diff unittests/ExecutionEngine/MCJIT/MCJITMemoryManagerTest.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/unittests/ExecutionEngine/MCJIT/MCJITMemoryManagerTest.cpp	Thu Dec 12 13:56:28 2013 +0900
@@ -0,0 +1,172 @@
+//===- MCJITMemoryManagerTest.cpp - Unit tests for the JIT memory manager -===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+namespace {
+
+TEST(MCJITMemoryManagerTest, BasicAllocations) {
+  OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
+
+  uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
+  uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
+  uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
+  uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
+
+  EXPECT_NE((uint8_t*)0, code1);
+  EXPECT_NE((uint8_t*)0, code2);
+  EXPECT_NE((uint8_t*)0, data1);
+  EXPECT_NE((uint8_t*)0, data2);
+
+  // Initialize the data
+  for (unsigned i = 0; i < 256; ++i) {
+    code1[i] = 1;
+    code2[i] = 2;
+    data1[i] = 3;
+    data2[i] = 4;
+  }
+
+  // Verify the data (this is checking for overlaps in the addresses)
+  for (unsigned i = 0; i < 256; ++i) {
+    EXPECT_EQ(1, code1[i]);
+    EXPECT_EQ(2, code2[i]);
+    EXPECT_EQ(3, data1[i]);
+    EXPECT_EQ(4, data2[i]);
+  }
+
+  std::string Error;
+  EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
+}
+
+TEST(MCJITMemoryManagerTest, LargeAllocations) {
+  OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
+
+  uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
+  uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
+  uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
+  uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
+
+  EXPECT_NE((uint8_t*)0, code1);
+  EXPECT_NE((uint8_t*)0, code2);
+  EXPECT_NE((uint8_t*)0, data1);
+  EXPECT_NE((uint8_t*)0, data2);
+
+  // Initialize the data
+  for (unsigned i = 0; i < 0x100000; ++i) {
+    code1[i] = 1;
+    code2[i] = 2;
+    data1[i] = 3;
+    data2[i] = 4;
+  }
+
+  // Verify the data (this is checking for overlaps in the addresses)
+  for (unsigned i = 0; i < 0x100000; ++i) {
+    EXPECT_EQ(1, code1[i]);
+    EXPECT_EQ(2, code2[i]);
+    EXPECT_EQ(3, data1[i]);
+    EXPECT_EQ(4, data2[i]);
+  }
+
+  std::string Error;
+  EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
+}
+
+TEST(MCJITMemoryManagerTest, ManyAllocations) {
+  OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
+
+  uint8_t* code[10000];
+  uint8_t* data[10000];
+
+  for (unsigned i = 0; i < 10000; ++i) {
+    const bool isReadOnly = i % 2 == 0;
+
+    code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
+    data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
+
+    for (unsigned j = 0; j < 32; j++) {
+      code[i][j] = 1 + (i % 254);
+      data[i][j] = 2 + (i % 254);
+    }
+
+    EXPECT_NE((uint8_t *)0, code[i]);
+    EXPECT_NE((uint8_t *)0, data[i]);
+  }
+
+  // Verify the data (this is checking for overlaps in the addresses)
+  for (unsigned i = 0; i < 10000; ++i) {
+    for (unsigned j = 0; j < 32;j++ ) {
+      uint8_t ExpectedCode = 1 + (i % 254);
+      uint8_t ExpectedData = 2 + (i % 254);
+      EXPECT_EQ(ExpectedCode, code[i][j]);
+      EXPECT_EQ(ExpectedData, data[i][j]);
+    }
+  }
+
+  std::string Error;
+  EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
+}
+
+TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
+  OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
+
+  uint8_t* code[10000];
+  uint8_t* data[10000];
+
+  for (unsigned i = 0; i < 10000; ++i) {
+    uintptr_t CodeSize = i % 16 + 1;
+    uintptr_t DataSize = i % 8 + 1;
+
+    bool isReadOnly = i % 3 == 0;
+    unsigned Align = 8 << (i % 4);
+
+    code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
+    data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
+                                          isReadOnly);
+
+    for (unsigned j = 0; j < CodeSize; j++) {
+      code[i][j] = 1 + (i % 254);
+    }
+
+    for (unsigned j = 0; j < DataSize; j++) {
+      data[i][j] = 2 + (i % 254);
+    }
+
+    EXPECT_NE((uint8_t *)0, code[i]);
+    EXPECT_NE((uint8_t *)0, data[i]);
+
+    uintptr_t CodeAlign = Align ? (uintptr_t)code[i] % Align : 0;
+    uintptr_t DataAlign = Align ? (uintptr_t)data[i] % Align : 0;
+
+    EXPECT_EQ((uintptr_t)0, CodeAlign);
+    EXPECT_EQ((uintptr_t)0, DataAlign);
+  }
+
+  for (unsigned i = 0; i < 10000; ++i) {
+    uintptr_t CodeSize = i % 16 + 1;
+    uintptr_t DataSize = i % 8 + 1;
+
+    for (unsigned j = 0; j < CodeSize; j++) {
+      uint8_t ExpectedCode = 1 + (i % 254);
+      EXPECT_EQ(ExpectedCode, code[i][j]);
+    }
+
+    for (unsigned j = 0; j < DataSize; j++) {
+      uint8_t ExpectedData = 2 + (i % 254);
+      EXPECT_EQ(ExpectedData, data[i][j]); 
+    }
+  }
+}
+
+} // Namespace
+