Mercurial > hg > CbC > CbC_llvm
view mlir/lib/Transforms/PipelineDataTransfer.cpp @ 173:0572611fdcc8 llvm10 llvm12
reorgnization done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 11:55:54 +0900 |
parents | 1d019706d866 |
children | 2e18cbf3894f |
line wrap: on
line source
//===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to pipeline data transfers. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Transforms/Passes.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/IR/Builders.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "affine-pipeline-data-transfer" using namespace mlir; namespace { struct PipelineDataTransfer : public AffinePipelineDataTransferBase<PipelineDataTransfer> { void runOnFunction() override; void runOnAffineForOp(AffineForOp forOp); std::vector<AffineForOp> forOps; }; } // end anonymous namespace /// Creates a pass to pipeline explicit movement of data across levels of the /// memory hierarchy. std::unique_ptr<OperationPass<FuncOp>> mlir::createPipelineDataTransferPass() { return std::make_unique<PipelineDataTransfer>(); } // Returns the position of the tag memref operand given a DMA operation. // Temporary utility: will be replaced when DmaStart/DmaFinish abstract op's are // added. TODO(b/117228571) static unsigned getTagMemRefPos(Operation &dmaOp) { assert(isa<AffineDmaStartOp>(dmaOp) || isa<AffineDmaWaitOp>(dmaOp)); if (auto dmaStartOp = dyn_cast<AffineDmaStartOp>(dmaOp)) { return dmaStartOp.getTagMemRefOperandIndex(); } // First operand for a dma finish operation. return 0; } /// Doubles the buffer of the supplied memref on the specified 'affine.for' /// operation by adding a leading dimension of size two to the memref. /// Replaces all uses of the old memref by the new one while indexing the newly /// added dimension by the loop IV of the specified 'affine.for' operation /// modulo 2. Returns false if such a replacement cannot be performed. static bool doubleBuffer(Value oldMemRef, AffineForOp forOp) { auto *forBody = forOp.getBody(); OpBuilder bInner(forBody, forBody->begin()); // Doubles the shape with a leading dimension extent of 2. auto doubleShape = [&](MemRefType oldMemRefType) -> MemRefType { // Add the leading dimension in the shape for the double buffer. ArrayRef<int64_t> oldShape = oldMemRefType.getShape(); SmallVector<int64_t, 4> newShape(1 + oldMemRefType.getRank()); newShape[0] = 2; std::copy(oldShape.begin(), oldShape.end(), newShape.begin() + 1); return MemRefType::Builder(oldMemRefType) .setShape(newShape) .setAffineMaps({}); }; auto oldMemRefType = oldMemRef.getType().cast<MemRefType>(); auto newMemRefType = doubleShape(oldMemRefType); // The double buffer is allocated right before 'forOp'. OpBuilder bOuter(forOp); // Put together alloc operands for any dynamic dimensions of the memref. SmallVector<Value, 4> allocOperands; unsigned dynamicDimCount = 0; for (auto dimSize : oldMemRefType.getShape()) { if (dimSize == -1) allocOperands.push_back( bOuter.create<DimOp>(forOp.getLoc(), oldMemRef, dynamicDimCount++)); } // Create and place the alloc right before the 'affine.for' operation. Value newMemRef = bOuter.create<AllocOp>(forOp.getLoc(), newMemRefType, allocOperands); // Create 'iv mod 2' value to index the leading dimension. auto d0 = bInner.getAffineDimExpr(0); int64_t step = forOp.getStep(); auto modTwoMap = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, d0.floorDiv(step) % 2); auto ivModTwoOp = bInner.create<AffineApplyOp>(forOp.getLoc(), modTwoMap, forOp.getInductionVar()); // replaceAllMemRefUsesWith will succeed unless the forOp body has // non-dereferencing uses of the memref (dealloc's are fine though). if (failed(replaceAllMemRefUsesWith( oldMemRef, newMemRef, /*extraIndices=*/{ivModTwoOp}, /*indexRemap=*/AffineMap(), /*extraOperands=*/{}, /*symbolOperands=*/{}, /*domInstFilter=*/&*forOp.getBody()->begin()))) { LLVM_DEBUG( forOp.emitError("memref replacement for double buffering failed")); ivModTwoOp.erase(); return false; } // Insert the dealloc op right after the for loop. bOuter.setInsertionPointAfter(forOp); bOuter.create<DeallocOp>(forOp.getLoc(), newMemRef); return true; } /// Returns success if the IR is in a valid state. void PipelineDataTransfer::runOnFunction() { // Do