diff docs/tutorial/OCamlLangImpl2.rst @ 31:d22a1cf4041c

merge with the LLVM_original
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 14:37:49 +0900
parents 9ad51c7bc036
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/docs/tutorial/OCamlLangImpl2.rst	Thu Dec 12 14:37:49 2013 +0900
@@ -0,0 +1,896 @@
+===========================================
+Kaleidoscope: Implementing a Parser and AST
+===========================================
+
+.. contents::
+   :local:
+
+Chapter 2 Introduction
+======================
+
+Welcome to Chapter 2 of the "`Implementing a language with LLVM in
+Objective Caml <index.html>`_" tutorial. This chapter shows you how to
+use the lexer, built in `Chapter 1 <OCamlLangImpl1.html>`_, to build a
+full `parser <http://en.wikipedia.org/wiki/Parsing>`_ for our
+Kaleidoscope language. Once we have a parser, we'll define and build an
+`Abstract Syntax
+Tree <http://en.wikipedia.org/wiki/Abstract_syntax_tree>`_ (AST).
+
+The parser we will build uses a combination of `Recursive Descent
+Parsing <http://en.wikipedia.org/wiki/Recursive_descent_parser>`_ and
+`Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_ to
+parse the Kaleidoscope language (the latter for binary expressions and
+the former for everything else). Before we get to parsing though, lets
+talk about the output of the parser: the Abstract Syntax Tree.
+
+The Abstract Syntax Tree (AST)
+==============================
+
+The AST for a program captures its behavior in such a way that it is
+easy for later stages of the compiler (e.g. code generation) to
+interpret. We basically want one object for each construct in the
+language, and the AST should closely model the language. In
+Kaleidoscope, we have expressions, a prototype, and a function object.
+We'll start with expressions first:
+
+.. code-block:: ocaml
+
+    (* expr - Base type for all expression nodes. *)
+    type expr =
+      (* variant for numeric literals like "1.0". *)
+      | Number of float
+
+The code above shows the definition of the base ExprAST class and one
+subclass which we use for numeric literals. The important thing to note
+about this code is that the Number variant captures the numeric value of
+the literal as an instance variable. This allows later phases of the
+compiler to know what the stored numeric value is.
+
+Right now we only create the AST, so there are no useful functions on
+them. It would be very easy to add a function to pretty print the code,
+for example. Here are the other expression AST node definitions that
+we'll use in the basic form of the Kaleidoscope language:
+
+.. code-block:: ocaml
+
+      (* variant for referencing a variable, like "a". *)
+      | Variable of string
+
+      (* variant for a binary operator. *)
+      | Binary of char * expr * expr
+
+      (* variant for function calls. *)
+      | Call of string * expr array
+
+This is all (intentionally) rather straight-forward: variables capture
+the variable name, binary operators capture their opcode (e.g. '+'), and
+calls capture a function name as well as a list of any argument
+expressions. One thing that is nice about our AST is that it captures
+the language features without talking about the syntax of the language.
+Note that there is no discussion about precedence of binary operators,
+lexical structure, etc.
+
+For our basic language, these are all of the expression nodes we'll
+define. Because it doesn't have conditional control flow, it isn't
+Turing-complete; we'll fix that in a later installment. The two things
+we need next are a way to talk about the interface to a function, and a
+way to talk about functions themselves:
+
+.. code-block:: ocaml
+
+    (* proto - This type represents the "prototype" for a function, which captures
+     * its name, and its argument names (thus implicitly the number of arguments the
+     * function takes). *)
+    type proto = Prototype of string * string array
+
+    (* func - This type represents a function definition itself. *)
+    type func = Function of proto * expr
+
+In Kaleidoscope, functions are typed with just a count of their
+arguments. Since all values are double precision floating point, the
+type of each argument doesn't need to be stored anywhere. In a more
+aggressive and realistic language, the "expr" variants would probably
+have a type field.
+
+With this scaffolding, we can now talk about parsing expressions and
+function bodies in Kaleidoscope.
+
+Parser Basics
+=============
+
+Now that we have an AST to build, we need to define the parser code to
+build it. The idea here is that we want to parse something like "x+y"
+(which is returned as three tokens by the lexer) into an AST that could
+be generated with calls like this:
+
+.. code-block:: ocaml
+
+      let x = Variable "x" in
+      let y = Variable "y" in
+      let result = Binary ('+', x, y) in
+      ...
