Mercurial > hg > CbC > CbC_llvm
view lld/wasm/InputFiles.cpp @ 259:011663b4a808
remove duplicate setjmp in return continuation
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Oct 2023 15:52:37 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "InputChunks.h" #include "InputElement.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "lld/Common/Args.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/Reproduce.h" #include "llvm/Object/Binary.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/raw_ostream.h" #include <optional> #define DEBUG_TYPE "lld" using namespace llvm; using namespace llvm::object; using namespace llvm::wasm; using namespace llvm::sys; namespace lld { // Returns a string in the format of "foo.o" or "foo.a(bar.o)". std::string toString(const wasm::InputFile *file) { if (!file) return "<internal>"; if (file->archiveName.empty()) return std::string(file->getName()); return (file->archiveName + "(" + file->getName() + ")").str(); } namespace wasm { void InputFile::checkArch(Triple::ArchType arch) const { bool is64 = arch == Triple::wasm64; if (is64 && !config->is64) { fatal(toString(this) + ": must specify -mwasm64 to process wasm64 object files"); } else if (config->is64.value_or(false) != is64) { fatal(toString(this) + ": wasm32 object file can't be linked in wasm64 mode"); } } std::unique_ptr<llvm::TarWriter> tar; std::optional<MemoryBufferRef> readFile(StringRef path) { log("Loading: " + path); auto mbOrErr = MemoryBuffer::getFile(path); if (auto ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return std::nullopt; } std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return mbref; } InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive) { file_magic magic = identify_magic(mb.getBuffer()); if (magic == file_magic::wasm_object) { std::unique_ptr<Binary> bin = CHECK(createBinary(mb), mb.getBufferIdentifier()); auto *obj = cast<WasmObjectFile>(bin.get()); if (obj->isSharedObject()) return make<SharedFile>(mb); return make<ObjFile>(mb, archiveName); } if (magic == file_magic::bitcode) return make<BitcodeFile>(mb, archiveName, offsetInArchive); std::string name = mb.getBufferIdentifier().str(); if (!archiveName.empty()) { name = archiveName.str() + "(" + name + ")"; } fatal("unknown file type: " + name); } // Relocations contain either symbol or type indices. This function takes a // relocation and returns relocated index (i.e. translates from the input // symbol/type space to the output symbol/type space). uint32_t ObjFile::calcNewIndex(const WasmRelocation &reloc) const { if (reloc.Type == R_WASM_TYPE_INDEX_LEB) { assert(typeIsUsed[reloc.Index]); return typeMap[reloc.Index]; } const Symbol *sym = symbols[reloc.Index]; if (auto *ss = dyn_cast<SectionSymbol>(sym)) sym = ss->getOutputSectionSymbol(); return sym->getOutputSymbolIndex(); } // Relocations can contain addend for combined sections. This function takes a // relocation and returns updated addend by offset in the output section. int64_t ObjFile::calcNewAddend(const WasmRelocation &reloc) const { switch (reloc.Type) { case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I32: case R_WASM_MEMORY_ADDR_I64: case R_WASM_MEMORY_ADDR_TLS_SLEB: case R_WASM_MEMORY_ADDR_TLS_SLEB64: case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_OFFSET_I64: case R_WASM_MEMORY_ADDR_LOCREL_I32: return reloc.Addend; case R_WASM_SECTION_OFFSET_I32: return getSectionSymbol(reloc.Index)->section->getOffset(reloc.Addend); default: llvm_unreachable("unexpected relocation type"); } } // Translate from the relocation's index into the final linked output value. uint64_t ObjFile::calcNewValue(const WasmRelocation &reloc, uint64_t tombstone, const InputChunk *chunk) const { const Symbol* sym = nullptr; if (reloc.Type != R_WASM_TYPE_INDEX_LEB) { sym = symbols[reloc.Index]; // We