Mercurial > hg > CbC > CbC_llvm
diff lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @ 3:9ad51c7bc036
1st commit. remove git dir and add all files.
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 May 2013 06:43:32 +0900 |
parents | |
children | 5e1f5bc27634 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp Wed May 15 06:43:32 2013 +0900 @@ -0,0 +1,484 @@ +//===-- ExternalFunctions.cpp - Implement External Functions --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains both code to deal with invoking "external" functions, but +// also contains code that implements "exported" external functions. +// +// There are currently two mechanisms for handling external functions in the +// Interpreter. The first is to implement lle_* wrapper functions that are +// specific to well-known library functions which manually translate the +// arguments from GenericValues and make the call. If such a wrapper does +// not exist, and libffi is available, then the Interpreter will attempt to +// invoke the function using libffi, after finding its address. +// +//===----------------------------------------------------------------------===// + +#include "Interpreter.h" +#include "llvm/Config/config.h" // Detect libffi +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/DynamicLibrary.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/Mutex.h" +#include <cmath> +#include <csignal> +#include <cstdio> +#include <cstring> +#include <map> + +#ifdef HAVE_FFI_CALL +#ifdef HAVE_FFI_H +#include <ffi.h> +#define USE_LIBFFI +#elif HAVE_FFI_FFI_H +#include <ffi/ffi.h> +#define USE_LIBFFI +#endif +#endif + +using namespace llvm; + +static ManagedStatic<sys::Mutex> FunctionsLock; + +typedef GenericValue (*ExFunc)(FunctionType *, + const std::vector<GenericValue> &); +static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; +static std::map<std::string, ExFunc> FuncNames; + +#ifdef USE_LIBFFI +typedef void (*RawFunc)(); +static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; +#endif + +static Interpreter *TheInterpreter; + +static char getTypeID(Type *Ty) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: return 'V'; + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 1: return 'o'; + case 8: return 'B'; + case 16: return 'S'; + case 32: return 'I'; + case 64: return 'L'; + default: return 'N'; + } + case Type::FloatTyID: return 'F'; + case Type::DoubleTyID: return 'D'; + case Type::PointerTyID: return 'P'; + case Type::FunctionTyID:return 'M'; + case Type::StructTyID: return 'T'; + case Type::ArrayTyID: return 'A'; + default: return 'U'; + } +} + +// Try to find address of external function given a Function object. +// Please note, that interpreter doesn't know how to assemble a +// real call in general case (this is JIT job), that's why it assumes, +// that all external functions has the same (and pretty "general") signature. +// The typical example of such functions are "lle_X_" ones. +static ExFunc lookupFunction(const Function *F) { + // Function not found, look it up... start by figuring out what the + // composite function name should be. + std::string ExtName = "lle_"; + FunctionType *FT = F->getFunctionType(); + for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) + ExtName += getTypeID(FT->getContainedType(i)); + ExtName += "_" + F->getName().str(); + + sys::ScopedLock Writer(*FunctionsLock); + ExFunc FnPtr = FuncNames[ExtName]; + if (FnPtr == 0) + FnPtr = FuncNames["lle_X_" + F->getName().str()]; + if (FnPtr == 0) // Try calling a generic function... if it exists... + FnPtr = (ExFunc)(intptr_t) + sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" + + F->getName().str()); + if (FnPtr != 0) + ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later + return FnPtr; +} + +#ifdef USE_LIBFFI +static ffi_type *ffiTypeFor(Type *Ty) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: return &ffi_type_void; + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 8: return &ffi_type_sint8; + case 16: return &ffi_type_sint16; + case 32: return &ffi_type_sint32; + case 64: return &ffi_type_sint64; + } + case Type::FloatTyID: return &ffi_type_float; + case Type::DoubleTyID: return &ffi_type_double; + case Type::PointerTyID: return &ffi_type_pointer; + default: break; + } + // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. + report_fatal_error("Type could not be mapped for use with libffi."); + return NULL; +} + +static void *ffiValueFor(Type *Ty, const GenericValue &AV, + void *ArgDataPtr) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 8: { + int8_t *I8Ptr = (int8_t *) ArgDataPtr; + *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 16: { + int16_t *I16Ptr = (int16_t *) ArgDataPtr; + *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 32: { + int32_t *I32Ptr = (int32_t *) ArgDataPtr; + *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + case 64: { + int64_t *I64Ptr = (int64_t *) ArgDataPtr; + *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); + return ArgDataPtr; + } + } + case Type::FloatTyID: { + float *FloatPtr = (float *) ArgDataPtr; + *FloatPtr = AV.FloatVal; + return ArgDataPtr; + } + case Type::DoubleTyID: { + double *DoublePtr = (double *) ArgDataPtr; + *DoublePtr = AV.DoubleVal; + return ArgDataPtr; + } + case Type::PointerTyID: { + void **PtrPtr = (void **) ArgDataPtr; + *PtrPtr = GVTOP(AV); + return ArgDataPtr; + } + default: break; + } + // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. + report_fatal_error("Type value could not be mapped for use with libffi."); + return NULL; +} + +static bool ffiInvoke(RawFunc Fn, Function *F, + const std::vector<GenericValue> &ArgVals, + const DataLayout *TD, GenericValue &Result) { + ffi_cif cif; + FunctionType *FTy = F->getFunctionType(); + const unsigned NumArgs = F->arg_size(); + + // TODO: We don't have type information about the remaining arguments, because + // this information is never passed into ExecutionEngine::runFunction(). + if (ArgVals.size() > NumArgs && F->isVarArg()) { + report_fatal_error("Calling external var arg function '" + F->getName() + + "' is not supported by the Interpreter."); + } + + unsigned ArgBytes = 0; + + std::vector<ffi_type*> args(NumArgs); + for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); + A != E; ++A) { + const unsigned ArgNo = A->getArgNo(); + Type *ArgTy = FTy->getParamType(ArgNo); + args[ArgNo] = ffiTypeFor(ArgTy); + ArgBytes += TD->getTypeStoreSize(ArgTy); + } + + SmallVector<uint8_t, 128> ArgData; + ArgData.resize(ArgBytes); + uint8_t *ArgDataPtr = ArgData.data(); + SmallVector<void*, 16> values(NumArgs); + for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); + A != E; ++A) { + const unsigned ArgNo = A->getArgNo(); + Type *ArgTy = FTy->getParamType(ArgNo); + values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); + ArgDataPtr += TD->getTypeStoreSize(ArgTy); + } + + Type *RetTy = FTy->getReturnType(); + ffi_type *rtype = ffiTypeFor(RetTy); + + if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { + SmallVector<uint8_t, 128> ret; + if (RetTy->getTypeID() != Type::VoidTyID) + ret.resize(TD->getTypeStoreSize(RetTy)); + ffi_call(&cif, Fn, ret.data(), values.data()); + switch (RetTy->getTypeID()) { + case Type::IntegerTyID: + switch (cast<IntegerType>(RetTy)->getBitWidth()) { + case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; + case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; + case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; + case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; + } + break; + case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; + case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; + case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; + default: break; + } + return true; + } + + return false; +} +#endif // USE_LIBFFI + +GenericValue Interpreter::callExternalFunction(Function *F, + const std::vector<GenericValue> &ArgVals) { + TheInterpreter = this; + + FunctionsLock->acquire(); + + // Do a lookup to see if the function is in our cache... this should just be a + // deferred annotation! + std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); + if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) + : FI->second) { + FunctionsLock->release(); + return Fn(F->getFunctionType(), ArgVals); + } + +#ifdef USE_LIBFFI + std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); + RawFunc RawFn; + if (RF == RawFunctions->end()) { + RawFn = (RawFunc)(intptr_t) + sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); + if (!RawFn) + RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); + if (RawFn != 0) + RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later + } else { + RawFn = RF->second; + } + + FunctionsLock->release(); + + GenericValue Result; + if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) + return Result; +#endif // USE_LIBFFI + + if (F->getName() == "__main") + errs() << "Tried to execute an unknown external function: " + << *F->getType() << " __main\n"; + else + report_fatal_error("Tried to execute an unknown external function: " + + F->getName()); +#ifndef USE_LIBFFI + errs() << "Recompiling LLVM with --enable-libffi might help.