+
+The error handling routines make use of the builtin ``Stream.Failure``
+and ``Stream.Error``s. ``Stream.Failure`` is raised when the parser is
+unable to find any matching token in the first position of a pattern.
+``Stream.Error`` is raised when the first token matches, but the rest do
+not. The error recovery in our parser will not be the best and is not
+particular user-friendly, but it will be enough for our tutorial. These
+exceptions make it easier to handle errors in routines that have various
+return types.
+
+With these basic types and exceptions, we can implement the first piece
+of our grammar: numeric literals.
+
+Basic Expression Parsing
+========================
+
+We start with numeric literals, because they are the simplest to
+process. For each production in our grammar, we'll define a function
+which parses that production. We call this class of expressions
+"primary" expressions, for reasons that will become more clear `later in
+the tutorial <OCamlLangImpl6.html#unary>`_. In order to parse an
+arbitrary primary expression, we need to determine what sort of
+expression it is. For numeric literals, we have:
+
+.. code-block:: ocaml
+
+    (* primary
+     *   ::= identifier
+     *   ::= numberexpr
+     *   ::= parenexpr *)
+    parse_primary = parser
+      (* numberexpr ::= number *)
+      | [< 'Token.Number n >] -> Ast.Number n
+
+This routine is very simple: it expects to be called when the current
+token is a ``Token.Number`` token. It takes the current number value,
+creates a ``Ast.Number`` node, advances the lexer to the next token, and
+finally returns.
+
+There are some interesting aspects to this. The most important one is
+that this routine eats all of the tokens that correspond to the
+production and returns the lexer buffer with the next token (which is
+not part of the grammar production) ready to go. This is a fairly
+standard way to go for recursive descent parsers. For a better example,
+the parenthesis operator is defined like this:
+
+.. code-block:: ocaml
+
+      (* parenexpr ::= '(' expression ')' *)
+      | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+This function illustrates a number of interesting things about the
+parser:
+
+1) It shows how we use the ``Stream.Error`` exception. When called, this
+function expects that the current token is a '(' token, but after
+parsing the subexpression, it is possible that there is no ')' waiting.
+For example, if the user types in "(4 x" instead of "(4)", the parser
+should emit an error. Because errors can occur, the parser needs a way
+to indicate that they happened. In our parser, we use the camlp4
+shortcut syntax ``token ?? "parse error"``, where if the token before
+the ``??`` does not match, then ``Stream.Error "parse error"`` will be
+raised.
+
+2) Another interesting aspect of this function is that it uses recursion
+by calling ``Parser.parse_primary`` (we will soon see that
+``Parser.parse_primary`` can call ``Parser.parse_primary``). This is
+powerful because it allows us to handle recursive grammars, and keeps
+each production very simple. Note that parentheses do not cause
+construction of AST nodes themselves. While we could do it this way, the
+most important role of parentheses are to guide the parser and provide
+grouping. Once the parser constructs the AST, parentheses are not
+needed.
+
+The next simple production is for handling variable references and
+function calls:
+
+.. code-block:: ocaml
+
+      (* identifierexpr
+       *   ::= identifier
+       *   ::= identifier '(' argumentexpr ')' *)
+      | [< 'Token.Ident id; stream >] ->
+          let rec parse_args accumulator = parser
+            | [< e=parse_expr; stream >] ->
+                begin parser
+                  | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                  | [< >] -> e :: accumulator
+                end stream
+            | [< >] -> accumulator
+          in
+          let rec parse_ident id = parser
+            (* Call. *)
+            | [< 'Token.Kwd '(';
+                 args=parse_args [];
+                 'Token.Kwd ')' ?? "expected ')'">] ->
+                Ast.Call (id, Array.of_list (List.rev args))
+
+            (* Simple variable ref. *)
+            | [< >] -> Ast.Variable id
+          in
+          parse_ident id stream
+
+This routine follows the same style as the other routines. (It expects
+to be called if the current token is a ``Token.Ident`` token). It also
+has recursion and error handling. One interesting aspect of this is that
+it uses *look-ahead* to determine if the current identifier is a stand
+alone variable reference or if it is a function call expression. It
+handles this by checking to see if the token after the identifier is a
+'(' token, constructing either a ``Ast.Variable`` or ``Ast.Call`` node
+as appropriate.
+
+We finish up by raising an exception if we received a token we didn't
+expect:
+
+.. code-block:: ocaml
+
+      | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+Now that basic expressions are handled, we need to handle binary
+expressions. They are a bit more complex.