can end up with relocations against non-live symbols. For example // in debug sections. We return a tombstone value in debug symbol sections // so this will not produce a valid range conflicting with ranges of actual // code. In other sections we return reloc.Addend. if (!isa<SectionSymbol>(sym) && !sym->isLive()) return tombstone ? tombstone : reloc.Addend; } switch (reloc.Type) { case R_WASM_TABLE_INDEX_I32: case R_WASM_TABLE_INDEX_I64: case R_WASM_TABLE_INDEX_SLEB: case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_TABLE_INDEX_REL_SLEB: case R_WASM_TABLE_INDEX_REL_SLEB64: { if (!getFunctionSymbol(reloc.Index)->hasTableIndex()) return 0; uint32_t index = getFunctionSymbol(reloc.Index)->getTableIndex(); if (reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB || reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB64) index -= config->tableBase; return index; } case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I32: case R_WASM_MEMORY_ADDR_I64: case R_WASM_MEMORY_ADDR_TLS_SLEB: case R_WASM_MEMORY_ADDR_TLS_SLEB64: case R_WASM_MEMORY_ADDR_LOCREL_I32: { if (isa<UndefinedData>(sym) || sym->isUndefWeak()) return 0; auto D = cast<DefinedData>(sym); uint64_t value = D->getVA() + reloc.Addend; if (reloc.Type == R_WASM_MEMORY_ADDR_LOCREL_I32) { const auto *segment = cast<InputSegment>(chunk); uint64_t p = segment->outputSeg->startVA + segment->outputSegmentOffset + reloc.Offset - segment->getInputSectionOffset(); value -= p; } return value; } case R_WASM_TYPE_INDEX_LEB: return typeMap[reloc.Index]; case R_WASM_FUNCTION_INDEX_LEB: case R_WASM_FUNCTION_INDEX_I32: return getFunctionSymbol(reloc.Index)->getFunctionIndex(); case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_GLOBAL_INDEX_I32: if (auto gs = dyn_cast<GlobalSymbol>(sym)) return gs->getGlobalIndex(); return sym->getGOTIndex(); case R_WASM_TAG_INDEX_LEB: return getTagSymbol(reloc.Index)->getTagIndex(); case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_OFFSET_I64: { if (isa<UndefinedFunction>(sym)) { return tombstone ? tombstone : reloc.Addend; } auto *f = cast<DefinedFunction>(sym); return f->function->getOffset(f->function->getFunctionCodeOffset() + reloc.Addend); } case R_WASM_SECTION_OFFSET_I32: return getSectionSymbol(reloc.Index)->section->getOffset(reloc.Addend); case R_WASM_TABLE_NUMBER_LEB: return getTableSymbol(reloc.Index)->getTableNumber(); default: llvm_unreachable("unknown relocation type"); } } template <class T> static void setRelocs(const std::vector<T *> &chunks, const WasmSection *section) { if (!section) return; ArrayRef<WasmRelocation> relocs = section->Relocations; assert(llvm::is_sorted( relocs, [](const WasmRelocation &r1, const WasmRelocation &r2) { return r1.Offset < r2.Offset; })); assert(llvm::is_sorted(chunks, [](InputChunk *c1, InputChunk *c2) { return c1->getInputSectionOffset() < c2->getInputSectionOffset(); })); auto relocsNext = relocs.begin(); auto relocsEnd = relocs.end(); auto relocLess = [](const WasmRelocation &r, uint32_t val) { return r.Offset < val; }; for (InputChunk *c : chunks) { auto relocsStart = std::lower_bound(relocsNext, relocsEnd, c->getInputSectionOffset(), relocLess); relocsNext = std::lower_bound( relocsStart, relocsEnd, c->getInputSectionOffset() + c->getInputSize(), relocLess); c->setRelocations(ArrayRef<WasmRelocation>(relocsStart, relocsNext)); } } // An object file can have two approaches to tables. With the reference-types // feature enabled, input files that define or use tables declare the tables // using symbols, and record each use with a relocation. This way when the // linker combines inputs, it can collate the tables used by the inputs, // assigning them distinct table numbers, and renumber all the uses as // appropriate. At the same time, the linker has special logic to build the // indirect function table if it is needed. // // However, MVP object files (those that target WebAssembly 1.0, the "minimum // viable product" version of WebAssembly) neither write table symbols nor // record relocations. These files can have at most one table, the indirect // function table used by call_indirect and which is the address space for // function pointers. If this table is present, it is always an import. If we // have a file with a table import but no table symbols, it is an MVP object // file. synthesizeMVPIndirectFunctionTableSymbolIfNeeded serves as a shim when // loading these input files, defining the missing symbol to allow the indirect // function table to be built. // // As indirect function table table usage in MVP objects cannot be relocated, // the linker must ensure that this table gets assigned index zero. void ObjFile::addLegacyIndirectFunctionTableIfNeeded( uint32_t tableSymbolCount) { uint32_t tableCount = wasmObj->getNumImportedTables() + tables.size(); // If there are symbols for all tables, then all is good. if (tableCount == tableSymbolCount) return; // It's possible for an input to define tables and also use the indirect // function table, but forget to compile with -mattr=+reference-types. // For these newer files, we require symbols for all tables, and // relocations for all of their uses. if (tableSymbolCount != 0) { error(toString(this) + ": expected one symbol table entry for each of the " + Twine(tableCount) + " table(s) present, but got " + Twine(tableSymbolCount) + " symbol(s) instead."); return; } // An MVP object file can have up to one table import, for the indirect // function table, but will have no table definitions. if (tables.size()) { error(toString(this) + ": unexpected table definition(s) without corresponding " "symbol-table entries."); return; } // An MVP object file can have only one table import. if (tableCount != 1) { error(toString(this) + ": multiple table imports, but no corresponding symbol-table " "entries."); return; } const WasmImport *tableImport = nullptr; for (const auto &import : wasmObj->imports()) { if (import.Kind == WASM_EXTERNAL_TABLE) { assert(!tableImport); tableImport = &import; } } assert(tableImport); // We can only synthesize a symtab entry for the indirect function table; if // it has an unexpected name or type, assume that it's not actually the // indirect function table. if (tableImport->Field != functionTableName || tableImport->Table.ElemType != uint8_t(ValType::FUNCREF)) { error(toString(this) + ": table import " + Twine(tableImport->Field) + " is missing a symbol table entry."); return; } auto *info = make<WasmSymbolInfo>(); info->Name = tableImport->Field; info->Kind = WASM_SYMBOL_TYPE_TABLE; info->ImportModule = tableImport->Module; info->ImportName = tableImport->Field; info->Flags = WASM_SYMBOL_UNDEFINED; info->Flags |= WASM_SYMBOL_NO_STRIP; info->ElementIndex = 0; LLVM_DEBUG(dbgs() << "Synthesizing symbol for table import: " << info->Name << "\n"); const WasmGlobalType *globalType = nullptr; const WasmSignature *signature = nullptr; auto *wasmSym = make<WasmSymbol>(*info, globalType, &tableImport->Table, signature); Symbol *sym = createUndefined(*wasmSym, false); // We're only sure it's a TableSymbol if the createUndefined succeeded. if (errorCount()) return; symbols.push_back(sym); // Because there are no TABLE_NUMBER relocs, we can't compute accurate // liveness info; instead, just mark the symbol as always live. sym->markLive(); // We assume that this compilation unit has unrelocatable references to // this table. config->legacyFunctionTable = true; } static bool shouldMerge(const WasmSection &sec) { if (config->optimize == 0) return false; // Sadly we don't have section attributes yet for custom sections, so we // currently go by the name alone. // TODO(sbc): Add ability for wasm sections to carry flags so we don't // need to use names here. // For now, keep in sync with uses of wasm::WASM_SEG_FLAG_STRINGS in // MCObjectFileInfo::initWasmMCObjectFileInfo which creates these custom // sections. return sec.Name == ".debug_str" || sec.Name == ".debug_str.dwo" || sec.Name == ".debug_line_str"; } static bool shouldMerge(const WasmSegment &seg) { // As of now we only support merging strings, and only with single byte // alignment (2^0). if (!