Mercurial > hg > CbC > CbC_llvm
view clang/docs/ClangPlugins.rst @ 173:0572611fdcc8 llvm10 llvm12
reorgnization done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 11:55:54 +0900 |
parents | 1d019706d866 |
children | 2e18cbf3894f |
line wrap: on
line source
============= Clang Plugins ============= Clang Plugins make it possible to run extra user defined actions during a compilation. This document will provide a basic walkthrough of how to write and run a Clang Plugin. Introduction ============ Clang Plugins run FrontendActions over code. See the :doc:`FrontendAction tutorial <RAVFrontendAction>` on how to write a ``FrontendAction`` using the ``RecursiveASTVisitor``. In this tutorial, we'll demonstrate how to write a simple clang plugin. Writing a ``PluginASTAction`` ============================= The main difference from writing normal ``FrontendActions`` is that you can handle plugin command line options. The ``PluginASTAction`` base class declares a ``ParseArgs`` method which you have to implement in your plugin. .. code-block:: c++ bool ParseArgs(const CompilerInstance &CI, const std::vector<std::string>& args) { for (unsigned i = 0, e = args.size(); i != e; ++i) { if (args[i] == "-some-arg") { // Handle the command line argument. } } return true; } Registering a plugin ==================== A plugin is loaded from a dynamic library at runtime by the compiler. To register a plugin in a library, use ``FrontendPluginRegistry::Add<>``: .. code-block:: c++ static FrontendPluginRegistry::Add<MyPlugin> X("my-plugin-name", "my plugin description"); Defining pragmas ================ Plugins can also define pragmas by declaring a ``PragmaHandler`` and registering it using ``PragmaHandlerRegistry::Add<>``: .. code-block:: c++ // Define a pragma handler for #pragma example_pragma class ExamplePragmaHandler : public PragmaHandler { public: ExamplePragmaHandler() : PragmaHandler("example_pragma") { } void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer, Token &PragmaTok) { // Handle the pragma } }; static PragmaHandlerRegistry::Add<ExamplePragmaHandler> Y("example_pragma","example pragma description"); Defining attributes =================== Plugins can define attributes by declaring a ``ParsedAttrInfo`` and registering it using ``ParsedAttrInfoRegister::Add<>``: .. code-block:: c++ class ExampleAttrInfo : public ParsedAttrInfo { public: ExampleAttrInfo() { Spellings.push_back({ParsedAttr::AS_GNU,"example"}); } AttrHandling handleDeclAttribute(Sema &S, Decl *D, const ParsedAttr &Attr) const override { // Handle the attribute return AttributeApplied; } }; static ParsedAttrInfoRegistry::Add<ExampleAttrInfo> Z("example_attr","example attribute description"); The members of ``ParsedAttrInfo`` that a plugin attribute must define are: * ``Spellings``, which must be populated with every `Spelling </doxygen/structclang_1_1ParsedAttrInfo_1_1Spelling.html>`_ of the attribute, each of which consists of an attribute syntax and how the attribute name is spelled for that syntax. If the syntax allows a scope then the spelling must be "scope::attr" if a scope is present or "::attr" if not. * ``handleDeclAttribute``, which is the function that applies the attribute to a declaration. It is responsible for checking that the attribute's arguments are valid, and typically applies the attribute by adding an ``Attr`` to the ``Decl``. It returns either ``AttributeApplied``, to indicate that the attribute was successfully applied, or ``AttributeNotApplied`` if it wasn't. The members of ``ParsedAttrInfo`` that may need to be defined, depending on the attribute, are: * ``NumArgs`` and ``OptArgs``, which set the number of required and optional arguments to the attribute. * ``diagAppertainsToDecl``, which checks if the attribute has been used on the right kind of declaration and issues a diagnostic if not. * ``diagLangOpts``, which checks if the attribute is permitted for the current language mode and issues a diagnostic if not. * ``existsInTarget``, which checks if the attribute is permitted for the given target. To see a working example of an attribute plugin, see `the Attribute.cpp example <https://github.com/llvm/llvm-project/blob/master/clang/examples/Attribute/Attribute.cpp>`_. Putting it all together ======================= Let's look at an example plugin that prints top-level function names. This example is checked into the clang repository; please take a look at the `latest version of PrintFunctionNames.cpp <https://github.com/llvm/llvm-project/blob/master/clang/examples/PrintFunctionNames/PrintFunctionNames.cpp>`_. Running the plugin ================== Using the cc1 command line -------------------------- To run a plugin, the dynamic library containing the plugin registry must be loaded via the `-load` command line option. This will load all plugins that are registered, and you can select the plugins to run by specifying the `-plugin` option. Additional parameters for the plugins can be passed with `-plugin-arg-<plugin-name>`. Note that those options must reach clang's cc1 process. There are two ways to do so: * Directly call the parsing process by using the `-cc1` option; this has the downside of not configuring the default header search paths, so you'll need to specify the full system path configuration on the command line. * Use clang as usual, but prefix all arguments to the cc1 process with `-Xclang`. For example, to run the ``print-function-names`` plugin over a source file in clang, first build the plugin, and then call clang with the plugin from the source tree: .. code-block:: console $ export BD=/path/to/build/directory $ (cd $BD && make PrintFunctionNames ) $ clang++ -D_GNU_SOURCE -D_DEBUG -D__STDC_CONSTANT_MACROS \ -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -D_GNU_SOURCE \ -I$BD/tools/clang/include -Itools/clang/include -I$BD/include -Iinclude \ tools/clang/tools/clang-check/ClangCheck.cpp -fsyntax-only \ -Xclang -load -Xclang $BD/lib/PrintFunctionNames.so -Xclang \ -plugin -Xclang print-fns Also see the print-function-name plugin example's `README <https://github.com/llvm/llvm-project/blob/master/clang/examples/PrintFunctionNames/README.txt>`_ Using the clang command line ---------------------------- Using `-fplugin=plugin` on the clang command line passes the plugin through as an argument to `-load` on the cc1 command line. If the plugin class implements the ``getActionType`` method then the plugin is run automatically. For example, to run the plugin automatically after the main AST action (i.e. the same as using `-add-plugin`): .. code-block:: c++ // Automatically run the plugin after the main AST action PluginASTAction::ActionType getActionType() override { return AddAfterMainAction; }