+
+Binary Expression Parsing
+=========================
+
+Binary expressions are significantly harder to parse because they are
+often ambiguous. For example, when given the string "x+y\*z", the parser
+can choose to parse it as either "(x+y)\*z" or "x+(y\*z)". With common
+definitions from mathematics, we expect the later parse, because "\*"
+(multiplication) has higher *precedence* than "+" (addition).
+
+There are many ways to handle this, but an elegant and efficient way is
+to use `Operator-Precedence
+Parsing <http://en.wikipedia.org/wiki/Operator-precedence_parser>`_.
+This parsing technique uses the precedence of binary operators to guide
+recursion. To start with, we need a table of precedences:
+
+.. code-block:: ocaml
+
+    (* binop_precedence - This holds the precedence for each binary operator that is
+     * defined *)
+    let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+    (* precedence - Get the precedence of the pending binary operator token. *)
+    let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+    ...
+
+    let main () =
+      (* Install standard binary operators.
+       * 1 is the lowest precedence. *)
+      Hashtbl.add Parser.binop_precedence '<' 10;
+      Hashtbl.add Parser.binop_precedence '+' 20;
+      Hashtbl.add Parser.binop_precedence '-' 20;
+      Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+      ...
+
+For the basic form of Kaleidoscope, we will only support 4 binary
+operators (this can obviously be extended by you, our brave and intrepid
+reader). The ``Parser.precedence`` function returns the precedence for
+the current token, or -1 if the token is not a binary operator. Having a
+``Hashtbl.t`` makes it easy to add new operators and makes it clear that
+the algorithm doesn't depend on the specific operators involved, but it
+would be easy enough to eliminate the ``Hashtbl.t`` and do the
+comparisons in the ``Parser.precedence`` function. (Or just use a
+fixed-size array).
+
+With the helper above defined, we can now start parsing binary
+expressions. The basic idea of operator precedence parsing is to break
+down an expression with potentially ambiguous binary operators into
+pieces. Consider ,for example, the expression "a+b+(c+d)\*e\*f+g".
+Operator precedence parsing considers this as a stream of primary
+expressions separated by binary operators. As such, it will first parse
+the leading primary expression "a", then it will see the pairs [+, b]
+[+, (c+d)] [\*, e] [\*, f] and [+, g]. Note that because parentheses are
+primary expressions, the binary expression parser doesn't need to worry
+about nested subexpressions like (c+d) at all.
+
+To start, an expression is a primary expression potentially followed by
+a sequence of [binop,primaryexpr] pairs:
+
+.. code-block:: ocaml
+
+    (* expression
+     *   ::= primary binoprhs *)
+    and parse_expr = parser
+      | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+``Parser.parse_bin_rhs`` is the function that parses the sequence of
+pairs for us. It takes a precedence and a pointer to an expression for
+the part that has been parsed so far. Note that "x" is a perfectly valid
+expression: As such, "binoprhs" is allowed to be empty, in which case it
+returns the expression that is passed into it. In our example above, the
+code passes the expression for "a" into ``Parser.parse_bin_rhs`` and the
+current token is "+".
+
+The precedence value passed into ``Parser.parse_bin_rhs`` indicates the
+*minimal operator precedence* that the function is allowed to eat. For
+example, if the current pair stream is [+, x] and
+``Parser.parse_bin_rhs`` is passed in a precedence of 40, it will not
+consume any tokens (because the precedence of '+' is only 20). With this
+in mind, ``Parser.parse_bin_rhs`` starts with:
+
+.. code-block:: ocaml
+
+    (* binoprhs
+     *   ::= ('+' primary)* *)
+    and parse_bin_rhs expr_prec lhs stream =
+      match Stream.peek stream with
+      (* If this is a binop, find its precedence. *)
+      | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+          let token_prec = precedence c in
+
+          (* If this is a binop that binds at least as tightly as the current binop,
+           * consume it, otherwise we are done. *)
+          if token_prec < expr_prec then lhs else begin
+
+This code gets the precedence of the current token and checks to see if
+if is too low. Because we defined invalid tokens to have a precedence of
+-1, this check implicitly knows that the pair-stream ends when the token
+stream runs out of binary operators. If this check succeeds, we know
+that the token is a binary operator and that it will be included in this
+expression:
+
+.. code-block:: ocaml
+
+            (* Eat the binop. *)
+            Stream.junk stream;
+
+            (* Okay, we know this is a binop. *)
+            let rhs =
+              match Stream.peek stream with
+              | Some (Token.Kwd c2) ->
+
+As such, this code eats (and remembers) the binary operator and then
+parses the primary expression that follows. This builds up the whole
+pair, the first of which is [+, b] for the running example.