(seg.Data.LinkingFlags & WASM_SEG_FLAG_STRINGS) || (seg.Data.Alignment != 0)) return false; // On a regular link we don't merge sections if -O0 (default is -O1). This // sometimes makes the linker significantly faster, although the output will // be bigger. if (config->optimize == 0) return false; // A mergeable section with size 0 is useless because they don't have // any data to merge. A mergeable string section with size 0 can be // argued as invalid because it doesn't end with a null character. // We'll avoid a mess by handling them as if they were non-mergeable. if (seg.Data.Content.size() == 0) return false; return true; } void ObjFile::parse(bool ignoreComdats) { // Parse a memory buffer as a wasm file. LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); std::unique_ptr<Binary> bin = CHECK(createBinary(mb), toString(this)); auto *obj = dyn_cast<WasmObjectFile>(bin.get()); if (!obj) fatal(toString(this) + ": not a wasm file"); if (!obj->isRelocatableObject()) fatal(toString(this) + ": not a relocatable wasm file"); bin.release(); wasmObj.reset(obj); checkArch(obj->getArch()); // Build up a map of function indices to table indices for use when // verifying the existing table index relocations uint32_t totalFunctions = wasmObj->getNumImportedFunctions() + wasmObj->functions().size(); tableEntriesRel.resize(totalFunctions); tableEntries.resize(totalFunctions); for (const WasmElemSegment &seg : wasmObj->elements()) { int64_t offset; if (seg.Offset.Extended) fatal(toString(this) + ": extended init exprs not supported"); else if (seg.Offset.Inst.Opcode == WASM_OPCODE_I32_CONST) offset = seg.Offset.Inst.Value.Int32; else if (seg.Offset.Inst.Opcode == WASM_OPCODE_I64_CONST) offset = seg.Offset.Inst.Value.Int64; else fatal(toString(this) + ": invalid table elements"); for (size_t index = 0; index < seg.Functions.size(); index++) { auto functionIndex = seg.Functions[index]; tableEntriesRel[functionIndex] = index; tableEntries[functionIndex] = offset + index; } } ArrayRef<StringRef> comdats = wasmObj->linkingData().Comdats; for (StringRef comdat : comdats) { bool isNew = ignoreComdats || symtab->addComdat(comdat); keptComdats.push_back(isNew); } uint32_t sectionIndex = 0; // Bool for each symbol, true if called directly. This allows us to implement // a weaker form of signature checking where undefined functions that are not // called directly (i.e. only address taken) don't have to match the defined // function's signature. We cannot do this for directly called functions // because those signatures are checked at validation times. // See https://github.com/llvm/llvm-project/issues/39758 std::vector<bool> isCalledDirectly(wasmObj->getNumberOfSymbols(), false); for (const SectionRef &sec : wasmObj->sections()) { const WasmSection §ion = wasmObj->getWasmSection(sec); // Wasm objects can have at most one code and one data section. if (section.Type == WASM_SEC_CODE) { assert(!codeSection); codeSection = §ion; } else if (section.Type == WASM_SEC_DATA) { assert(!dataSection); dataSection = §ion; } else if (section.Type == WASM_SEC_CUSTOM) { InputChunk *customSec; if (shouldMerge(section)) customSec = make<MergeInputChunk>(section, this); else customSec = make<InputSection>(section, this); customSec->discarded = isExcludedByComdat(customSec); customSections.emplace_back(customSec); customSections.back()->setRelocations(section.Relocations); customSectionsByIndex[sectionIndex] = customSections.back(); } sectionIndex++; // Scans relocations to determine if a function symbol is called directly. for (const WasmRelocation &reloc : section.Relocations) if (reloc.Type == R_WASM_FUNCTION_INDEX_LEB) isCalledDirectly[reloc.Index] = true; } typeMap.resize(getWasmObj()->types().size()); typeIsUsed.resize(getWasmObj()->types().size(), false); // Populate `Segments`. for (const WasmSegment &s : wasmObj->dataSegments()) { InputChunk *seg; if (shouldMerge(s)) seg = make<MergeInputChunk>(s, this); else seg = make<InputSegment>(s, this); seg->discarded = isExcludedByComdat(seg); // Older object files did not include WASM_SEG_FLAG_TLS and instead // relied on the naming convention. To maintain compat with such objects // we still imply the TLS flag based on the name of the segment. if (!seg->isTLS() && (seg->name.starts_with(".tdata") || seg->name.starts_with(".tbss"))) seg->flags |= WASM_SEG_FLAG_TLS; segments.emplace_back(seg); } setRelocs(segments, dataSection); // Populate `Functions`. ArrayRef<WasmFunction> funcs = wasmObj->functions(); ArrayRef<WasmSignature> types = wasmObj->types(); functions.reserve(funcs.size()); for (auto &f : funcs) { auto *func = make<InputFunction>(types[f.SigIndex], &f, this); func->discarded = isExcludedByComdat(func); functions.emplace_back(func); } setRelocs(functions, codeSection); // Populate `Tables`. for (const WasmTable &t : wasmObj->tables()) tables.emplace_back(make<InputTable>(t, this)); // Populate `Globals`. for (const WasmGlobal &g : wasmObj->globals()) globals.emplace_back(make<InputGlobal>(g, this)); // Populate `Tags`. for (const WasmTag &t : wasmObj->tags()) tags.emplace_back(make<InputTag>(types[t.SigIndex], t, this)); // Populate `Symbols` based on the symbols in the object. symbols.reserve(wasmObj->getNumberOfSymbols()); uint32_t tableSymbolCount = 0; for (const SymbolRef &sym : wasmObj->symbols()) { const WasmSymbol &wasmSym = wasmObj->getWasmSymbol(sym.getRawDataRefImpl()); if (wasmSym.isTypeTable()) tableSymbolCount++; if (wasmSym.isDefined()) { // createDefined may fail if the symbol is comdat excluded in which case // we fall back to creating an undefined symbol if (Symbol *d = createDefined(wasmSym)) { symbols.push_back(d); continue; } } size_t idx = symbols.size(); symbols.push_back(createUndefined(wasmSym, isCalledDirectly[idx])); } addLegacyIndirectFunctionTableIfNeeded(tableSymbolCount); } bool ObjFile::isExcludedByComdat(const InputChunk *chunk) const { uint32_t c = chunk->getComdat(); if (c == UINT32_MAX) return false; return !keptComdats[c]; } FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t index) const { return cast<FunctionSymbol>(symbols[index]); } GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t index) const { return cast<GlobalSymbol>(symbols[index]); } TagSymbol *ObjFile::getTagSymbol(uint32_t index) const { return cast<TagSymbol>(symbols[index]); } TableSymbol *ObjFile::getTableSymbol(uint32_t index) const { return cast<TableSymbol>(symbols[index]); } SectionSymbol *ObjFile::getSectionSymbol(uint32_t index) const { return cast<SectionSymbol>(symbols[index]); } DataSymbol *ObjFile::getDataSymbol(uint32_t index) const { return cast<DataSymbol>(symbols[index]); } Symbol *ObjFile::createDefined(const WasmSymbol &sym) { StringRef name = sym.Info.Name; uint32_t flags = sym.Info.Flags; switch (sym.Info.Kind) { case WASM_SYMBOL_TYPE_FUNCTION: { InputFunction *func = functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()]; if (sym.isBindingLocal()) return make<DefinedFunction>(name, flags, this, func); if (func->discarded) return nullptr; return symtab->addDefinedFunction(name, flags, this, func); } case WASM_SYMBOL_TYPE_DATA: { InputChunk *seg = segments[sym.Info.DataRef.Segment]; auto offset = sym.Info.DataRef.Offset; auto size = sym.Info.DataRef.Size; // Support older (e.g. llvm 13) object files that pre-date the per-symbol // TLS flag, and symbols were assumed to be TLS by being defined in a TLS // segment. if (!