Mercurial > hg > CbC > CbC_llvm
view mlir/test/mlir-cpu-runner/memref_reinterpret_cast.mlir @ 214:0cf2d4ade63d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Jul 2021 09:53:52 +0900 |
parents | 2e18cbf3894f |
children | 5f17cb93ff66 |
line wrap: on
line source
// RUN: mlir-opt %s -convert-scf-to-std -convert-std-to-llvm \ // RUN: | mlir-cpu-runner -e main -entry-point-result=void \ // RUN: -shared-libs=%mlir_runner_utils_dir/libmlir_runner_utils%shlibext,%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \ // RUN: | FileCheck %s func private @print_memref_f32(memref<*xf32>) attributes { llvm.emit_c_interface } func @main() -> () { %c0 = constant 0 : index %c1 = constant 1 : index // Initialize input. %input = memref.alloc() : memref<2x3xf32> %dim_x = memref.dim %input, %c0 : memref<2x3xf32> %dim_y = memref.dim %input, %c1 : memref<2x3xf32> scf.parallel (%i, %j) = (%c0, %c0) to (%dim_x, %dim_y) step (%c1, %c1) { %prod = muli %i, %dim_y : index %val = addi %prod, %j : index %val_i64 = index_cast %val : index to i64 %val_f32 = sitofp %val_i64 : i64 to f32 memref.store %val_f32, %input[%i, %j] : memref<2x3xf32> } %unranked_input = memref.cast %input : memref<2x3xf32> to memref<*xf32> call @print_memref_f32(%unranked_input) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [2, 3] strides = [3, 1] // CHECK-NEXT: [0, 1, 2] // CHECK-NEXT: [3, 4, 5] // Test cases. call @cast_ranked_memref_to_static_shape(%input) : (memref<2x3xf32>) -> () call @cast_ranked_memref_to_dynamic_shape(%input) : (memref<2x3xf32>) -> () call @cast_unranked_memref_to_static_shape(%input) : (memref<2x3xf32>) -> () call @cast_unranked_memref_to_dynamic_shape(%input) : (memref<2x3xf32>) -> () return } func @cast_ranked_memref_to_static_shape(%input : memref<2x3xf32>) { %output = memref.reinterpret_cast %input to offset: [0], sizes: [6, 1], strides: [1, 1] : memref<2x3xf32> to memref<6x1xf32> %unranked_output = memref.cast %output : memref<6x1xf32> to memref<*xf32> call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [6, 1] strides = [1, 1] data = // CHECK-NEXT: [0], // CHECK-NEXT: [1], // CHECK-NEXT: [2], // CHECK-NEXT: [3], // CHECK-NEXT: [4], // CHECK-NEXT: [5] return } func @cast_ranked_memref_to_dynamic_shape(%input : memref<2x3xf32>) { %c0 = constant 0 : index %c1 = constant 1 : index %c6 = constant 6 : index %output = memref.reinterpret_cast %input to offset: [%c0], sizes: [%c1, %c6], strides: [%c6, %c1] : memref<2x3xf32> to memref<?x?xf32, offset: ?, strides: [?, ?]> %unranked_output = memref.cast %output : memref<?x?xf32, offset: ?, strides: [?, ?]> to memref<*xf32> call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [1, 6] strides = [6, 1] data = // CHECK-NEXT: [0, 1, 2, 3, 4, 5] return } func @cast_unranked_memref_to_static_shape(%input : memref<2x3xf32>) { %unranked_input = memref.cast %input : memref<2x3xf32> to memref<*xf32> %output = memref.reinterpret_cast %unranked_input to offset: [0], sizes: [6, 1], strides: [1, 1] : memref<*xf32> to memref<6x1xf32> %unranked_output = memref.cast %output : memref<6x1xf32> to memref<*xf32> call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [6, 1] strides = [1, 1] data = // CHECK-NEXT: [0], // CHECK-NEXT: [1], // CHECK-NEXT: [2], // CHECK-NEXT: [3], // CHECK-NEXT: [4], // CHECK-NEXT: [5] return } func @cast_unranked_memref_to_dynamic_shape(%input : memref<2x3xf32>) { %unranked_input = memref.cast %input : memref<2x3xf32> to memref<*xf32> %c0 = constant 0 : index %c1 = constant 1 : index %c6 = constant 6 : index %output = memref.reinterpret_cast %unranked_input to offset: [%c0], sizes: [%c1, %c6], strides: [%c6, %c1] : memref<*xf32> to memref<?x?xf32, offset: ?, strides: [?, ?]> %unranked_output = memref.cast %output : memref<?x?xf32, offset: ?, strides: [?, ?]> to memref<*xf32> call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [1, 6] strides = [6, 1] data = // CHECK-NEXT: [0, 1, 2, 3, 4, 5] return }