+
+Now that we parsed the left-hand side of an expression and one pair of
+the RHS sequence, we have to decide which way the expression associates.
+In particular, we could have "(a+b) binop unparsed" or "a + (b binop
+unparsed)". To determine this, we look ahead at "binop" to determine its
+precedence and compare it to BinOp's precedence (which is '+' in this
+case):
+
+.. code-block:: ocaml
+
+                  (* If BinOp binds less tightly with rhs than the operator after
+                   * rhs, let the pending operator take rhs as its lhs. *)
+                  let next_prec = precedence c2 in
+                  if token_prec < next_prec
+
+If the precedence of the binop to the right of "RHS" is lower or equal
+to the precedence of our current operator, then we know that the
+parentheses associate as "(a+b) binop ...". In our example, the current
+operator is "+" and the next operator is "+", we know that they have the
+same precedence. In this case we'll create the AST node for "a+b", and
+then continue parsing:
+
+.. code-block:: ocaml
+
+              ... if body omitted ...
+            in
+
+            (* Merge lhs/rhs. *)
+            let lhs = Ast.Binary (c, lhs, rhs) in
+            parse_bin_rhs expr_prec lhs stream
+          end
+
+In our example above, this will turn "a+b+" into "(a+b)" and execute the
+next iteration of the loop, with "+" as the current token. The code
+above will eat, remember, and parse "(c+d)" as the primary expression,
+which makes the current pair equal to [+, (c+d)]. It will then evaluate
+the 'if' conditional above with "\*" as the binop to the right of the
+primary. In this case, the precedence of "\*" is higher than the
+precedence of "+" so the if condition will be entered.
+
+The critical question left here is "how can the if condition parse the
+right hand side in full"? In particular, to build the AST correctly for
+our example, it needs to get all of "(c+d)\*e\*f" as the RHS expression
+variable. The code to do this is surprisingly simple (code from the
+above two blocks duplicated for context):
+
+.. code-block:: ocaml
+
+              match Stream.peek stream with
+              | Some (Token.Kwd c2) ->
+                  (* If BinOp binds less tightly with rhs than the operator after
+                   * rhs, let the pending operator take rhs as its lhs. *)
+                  if token_prec < precedence c2
+                  then parse_bin_rhs (token_prec + 1) rhs stream
+                  else rhs
+              | _ -> rhs
+            in
+
+            (* Merge lhs/rhs. *)
+            let lhs = Ast.Binary (c, lhs, rhs) in
+            parse_bin_rhs expr_prec lhs stream
+          end
+
+At this point, we know that the binary operator to the RHS of our
+primary has higher precedence than the binop we are currently parsing.
+As such, we know that any sequence of pairs whose operators are all
+higher precedence than "+" should be parsed together and returned as
+"RHS". To do this, we recursively invoke the ``Parser.parse_bin_rhs``
+function specifying "token\_prec+1" as the minimum precedence required
+for it to continue. In our example above, this will cause it to return
+the AST node for "(c+d)\*e\*f" as RHS, which is then set as the RHS of
+the '+' expression.
+
+Finally, on the next iteration of the while loop, the "+g" piece is
+parsed and added to the AST. With this little bit of code (14
+non-trivial lines), we correctly handle fully general binary expression
+parsing in a very elegant way. This was a whirlwind tour of this code,
+and it is somewhat subtle. I recommend running through it with a few
+tough examples to see how it works.
+
+This wraps up handling of expressions. At this point, we can point the
+parser at an arbitrary token stream and build an expression from it,
+stopping at the first token that is not part of the expression. Next up
+we need to handle function definitions, etc.