a post order walk so that inner loop DMAs are processed first. This is // necessary since 'affine.for' operations nested within would otherwise // become invalid (erased) when the outer loop is pipelined (the pipelined one // gets deleted and replaced by a prologue, a new steady-state loop and an // epilogue). forOps.clear(); getFunction().walk([&](AffineForOp forOp) { forOps.push_back(forOp); }); for (auto forOp : forOps) runOnAffineForOp(forOp); } // Check if tags of the dma start op and dma wait op match. static bool checkTagMatch(AffineDmaStartOp startOp, AffineDmaWaitOp waitOp) { if (startOp.getTagMemRef() != waitOp.getTagMemRef()) return false; auto startIndices = startOp.getTagIndices(); auto waitIndices = waitOp.getTagIndices(); // Both of these have the same number of indices since they correspond to the // same tag memref. for (auto it = startIndices.begin(), wIt = waitIndices.begin(), e = startIndices.end(); it != e; ++it, ++wIt) { // Keep it simple for now, just checking if indices match. // TODO(mlir-team): this would in general need to check if there is no // intervening write writing to the same tag location, i.e., memory last // write/data flow analysis. This is however sufficient/powerful enough for // now since the DMA generation pass or the input for it will always have // start/wait with matching tags (same SSA operand indices). if (*it != *wIt) return false; } return true; } // Identify matching DMA start/finish operations to overlap computation with. static void findMatchingStartFinishInsts( AffineForOp forOp, SmallVectorImpl<std::pair<Operation *, Operation *>> &startWaitPairs) { // Collect outgoing DMA operations - needed to check for dependences below. SmallVector<AffineDmaStartOp, 4> outgoingDmaOps; for (auto &op : *forOp.getBody()) { auto dmaStartOp = dyn_cast<AffineDmaStartOp>(op); if (dmaStartOp && dmaStartOp.isSrcMemorySpaceFaster()) outgoingDmaOps.push_back(dmaStartOp); } SmallVector<Operation *, 4> dmaStartInsts, dmaFinishInsts; for (auto &op : *forOp.getBody()) { // Collect DMA finish operations. if (isa<AffineDmaWaitOp>(op)) { dmaFinishInsts.push_back(&op); continue; } auto dmaStartOp = dyn_cast<AffineDmaStartOp>(op); if (!dmaStartOp) continue; // Only DMAs incoming into higher memory spaces are pipelined for now. // TODO(bondhugula): handle outgoing DMA pipelining. if (!dmaStartOp.isDestMemorySpaceFaster()) continue; // Check for dependence with outgoing DMAs. Doing this conservatively. // TODO(andydavis,bondhugula): use the dependence analysis to check for // dependences between an incoming and outgoing DMA in the same iteration. auto it = outgoingDmaOps.begin(); for (; it != outgoingDmaOps.end(); ++it) { if (it->getDstMemRef() == dmaStartOp.getSrcMemRef()) break; } if (it != outgoingDmaOps.end()) continue; // We only double buffer if the buffer is not live out of loop. auto memref = dmaStartOp.getOperand(dmaStartOp.getFasterMemPos()); bool escapingUses = false; for (auto *user : memref.getUsers()) { // We can double buffer regardless of dealloc's outside the loop. if (isa<DeallocOp>(user)) continue; if (!forOp.getBody()->findAncestorOpInBlock(*user)) { LLVM_DEBUG(llvm::dbgs() << "can't pipeline: buffer is live out of loop\n";); escapingUses = true; break; } } if (!escapingUses) dmaStartInsts.push_back(&op); } // For each start operation, we look for a matching finish operation. for (auto *dmaStartOp : dmaStartInsts) { for (auto *dmaFinishOp : dmaFinishInsts) { if (checkTagMatch(cast<AffineDmaStartOp>(dmaStartOp), cast<AffineDmaWaitOp>(dmaFinishOp))) { startWaitPairs.push_back({dmaStartOp, dmaFinishOp}); break; } } } } /// Overlap DMA transfers with computation in this loop. If successful, /// 'forOp' is deleted, and a prologue, a new pipelined loop, and epilogue are /// inserted right before where it was. void PipelineDataTransfer::runOnAffineForOp(AffineForOp forOp) { auto mayBeConstTripCount = getConstantTripCount(forOp); if (!mayBeConstTripCount.hasValue()) { LLVM_DEBUG(forOp.emitRemark("won't pipeline due to unknown trip count")); return; } SmallVector<std::pair<Operation *, Operation *>, 4> startWaitPairs; findMatchingStartFinishInsts(forOp, startWaitPairs); if (startWaitPairs.empty()) { LLVM_DEBUG(forOp.emitRemark("No