I);
+  }
+  Local.clear();
+}
+
+static bool isAtomic(Instruction *I) {
+  if (LoadInst *LI = dyn_cast<LoadInst>(I))
+    return LI->isAtomic() && LI->getSynchScope() == CrossThread;
+  if (StoreInst *SI = dyn_cast<StoreInst>(I))
+    return SI->isAtomic() && SI->getSynchScope() == CrossThread;
+  if (isa<AtomicRMWInst>(I))
+    return true;
+  if (isa<AtomicCmpXchgInst>(I))
+    return true;
+  if (isa<FenceInst>(I))
+    return true;
+  return false;
+}
+
+bool ThreadSanitizer::runOnFunction(Function &F) {
+  if (!TD) return false;
+  if (BL->isIn(F)) return false;
+  initializeCallbacks(*F.getParent());
+  SmallVector<Instruction*, 8> RetVec;
+  SmallVector<Instruction*, 8> AllLoadsAndStores;
+  SmallVector<Instruction*, 8> LocalLoadsAndStores;
+  SmallVector<Instruction*, 8> AtomicAccesses;
+  SmallVector<Instruction*, 8> MemIntrinCalls;
+  bool Res = false;
+  bool HasCalls = false;
+
+  // Traverse all instructions, collect loads/stores/returns, check for calls.
+  for (Function::iterator FI = F.begin(), FE = F.end();
+       FI != FE; ++FI) {
+    BasicBlock &BB = *FI;
+    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
+         BI != BE; ++BI) {
+      if (isAtomic(BI))
+        AtomicAccesses.push_back(BI);
+      else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
+        LocalLoadsAndStores.push_back(BI);
+      else if (isa<ReturnInst>(BI))
+        RetVec.push_back(BI);
+      else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
+        if (isa<MemIntrinsic>(BI))
+          MemIntrinCalls.push_back(BI);
+        HasCalls = true;
+        chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
+      }
+    }
+    chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
+  }
+
+  // We have collected all loads and stores.
+  // FIXME: many of these accesses do not need to be checked for races
+  // (e.g. variables that do not escape, etc).
+
+  // Instrument memory accesses.
+  if (ClInstrumentMemoryAccesses && F.hasFnAttribute(Attribute::SanitizeThread))
+    for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
+      Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
+    }
+
+  // Instrument atomic memory accesses.
+  if (ClInstrumentAtomics)
+    for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
+      Res |= instrumentAtomic(AtomicAccesses[i]);
+    }
+
+  if (ClInstrumentMemIntrinsics)
+    for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
+      Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
+    }
+
+  // Instrument function entry/exit points if there were instrumented accesses.
+  if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
+    IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
+    Value *ReturnAddress = IRB.CreateCall(
+        Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
+        IRB.getInt32(0));
+    IRB.CreateCall(TsanFuncEntry, ReturnAddress);
+    for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
+      IRBuilder<> IRBRet(RetVec[i]);
+      IRBRet.CreateCall(TsanFuncExit);
+    }
+    Res = true;
+  }
+  return Res;
+}
+
+bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
+  IRBuilder<> IRB(I);
+  bool IsWrite = isa<StoreInst>(*I);
+  Value *Addr = IsWrite
+      ? cast<StoreInst>(I)->getPointerOperand()
+      : cast<LoadInst>(I)->getPointerOperand();
+  int Idx = getMemoryAccessFuncIndex(Addr);
+  if (Idx < 0)
+    return false;
+  if (IsWrite && isVtableAccess(I)) {
+    DEBUG(dbgs() << "  VPTR : " << *I << "\n");
+    Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
+    // StoredValue does not necessary have a pointer type.
+    if (isa<IntegerType>(StoredValue->getType()))
+      StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
+    // Call TsanVptrUpdate.
+    IRB.CreateCall2(TsanVptrUpdate,
+                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
+                    IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
+    NumInstrumentedVtableWrites++;
+    return true;
+  }
+  if (!IsWrite && isVtableAccess(I)) {
+    IRB.CreateCall(TsanVptrLoad,
+                   IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
+    NumInstrumentedVtableReads++;
+    return true;
+  }
+  Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
+  IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
+  if (IsWrite) NumInstrumentedWrites++;
+  else         NumInstrumentedReads++;
+  return true;
+}
+
+static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
+  uint32_t v = 0;
+  switch (ord) {
+    case NotAtomic:              assert(false);
+    case Unordered:              // Fall-through.
+    case Monotonic:              v = 0; break;
+    // case Consume:                v = 1; break;  // Not specified yet.