+
+Parsing the Rest
+================
+
+The next thing missing is handling of function prototypes. In
+Kaleidoscope, these are used both for 'extern' function declarations as
+well as function body definitions. The code to do this is
+straight-forward and not very interesting (once you've survived
+expressions):
+
+.. code-block:: ocaml
+
+    (* prototype
+     *   ::= id '(' id* ')' *)
+    let parse_prototype =
+      let rec parse_args accumulator = parser
+        | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+        | [< >] -> accumulator
+      in
+
+      parser
+      | [< 'Token.Ident id;
+           'Token.Kwd '(' ?? "expected '(' in prototype";
+           args=parse_args [];
+           'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+          (* success. *)
+          Ast.Prototype (id, Array.of_list (List.rev args))
+
+      | [< >] ->
+          raise (Stream.Error "expected function name in prototype")
+
+Given this, a function definition is very simple, just a prototype plus
+an expression to implement the body:
+
+.. code-block:: ocaml
+
+    (* definition ::= 'def' prototype expression *)
+    let parse_definition = parser
+      | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+          Ast.Function (p, e)
+
+In addition, we support 'extern' to declare functions like 'sin' and
+'cos' as well as to support forward declaration of user functions. These
+'extern's are just prototypes with no body:
+
+.. code-block:: ocaml
+
+    (*  external ::= 'extern' prototype *)
+    let parse_extern = parser
+      | [< 'Token.Extern; e=parse_prototype >] -> e
+
+Finally, we'll also let the user type in arbitrary top-level expressions
+and evaluate them on the fly. We will handle this by defining anonymous
+nullary (zero argument) functions for them:
+
+.. code-block:: ocaml
+
+    (* toplevelexpr ::= expression *)
+    let parse_toplevel = parser
+      | [< e=parse_expr >] ->
+          (* Make an anonymous proto. *)
+          Ast.Function (Ast.Prototype ("", [||]), e)
+
+Now that we have all the pieces, let's build a little driver that will
+let us actually *execute* this code we've built!
+
+The Driver
+==========
+
+The driver for this simply invokes all of the parsing pieces with a
+top-level dispatch loop. There isn't much interesting here, so I'll just
+include the top-level loop. See `below <#code>`_ for full code in the
+"Top-Level Parsing" section.
+
+.. code-block:: ocaml
+
+    (* top ::= definition | external | expression | ';' *)
+    let rec main_loop stream =
+      match Stream.peek stream with
+      | None -> ()
+
+      (* ignore top-level semicolons. *)
+      | Some (Token.Kwd ';') ->
+          Stream.junk stream;
+          main_loop stream
+
+      | Some token ->
+          begin
+            try match token with
+            | Token.Def ->
+                ignore(Parser.parse_definition stream);
+                print_endline "parsed a function definition.";
+            | Token.Extern ->
+                ignore(Parser.parse_extern stream);
+                print_endline "parsed an extern.";
+            | _ ->
+                (* Evaluate a top-level expression into an anonymous function. *)
+                ignore(Parser.parse_toplevel stream);
+                print_endline "parsed a top-level expr";
+            with Stream.Error s ->
+              (* Skip token for error recovery. *)
+              Stream.junk stream;
+              print_endline s;
+          end;
+          print_string "ready> "; flush stdout;
+          main_loop stream
+
+The most interesting part of this is that we ignore top-level
+semicolons. Why is this, you ask? The basic reason is that if you type
+"4 + 5" at the command line, the parser doesn't know whether that is the
+end of what you will type or not. For example, on the next line you
+could type "def foo..." in which case 4+5 is the end of a top-level
+expression. Alternatively you could type "\* 6", which would continue
+the expression. Having top-level semicolons allows you to type "4+5;",
+and the parser will know you are done.
+
+Conclusions
+===========
+
+With just under 300 lines of commented code (240 lines of non-comment,
+non-blank code), we fully defined our minimal language, including a
+lexer, parser, and AST builder. With this done, the executable will
+validate Kaleidoscope code and tell us if it is grammatically invalid.
+For example, here is a sample interaction:
+
+.. code-block:: bash
+
+    $ ./toy.byte
+    ready> def foo(x y) x+foo(y, 4.0);
+    Parsed a function definition.
+    ready> def foo(x y) x+y y;
+    Parsed a function definition.
+    Parsed a top-level expr
+    ready> def foo(x y) x+y );
+    Parsed a function definition.
+    Error: unknown token when expecting an expression
+    ready> extern sin(a);
+    ready> Parsed an extern
+    ready> ^D
+    $
+
+There is a lot of room for extension here. You can define new AST nodes,
+extend the language in many ways, etc. In the `next
+installment <OCamlLangImpl3.html>`_, we will describe how to generate
+LLVM Intermediate Representation (IR) from the AST.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for this and the previous chapter.