(flags & WASM_SYMBOL_TLS) && seg->isTLS()) flags |= WASM_SYMBOL_TLS; if (sym.isBindingLocal()) return make<DefinedData>(name, flags, this, seg, offset, size); if (seg->discarded) return nullptr; return symtab->addDefinedData(name, flags, this, seg, offset, size); } case WASM_SYMBOL_TYPE_GLOBAL: { InputGlobal *global = globals[sym.Info.ElementIndex - wasmObj->getNumImportedGlobals()]; if (sym.isBindingLocal()) return make<DefinedGlobal>(name, flags, this, global); return symtab->addDefinedGlobal(name, flags, this, global); } case WASM_SYMBOL_TYPE_SECTION: { InputChunk *section = customSectionsByIndex[sym.Info.ElementIndex]; assert(sym.isBindingLocal()); // Need to return null if discarded here? data and func only do that when // binding is not local. if (section->discarded) return nullptr; return make<SectionSymbol>(flags, section, this); } case WASM_SYMBOL_TYPE_TAG: { InputTag *tag = tags[sym.Info.ElementIndex - wasmObj->getNumImportedTags()]; if (sym.isBindingLocal()) return make<DefinedTag>(name, flags, this, tag); return symtab->addDefinedTag(name, flags, this, tag); } case WASM_SYMBOL_TYPE_TABLE: { InputTable *table = tables[sym.Info.ElementIndex - wasmObj->getNumImportedTables()]; if (sym.isBindingLocal()) return make<DefinedTable>(name, flags, this, table); return symtab->addDefinedTable(name, flags, this, table); } } llvm_unreachable("unknown symbol kind"); } Symbol *ObjFile::createUndefined(const WasmSymbol &sym, bool isCalledDirectly) { StringRef name = sym.Info.Name; uint32_t flags = sym.Info.Flags | WASM_SYMBOL_UNDEFINED; switch (sym.Info.Kind) { case WASM_SYMBOL_TYPE_FUNCTION: if (sym.isBindingLocal()) return make<UndefinedFunction>(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature, isCalledDirectly); return symtab->addUndefinedFunction(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature, isCalledDirectly); case WASM_SYMBOL_TYPE_DATA: if (sym.isBindingLocal()) return make<UndefinedData>(name, flags, this); return symtab->addUndefinedData(name, flags, this); case WASM_SYMBOL_TYPE_GLOBAL: if (sym.isBindingLocal()) return make<UndefinedGlobal>(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.GlobalType); return symtab->addUndefinedGlobal(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.GlobalType); case WASM_SYMBOL_TYPE_TABLE: if (sym.isBindingLocal()) return make<UndefinedTable>(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.TableType); return symtab->addUndefinedTable(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.TableType); case WASM_SYMBOL_TYPE_TAG: if (sym.isBindingLocal()) return make<UndefinedTag>(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature); return symtab->addUndefinedTag(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature); case WASM_SYMBOL_TYPE_SECTION: llvm_unreachable("section symbols cannot be undefined"); } llvm_unreachable("unknown symbol kind"); } StringRef strip(StringRef s) { while (s.starts_with(" ")) { s = s.drop_front(); } while (s.ends_with(" ")) { s = s.drop_back(); } return s; } void StubFile::parse() { bool first = true; SmallVector<StringRef> lines; mb.getBuffer().split(lines, '\n'); for (StringRef line : lines) { line = line.trim(); // File must begin with #STUB if (first) { assert(line == "#STUB"); first = false; } // Lines starting with # are considered comments if (line.starts_with("#")) continue; StringRef sym; StringRef rest; std::tie(sym, rest) = line.split(':'); sym = strip(sym); rest = strip(rest); symbolDependencies[sym] = {}; while (rest.size()) { StringRef