dma start/finish pairs\n")); return; } // Double the buffers for the higher memory space memref's. // Identify memref's to replace by scanning through all DMA start // operations. A DMA start operation has two memref's - the one from the // higher level of memory hierarchy is the one to double buffer. // TODO(bondhugula): check whether double-buffering is even necessary. // TODO(bondhugula): make this work with different layouts: assuming here that // the dimension we are adding here for the double buffering is the outermost // dimension. for (auto &pair : startWaitPairs) { auto *dmaStartOp = pair.first; Value oldMemRef = dmaStartOp->getOperand( cast<AffineDmaStartOp>(dmaStartOp).getFasterMemPos()); if (!doubleBuffer(oldMemRef, forOp)) { // Normally, double buffering should not fail because we already checked // that there are no uses outside. LLVM_DEBUG(llvm::dbgs() << "double buffering failed for" << dmaStartOp << "\n";); // IR still valid and semantically correct. return; } // If the old memref has no more uses, remove its 'dead' alloc if it was // alloc'ed. (note: DMA buffers are rarely function live-in; but a 'dim' // operation could have been used on it if it was dynamically shaped in // order to create the double buffer above.) // '-canonicalize' does this in a more general way, but we'll anyway do the // simple/common case so that the output / test cases looks clear. if (auto *allocOp = oldMemRef.getDefiningOp()) { if (oldMemRef.use_empty()) { allocOp->erase(); } else if (oldMemRef.hasOneUse()) { if (auto dealloc = dyn_cast<DeallocOp>(*oldMemRef.user_begin())) { dealloc.erase(); allocOp->erase(); } } } } // Double the buffers for tag memrefs. for (auto &pair : startWaitPairs) { auto *dmaFinishOp = pair.second; Value oldTagMemRef = dmaFinishOp->getOperand(getTagMemRefPos(*dmaFinishOp)); if (!doubleBuffer(oldTagMemRef, forOp)) { LLVM_DEBUG(llvm::dbgs() << "tag double buffering failed\n";); return; } // If the old tag has no uses or a single dealloc use, remove it. // (canonicalization handles more complex cases). if (auto *tagAllocOp = oldTagMemRef.getDefiningOp()) { if (oldTagMemRef.use_empty()) { tagAllocOp->erase(); } else if (oldTagMemRef.hasOneUse()) { if (auto dealloc = dyn_cast<DeallocOp>(*oldTagMemRef.user_begin())) { dealloc.erase(); tagAllocOp->erase(); } } } } // Double buffering would have invalidated all the old DMA start/wait insts. startWaitPairs.clear(); findMatchingStartFinishInsts(forOp, startWaitPairs); // Store shift for operation for later lookup for AffineApplyOp's. DenseMap<Operation *, unsigned> instShiftMap; for (auto &pair : startWaitPairs) { auto *dmaStartOp = pair.first; assert(isa<AffineDmaStartOp>(dmaStartOp)); instShiftMap[dmaStartOp] = 0; // Set shifts for DMA start op's affine operand computation slices to 0. SmallVector<AffineApplyOp, 4> sliceOps; mlir::createAffineComputationSlice(dmaStartOp, &sliceOps); if (!sliceOps.empty()) { for (auto sliceOp : sliceOps) { instShiftMap[sliceOp.getOperation()] = 0; } } else { // If a slice wasn't created, the reachable affine.apply op's from its // operands are the ones that go with it. SmallVector<Operation *, 4> affineApplyInsts; SmallVector<Value, 4> operands(dmaStartOp->getOperands()); getReachableAffineApplyOps(operands, affineApplyInsts); for (auto *op : affineApplyInsts) { instShiftMap[op] = 0; } } } // Everything else (including compute ops and dma finish) are shifted by one. for (auto &op : forOp.getBody()->without_terminator()) if (instShiftMap.find(&op) == instShiftMap.end()) instShiftMap[&op] = 1; // Get shifts stored in map. SmallVector<uint64_t, 8> shifts(forOp.getBody()->getOperations().size()); unsigned s = 0; for (auto &op : forOp.getBody()->without_terminator()) { assert(instShiftMap.find(&op) != instShiftMap.end()); shifts[s++] = instShiftMap[&op]; // Tagging operations with shifts for debugging purposes. LLVM_DEBUG({ OpBuilder b(&op); op.setAttr("shift", b.getI64IntegerAttr(shifts[s - 1])); }); } if (!isOpwiseShiftValid(forOp, shifts)) { // Violates dependences. LLVM_DEBUG(llvm::dbgs() << "Shifts invalid - unexpected\n";); return; } if (failed(affineForOpBodySkew(forOp, shifts))) { LLVM_DEBUG(llvm::dbgs() << "op body skewing failed - unexpected\n";); return; } }