+Note that it is fully self-contained: you don't need LLVM or any
+external libraries at all for this. (Besides the ocaml standard
+libraries, of course.) To build this, just compile with:
+
+.. code-block:: bash
+
+    # Compile
+    ocamlbuild toy.byte
+    # Run
+    ./toy.byte
+
+Here is the code:
+
+\_tags:
+    ::
+
+        <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+
+token.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer Tokens
+         *===----------------------------------------------------------------------===*)
+
+        (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+         * these others for known things. *)
+        type token =
+          (* commands *)
+          | Def | Extern
+
+          (* primary *)
+          | Ident of string | Number of float
+
+          (* unknown *)
+          | Kwd of char
+
+lexer.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Lexer
+         *===----------------------------------------------------------------------===*)
+
+        let rec lex = parser
+          (* Skip any whitespace. *)
+          | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+          (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+
+          (* number: [0-9.]+ *)
+          | [< ' ('0' .. '9' as c); stream >] ->
+              let buffer = Buffer.create 1 in
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+
+          (* Comment until end of line. *)
+          | [< ' ('#'); stream >] ->
+              lex_comment stream
+
+          (* Otherwise, just return the character as its ascii value. *)
+          | [< 'c; stream >] ->
+              [< 'Token.Kwd c; lex stream >]
+
+          (* end of stream. *)
+          | [< >] -> [< >]
+
+        and lex_number buffer = parser
+          | [< ' ('0' .. '9' | '.' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_number buffer stream
+          | [< stream=lex >] ->
+              [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+        and lex_ident buffer = parser
+          | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+              Buffer.add_char buffer c;
+              lex_ident buffer stream
+          | [< stream=lex >] ->
+              match Buffer.contents buffer with
+              | "def" -> [< 'Token.Def; stream >]
+              | "extern" -> [< 'Token.Extern; stream >]
+              | id -> [< 'Token.Ident id; stream >]
+
+        and lex_comment = parser
+          | [< ' ('\n'); stream=lex >] -> stream
+          | [< 'c; e=lex_comment >] -> e
+          | [< >] -> [< >]
+
+ast.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Abstract Syntax Tree (aka Parse Tree)
+         *===----------------------------------------------------------------------===*)
+
+        (* expr - Base type for all expression nodes. *)
+        type expr =
+          (* variant for numeric literals like "1.0". *)
+          | Number of float
+
+          (* variant for referencing a variable, like "a". *)
+          | Variable of string
+
+          (* variant for a binary operator. *)
+          | Binary of char * expr * expr
+
+          (* variant for function calls. *)
+          | Call of string * expr array
+
+        (* proto - This type represents the "prototype" for a function, which captures
+         * its name, and its argument names (thus implicitly the number of arguments the
+         * function takes). *)
+        type proto = Prototype of string * string array
+
+        (* func - This type represents a function definition itself. *)
+        type func = Function of proto * expr
+
+parser.ml:
+    .. code-block:: ocaml
+
+        (*===---------------------------------------------------------------------===
+         * Parser
+         *===---------------------------------------------------------------------===*)
+
+        (* binop_precedence - This holds the precedence for each binary operator that is
+         * defined *)
+        let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+        (* precedence - Get the precedence of the pending binary operator token. *)
+        let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+        (* primary
+         *   ::= identifier
+         *   ::= numberexpr
+         *   ::= parenexpr *)
+        let rec parse_primary = parser
+          (* numberexpr ::= number *)
+          | [< 'Token.Number n >] -> Ast.Number n
+
+          (* parenexpr ::= '(' expression ')' *)
+          | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+          (* identifierexpr
+           *   ::= identifier
+           *   ::= identifier '(' argumentexpr ')' *)
+          | [< 'Token.Ident id; stream >] ->
+              let rec parse_args accumulator = parser
+                | [< e=parse_expr; stream >] ->
+                    begin parser
+                      | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+                      | [< >] -> e :: accumulator
+                    end stream
+                | [< >] -> accumulator
+              in
+              let rec parse_ident id = parser
+                (* Call. *)
+                | [< 'Token.Kwd '(';
+                     args=parse_args [];
+                     'Token.Kwd ')' ?? "expected ')'">] ->
+                    Ast.Call (id, Array.of_list (List.rev args))
+
+                (* Simple variable ref. *)
+                | [< >] -> Ast.Variable id