dep; std::tie(dep, rest) = rest.split(','); dep = strip(dep); symbolDependencies[sym].push_back(dep); } } } void ArchiveFile::parse() { // Parse a MemoryBufferRef as an archive file. LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); file = CHECK(Archive::create(mb), toString(this)); // Read the symbol table to construct Lazy symbols. int count = 0; for (const Archive::Symbol &sym : file->symbols()) { symtab->addLazy(this, &sym); ++count; } LLVM_DEBUG(dbgs() << "Read " << count << " symbols\n"); (void) count; } void ArchiveFile::addMember(const Archive::Symbol *sym) { const Archive::Child &c = CHECK(sym->getMember(), "could not get the member for symbol " + sym->getName()); // Don't try to load the same member twice (this can happen when members // mutually reference each other). if (!seen.insert(c.getChildOffset()).second) return; LLVM_DEBUG(dbgs() << "loading lazy: " << sym->getName() << "\n"); LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), "could not get the buffer for the member defining symbol " + sym->getName()); InputFile *obj = createObjectFile(mb, getName(), c.getChildOffset()); symtab->addFile(obj); } static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { switch (gvVisibility) { case GlobalValue::DefaultVisibility: return WASM_SYMBOL_VISIBILITY_DEFAULT; case GlobalValue::HiddenVisibility: case GlobalValue::ProtectedVisibility: return WASM_SYMBOL_VISIBILITY_HIDDEN; } llvm_unreachable("unknown visibility"); } static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, const lto::InputFile::Symbol &objSym, BitcodeFile &f) { StringRef name = saver().save(objSym.getName()); uint32_t flags = objSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; flags |= mapVisibility(objSym.getVisibility()); int c = objSym.getComdatIndex(); bool excludedByComdat = c != -1 && !keptComdats[c]; if (objSym.isUndefined() || excludedByComdat) { flags |= WASM_SYMBOL_UNDEFINED; if (objSym.isExecutable()) return symtab->addUndefinedFunction(name, std::nullopt, std::nullopt, flags, &f, nullptr, true); return symtab->addUndefinedData(name, flags, &f); } if (objSym.isExecutable()) return symtab->addDefinedFunction(name, flags, &f, nullptr); return symtab->addDefinedData(name, flags, &f, nullptr, 0, 0); } BitcodeFile::BitcodeFile(MemoryBufferRef m, StringRef archiveName, uint64_t offsetInArchive) : InputFile(BitcodeKind, m) { this->archiveName = std::string(archiveName); std::string path = mb.getBufferIdentifier().str(); // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two archives define two members with the same name, this // causes a collision which result in only one of the objects being taken // into consideration at LTO time (which very likely causes undefined // symbols later in the link stage). So we append file offset to make // filename unique. StringRef name = archiveName.empty() ? saver().save(path) : saver().save(archiveName + "(" + path::filename(path) + " at " + utostr(offsetInArchive) + ")"); MemoryBufferRef mbref(mb.getBuffer(), name); obj = check(lto::InputFile::create(mbref)); // If this isn't part of an archive, it's eagerly linked, so mark it live. if (archiveName.empty()) markLive(); } bool BitcodeFile::doneLTO = false; void BitcodeFile::parse() { if (doneLTO) { error(toString(this) + ": attempt to add bitcode file after LTO."); return; } Triple t(obj->getTargetTriple()); if (!t.isWasm()) { error(toString(this) + ": machine type must be wasm32 or wasm64"); return; } checkArch(t.getArch()); std::vector<bool> keptComdats; // TODO Support nodeduplicate // https://github.com/llvm/llvm-project/issues/49875 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) keptComdats.push_back(symtab->addComdat(s.first)); for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this)); } } // namespace wasm } // namespace lld