Mercurial > hg > CbC > CbC_llvm
view polly/lib/CodeGen/BlockGenerators.cpp @ 214:0cf2d4ade63d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Jul 2021 09:53:52 +0900 (2021-07-13) |
parents | 2e18cbf3894f |
children | 5f20bc1ed4ff |
line wrap: on
line source
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the BlockGenerator and VectorBlockGenerator classes, // which generate sequential code and vectorized code for a polyhedral // statement, respectively. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/BlockGenerators.h" #include "polly/CodeGen/IslExprBuilder.h" #include "polly/CodeGen/RuntimeDebugBuilder.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/ScopHelper.h" #include "polly/Support/VirtualInstruction.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "isl/ast.h" #include <deque> using namespace llvm; using namespace polly; static cl::opt<bool> Aligned("enable-polly-aligned", cl::desc("Assumed aligned memory accesses."), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); bool PollyDebugPrinting; static cl::opt<bool, true> DebugPrintingX( "polly-codegen-add-debug-printing", cl::desc("Add printf calls that show the values loaded/stored."), cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> TraceStmts( "polly-codegen-trace-stmts", cl::desc("Add printf calls that print the statement being executed"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> TraceScalars( "polly-codegen-trace-scalars", cl::desc("Add printf calls that print the values of all scalar values " "used in a statement. Requires -polly-codegen-trace-stmts."), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); BlockGenerator::BlockGenerator( PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), GlobalMap(GlobalMap), StartBlock(StartBlock) {} Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, LoopToScevMapT <S, Loop *L) const { if (!SE.isSCEVable(Old->getType())) return nullptr; const SCEV *Scev = SE.getSCEVAtScope(Old, L); if (!Scev) return nullptr; if (isa<SCEVCouldNotCompute>(Scev)) return nullptr; const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); ValueMapT VTV; VTV.insert(BBMap.begin(), BBMap.end()); VTV.insert(GlobalMap.begin(), GlobalMap.end()); Scop &S = *Stmt.getParent(); const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); auto IP = Builder.GetInsertPoint(); assert(IP != Builder.GetInsertBlock()->end() && "Only instructions can be insert points for SCEVExpander"); Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, StartBlock->getSinglePredecessor()); BBMap[Old] = Expanded; return Expanded; } Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, LoopToScevMapT <S, Loop *L) const { auto lookupGlobally = [this](Value *Old) -> Value * { Value *New = GlobalMap.lookup(Old); if (!New) return nullptr; // Required by: // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll // GlobalMap should be a mapping from (value in original SCoP) to (copied // value in generated SCoP), without intermediate mappings, which might // easily require transitiveness as well. if (Value *NewRemapped = GlobalMap.lookup(New)) New = NewRemapped; // No test case for this code. if (Old->getType()->getScalarSizeInBits() < New->getType()->getScalarSizeInBits()) New = Builder.CreateTruncOrBitCast(New, Old->getType()); return New; }; Value *New = nullptr; auto VUse = VirtualUse::create(&Stmt, L, Old, true); switch (VUse.getKind()) { case VirtualUse::Block: // BasicBlock are constants, but the BlockGenerator copies them. New = BBMap.lookup(Old); break; case VirtualUse::Constant: // Used by: // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll // Constants should not be redefined. In this case, the GlobalMap just // contains a mapping to the same constant, which is unnecessary, but // harmless. if ((New = lookupGlobally(Old))) break; assert(!BBMap.count(Old)); New = Old; break; case VirtualUse::ReadOnly: assert(!GlobalMap.count(Old)); // Required for: // * Isl/CodeGen/MemAccess/create_arrays.ll // * Isl/CodeGen/read-only-scalars.ll // * ScheduleOptimizer/pattern-matching-based-opts_10.ll // For some reason these reload a read-only value. The reloaded value ends // up in BBMap, buts its value should be identical. // // Required for: // * Isl/CodeGen/OpenMP/single_loop_with_param.ll // The parallel subfunctions need to reference the read-only value from the // parent function, this is done by reloading them locally. if ((New = BBMap.lookup(Old))) break; New = Old; break; case VirtualUse::Synthesizable: // Used by: // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll // * Isl/CodeGen/OpenMP/recomputed-srem.ll // * Isl/CodeGen/OpenMP/reference-other-bb.ll // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll // For some reason synthesizable values end up in GlobalMap. Their values // are the same as trySynthesizeNewValue would return. The legacy // implementation prioritized GlobalMap, so this is what we do here as well. // Ideally, synthesizable values should not end up in GlobalMap. if ((New = lookupGlobally(Old))) break; // Required for: // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll // * Isl/CodeGen/getNumberOfIterations.ll // * Isl/CodeGen/non_affine_float_compare.ll // * ScheduleOptimizer/pattern-matching-based-opts_10.ll // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, // not precomputed (SCEVExpander has its own caching mechanism). // These tests fail without this, but I think trySynthesizeNewValue would // just re-synthesize the same instructions. if ((New = BBMap.lookup(Old))) break; New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); break; case VirtualUse::Hoisted: // TODO: Hoisted invariant loads should be found in GlobalMap only, but not // redefined locally (which will be ignored anyway). That is, the following // assertion should apply: assert(!BBMap.count(Old)) New = lookupGlobally(Old); break; case VirtualUse::Intra: case VirtualUse::Inter: assert(!GlobalMap.count(Old) && "Intra and inter-stmt values are never global"); New = BBMap.lookup(Old); break; } assert(New && "Unexpected scalar dependence in region!"); return New; } void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, LoopToScevMapT <S) { // We do not generate debug intrinsics as we did not investigate how to // copy them correctly. At the current state, they just crash the code // generation as the