+              in
+              parse_ident id stream
+
+          | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+        (* binoprhs
+         *   ::= ('+' primary)* *)
+        and parse_bin_rhs expr_prec lhs stream =
+          match Stream.peek stream with
+          (* If this is a binop, find its precedence. *)
+          | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+              let token_prec = precedence c in
+
+              (* If this is a binop that binds at least as tightly as the current binop,
+               * consume it, otherwise we are done. *)
+              if token_prec < expr_prec then lhs else begin
+                (* Eat the binop. *)
+                Stream.junk stream;
+
+                (* Parse the primary expression after the binary operator. *)
+                let rhs = parse_primary stream in
+
+                (* Okay, we know this is a binop. *)
+                let rhs =
+                  match Stream.peek stream with
+                  | Some (Token.Kwd c2) ->
+                      (* If BinOp binds less tightly with rhs than the operator after
+                       * rhs, let the pending operator take rhs as its lhs. *)
+                      let next_prec = precedence c2 in
+                      if token_prec < next_prec
+                      then parse_bin_rhs (token_prec + 1) rhs stream
+                      else rhs
+                  | _ -> rhs
+                in
+
+                (* Merge lhs/rhs. *)
+                let lhs = Ast.Binary (c, lhs, rhs) in
+                parse_bin_rhs expr_prec lhs stream
+              end
+          | _ -> lhs
+
+        (* expression
+         *   ::= primary binoprhs *)
+        and parse_expr = parser
+          | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
+
+        (* prototype
+         *   ::= id '(' id* ')' *)
+        let parse_prototype =
+          let rec parse_args accumulator = parser
+            | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+            | [< >] -> accumulator
+          in
+
+          parser
+          | [< 'Token.Ident id;
+               'Token.Kwd '(' ?? "expected '(' in prototype";
+               args=parse_args [];
+               'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+              (* success. *)
+              Ast.Prototype (id, Array.of_list (List.rev args))
+
+          | [< >] ->
+              raise (Stream.Error "expected function name in prototype")
+
+        (* definition ::= 'def' prototype expression *)
+        let parse_definition = parser
+          | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+              Ast.Function (p, e)
+
+        (* toplevelexpr ::= expression *)
+        let parse_toplevel = parser
+          | [< e=parse_expr >] ->
+              (* Make an anonymous proto. *)
+              Ast.Function (Ast.Prototype ("", [||]), e)
+
+        (*  external ::= 'extern' prototype *)
+        let parse_extern = parser
+          | [< 'Token.Extern; e=parse_prototype >] -> e
+
+toplevel.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Top-Level parsing and JIT Driver
+         *===----------------------------------------------------------------------===*)
+
+        (* top ::= definition | external | expression | ';' *)
+        let rec main_loop stream =
+          match Stream.peek stream with
+          | None -> ()
+
+          (* ignore top-level semicolons. *)
+          | Some (Token.Kwd ';') ->
+              Stream.junk stream;
+              main_loop stream
+
+          | Some token ->
+              begin
+                try match token with
+                | Token.Def ->
+                    ignore(Parser.parse_definition stream);
+                    print_endline "parsed a function definition.";
+                | Token.Extern ->
+                    ignore(Parser.parse_extern stream);
+                    print_endline "parsed an extern.";
+                | _ ->
+                    (* Evaluate a top-level expression into an anonymous function. *)
+                    ignore(Parser.parse_toplevel stream);
+                    print_endline "parsed a top-level expr";
+                with Stream.Error s ->
+                  (* Skip token for error recovery. *)
+                  Stream.junk stream;
+                  print_endline s;
+              end;
+              print_string "ready> "; flush stdout;
+              main_loop stream
+
+toy.ml:
+    .. code-block:: ocaml
+
+        (*===----------------------------------------------------------------------===
+         * Main driver code.
+         *===----------------------------------------------------------------------===*)
+
+        let main () =
+          (* Install standard binary operators.
+           * 1 is the lowest precedence. *)
+          Hashtbl.add Parser.binop_precedence '<' 10;
+          Hashtbl.add Parser.binop_precedence '+' 20;
+          Hashtbl.add Parser.binop_precedence '-' 20;
+          Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
+
+          (* Prime the first token. *)
+          print_string "ready> "; flush stdout;
+          let stream = Lexer.lex (Stream.of_channel stdin) in
+
+          (* Run the main "interpreter loop" now. *)
+          Toplevel.main_loop stream;
+        ;;
+
+        main ()
+
+`Next: Implementing Code Generation to LLVM IR <OCamlLangImpl3.html>`_
+