+    case Acquire:                v = 2; break;
+    case Release:                v = 3; break;
+    case AcquireRelease:         v = 4; break;
+    case SequentiallyConsistent: v = 5; break;
+  }
+  return IRB->getInt32(v);
+}
+
+static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
+  uint32_t v = 0;
+  switch (ord) {
+    case NotAtomic:              assert(false);
+    case Unordered:              // Fall-through.
+    case Monotonic:              v = 0; break;
+    // case Consume:                v = 1; break;  // Not specified yet.
+    case Acquire:                v = 2; break;
+    case Release:                v = 0; break;
+    case AcquireRelease:         v = 2; break;
+    case SequentiallyConsistent: v = 5; break;
+  }
+  return IRB->getInt32(v);
+}
+
+// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
+// So, we either need to ensure the intrinsic is not inlined, or instrument it.
+// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
+// instead we simply replace them with regular function calls, which are then
+// intercepted by the run-time.
+// Since tsan is running after everyone else, the calls should not be
+// replaced back with intrinsics. If that becomes wrong at some point,
+// we will need to call e.g. __tsan_memset to avoid the intrinsics.
+bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
+  IRBuilder<> IRB(I);
+  if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
+    IRB.CreateCall3(MemsetFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
+  } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
+    IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
+  }
+  return false;
+}
+
+// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
+// standards.  For background see C++11 standard.  A slightly older, publically
+// available draft of the standard (not entirely up-to-date, but close enough
+// for casual browsing) is available here:
+// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
+// The following page contains more background information:
+// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
+
+bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
+  IRBuilder<> IRB(I);
+  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+    Value *Addr = LI->getPointerOperand();
+    int Idx = getMemoryAccessFuncIndex(Addr);
+    if (Idx < 0)
+      return false;
+    const size_t ByteSize = 1 << Idx;
+    const size_t BitSize = ByteSize * 8;
+    Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+    Type *PtrTy = Ty->getPointerTo();
+    Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+                     createOrdering(&IRB, LI->getOrdering())};
+    CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
+                                   ArrayRef<Value*>(Args));
+    ReplaceInstWithInst(I, C);
+
+  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+    Value *Addr = SI->getPointerOperand();
+    int Idx = getMemoryAccessFuncIndex(Addr);
+    if (Idx < 0)
+      return false;
+    const size_t ByteSize = 1 << Idx;
+    const size_t BitSize = ByteSize * 8;
+    Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+    Type *PtrTy = Ty->getPointerTo();
+    Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+                     IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
+                     createOrdering(&IRB, SI->getOrdering())};
+    CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
+                                   ArrayRef<Value*>(Args));
+    ReplaceInstWithInst(I, C);
+  } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
+    Value *Addr = RMWI->getPointerOperand();
+    int Idx = getMemoryAccessFuncIndex(Addr);
+    if (Idx < 0)
+      return false;
+    Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
+    if (F == NULL)
+      return false;
+    const size_t ByteSize = 1 << Idx;
+    const size_t BitSize = ByteSize * 8;
+    Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+    Type *PtrTy = Ty->getPointerTo();
+    Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+                     IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
+                     createOrdering(&IRB, RMWI->getOrdering())};
+    CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+    ReplaceInstWithInst(I, C);
+  } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
+    Value *Addr = CASI->getPointerOperand();
+    int Idx = getMemoryAccessFuncIndex(Addr);
+    if (Idx < 0)
+      return false;
+    const size_t ByteSize = 1 << Idx;
+    const size_t BitSize = ByteSize * 8;
+    Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
+    Type *PtrTy = Ty->getPointerTo();
+    Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
+                     IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
+                     IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
+                     createOrdering(&IRB, CASI->getOrdering()),
+                     createFailOrdering(&IRB, CASI->getOrdering())};
+    CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
+    ReplaceInstWithInst(I, C);
+  } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
+    Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
+    Function *F = FI->getSynchScope() == SingleThread ?
+        TsanAtomicSignalFence : TsanAtomicThreadFence;
+    CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+    ReplaceInstWithInst(I, C);
+  }
+  return true;
+}
+
+int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
+  Type *OrigPtrTy = Addr->getType();
+  Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
+  assert(OrigTy->isSized());
+  uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+  if (TypeSize != 8  && TypeSize != 16 &&
+      TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
+    NumAccessesWithBadSize++;
+    // Ignore all unusual sizes.
+    return -1;
+  }
+  size_t Idx = countTrailingZeros(TypeSize / 8);
+  assert(Idx < kNumberOfAccessSizes);
+  return Idx;
+}