\n"; +#endif + return GenericValue(); +} + + +//===----------------------------------------------------------------------===// +// Functions "exported" to the running application... +// + +// void atexit(Function*) +static +GenericValue lle_X_atexit(FunctionType *FT, + const std::vector<GenericValue> &Args) { + assert(Args.size() == 1); + TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); + GenericValue GV; + GV.IntVal = 0; + return GV; +} + +// void exit(int) +static +GenericValue lle_X_exit(FunctionType *FT, + const std::vector<GenericValue> &Args) { + TheInterpreter->exitCalled(Args[0]); + return GenericValue(); +} + +// void abort(void) +static +GenericValue lle_X_abort(FunctionType *FT, + const std::vector<GenericValue> &Args) { + //FIXME: should we report or raise here? + //report_fatal_error("Interpreted program raised SIGABRT"); + raise (SIGABRT); + return GenericValue(); +} + +// int sprintf(char *, const char *, ...) - a very rough implementation to make +// output useful. +static +GenericValue lle_X_sprintf(FunctionType *FT, + const std::vector<GenericValue> &Args) { + char *OutputBuffer = (char *)GVTOP(Args[0]); + const char *FmtStr = (const char *)GVTOP(Args[1]); + unsigned ArgNo = 2; + + // printf should return # chars printed. This is completely incorrect, but + // close enough for now. + GenericValue GV; + GV.IntVal = APInt(32, strlen(FmtStr)); + while (1) { + switch (*FmtStr) { + case 0: return GV; // Null terminator... + default: // Normal nonspecial character + sprintf(OutputBuffer++, "%c", *FmtStr++); + break; + case '\\': { // Handle escape codes + sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); + FmtStr += 2; OutputBuffer += 2; + break; + } + case '%': { // Handle format specifiers + char FmtBuf[100] = "", Buffer[1000] = ""; + char *FB = FmtBuf; + *FB++ = *FmtStr++; + char Last = *FB++ = *FmtStr++; + unsigned HowLong = 0; + while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && + Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && + Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && + Last != 'p' && Last != 's' && Last != '%') { + if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's + Last = *FB++ = *FmtStr++; + } + *FB = 0; + + switch (Last) { + case '%': + memcpy(Buffer, "%", 2); break; + case 'c': + sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'd': case 'i': + case 'u': case 'o': + case 'x': case 'X': + if (HowLong >= 1) { + if (HowLong == 1 && + TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 && + sizeof(long) < sizeof(int64_t)) { + // Make sure we use %lld with a 64 bit argument because we might be + // compiling LLI on a 32 bit compiler. + unsigned Size = strlen(FmtBuf); + FmtBuf[Size] = FmtBuf[Size-1]; + FmtBuf[Size+1] = 0; + FmtBuf[Size-1] = 'l'; + } + sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); + } else + sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'e': case 'E': case 'g': case 'G': case 'f': + sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; + case 'p': + sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; + case 's': + sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; + default: + errs() << "<unknown printf code '" << *FmtStr << "'!>"; + ArgNo++; break; + } + size_t Len = strlen(Buffer); + memcpy(OutputBuffer, Buffer, Len + 1); + OutputBuffer += Len; + } + break; + } + } +} + +// int printf(const char *, ...) - a very rough implementation to make output +// useful. +static +GenericValue lle_X_printf(FunctionType *FT, + const std::vector<GenericValue> &Args) { + char Buffer[10000]; + std::vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV((void*)&Buffer[0])); + NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + outs() << Buffer; + return GV; +} + +// int sscanf(const char *format, ...); +static +GenericValue lle_X_sscanf(FunctionType *FT, + const std::vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + return GV; +} + +// int scanf(const char *format, ...); +static +GenericValue lle_X_scanf(FunctionType *FT, + const std::vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + return GV; +} + +// int fprintf(FILE *, const char *, ...) - a very rough implementation to make +// output useful. +static +GenericValue lle_X_fprintf(FunctionType *FT, + const std::vector<GenericValue> &Args) { + assert(Args.size() >= 2); + char Buffer[10000]; + std::vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV(Buffer)); + NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + + fputs(Buffer, (FILE *) GVTOP(Args[0])); + return GV; +} + +void Interpreter::initializeExternalFunctions() { + sys::ScopedLock Writer(*FunctionsLock); + FuncNames["lle_X_atexit"] = lle_X_atexit; + FuncNames["lle_X_exit"] = lle_X_exit; + FuncNames["lle_X_abort"] = lle_X_abort; + + FuncNames["lle_X_printf"] = lle_X_printf; + FuncNames["lle_X_sprintf"] = lle_X_sprintf; + FuncNames["lle_X_sscanf"] = lle_X_sscanf; + FuncNames["lle_X_scanf"] = lle_X_scanf; + FuncNames["lle_X_fprintf"] = lle_X_fprintf; +}