meta-data operands are not correctly copied. if (isa<DbgInfoIntrinsic>(Inst)) return; Instruction *NewInst = Inst->clone(); // Replace old operands with the new ones. for (Value *OldOperand : Inst->operands()) { Value *NewOperand = getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); if (!NewOperand) { assert(!isa<StoreInst>(NewInst) && "Store instructions are always needed!"); NewInst->deleteValue(); return; } NewInst->replaceUsesOfWith(OldOperand, NewOperand); } Builder.Insert(NewInst); BBMap[Inst] = NewInst; // When copying the instruction onto the Module meant for the GPU, // debug metadata attached to an instruction causes all related // metadata to be pulled into the Module. This includes the DICompileUnit, // which will not be listed in llvm.dbg.cu of the Module since the Module // doesn't contain one. This fails the verification of the Module and the // subsequent generation of the ASM string. if (NewInst->getModule() != Inst->getModule()) NewInst->setDebugLoc(llvm::DebugLoc()); if (!NewInst->getType()->isVoidTy()) NewInst->setName("p_" + Inst->getName()); } Value * BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); return generateLocationAccessed( Stmt, getLoopForStmt(Stmt), Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); } Value *BlockGenerator::generateLocationAccessed( ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, Type *ExpectedType) { isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); if (AccessExpr) { AccessExpr = isl_ast_expr_address_of(AccessExpr); auto Address = ExprBuilder->create(AccessExpr); // Cast the address of this memory access to a pointer type that has the // same element type as the original access, but uses the address space of // the newly generated pointer. auto OldPtrTy = ExpectedType->getPointerTo(); auto NewPtrTy = Address->getType(); OldPtrTy = PointerType::get(OldPtrTy->getElementType(), NewPtrTy->getPointerAddressSpace()); if (OldPtrTy != NewPtrTy) Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); return Address; } assert( Pointer && "If expression was not generated, must use the original pointer value"); return getNewValue(Stmt, Pointer, BBMap, LTS, L); } Value * BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT <S, ValueMapT &BBMap, __isl_keep isl_id_to_ast_expr *NewAccesses) { if (Access.isLatestArrayKind()) return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, LTS, NewAccesses, Access.getId().release(), Access.getAccessValue()->getType()); return getOrCreateAlloca(Access); } Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { auto *StmtBB = Stmt.getEntryBlock(); return LI.getLoopFor(StmtBB); } Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { if (Value *PreloadLoad = GlobalMap.lookup(Load)) return PreloadLoad; Value *NewPointer = generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); Value *ScalarLoad = Builder.CreateAlignedLoad(Load->getType(), NewPointer, Load->getAlign(), Load->getName() + "_p_scalar_"); if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, ": ", ScalarLoad, "\n"); return ScalarLoad; } void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { MemoryAccess &MA = Stmt.getArrayAccessFor(Store); isl::set AccDom = MA.getAccessRelation().domain(); std::string Subject = MA.getId().get_name(); generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { Value *NewPointer = generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, getLoopForStmt(Stmt)); if (PollyDebugPrinting) RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, ": ", ValueOperand, "\n"); Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign()); }); } bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { Loop *L = getLoopForStmt(Stmt); return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && canSynthesize(Inst, *Stmt.getParent(), &SE, L); } void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { // Terminator instructions control the control flow. They are explicitly // expressed in the clast and do not need to be copied. if (Inst->isTerminator()) return; // Synthesizable statements will be generated on-demand. if (canSyntheziseInStmt(Stmt, Inst)) return; if (auto *Load = dyn_cast<LoadInst>(Inst)) { Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); // Compute NewLoad before its insertion in BBMap to make the insertion // deterministic. BBMap[Load] = NewLoad; return; } if (auto *Store = dyn_cast<StoreInst>(Inst)) { // Identified as redundant by -polly-simplify. if (!Stmt.getArrayAccessOrNULLFor(Store)) return; generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); return; } if (auto *PHI = dyn_cast<PHINode>(Inst)) { copyPHIInstruction(Stmt, PHI, BBMap, LTS); return; } // Skip some special intrinsics for which we do not adjust the semantics to // the new schedule. All others are handled like every other instruction. if (isIgnoredIntrinsic(Inst)) return; copyInstScalar(Stmt, Inst, BBMap, LTS); } void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { auto NewBB = Builder.GetInsertBlock(); for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { Instruction *NewInst = &*I; if (!isInstructionTriviallyDead(NewInst)) continue; for (auto Pair : BBMap) if (Pair.second == NewInst) { BBMap.erase(Pair.first); } NewInst->eraseFromParent(); I = NewBB->rbegin(); } } void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { assert(Stmt.isBlockStmt() && "Only block statements can be copied by the block generator"); ValueMapT BBMap; BasicBlock *BB = Stmt.getBasicBlock(); copyBB(Stmt, BB, BBMap, LTS, NewAccesses); removeDeadInstructions(BB, BBMap); } BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); CopyBB->setName("polly.stmt." + BB->getName()); return CopyBB; } BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { BasicBlock *CopyBB = splitBB(BB); Builder.SetInsertPoint(&CopyBB->front()); generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); generateBeginStmtTrace(Stmt, LTS, BBMap); copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); // After a basic block was copied store all scalars that escape this block in // their alloca. generateScalarStores(Stmt, LTS, BBMap, NewAccesses); return CopyBB; } void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { EntryBB = &CopyBB->getParent()->getEntryBlock(); // Block statements and the entry blocks of region statement are code // generated from instruction lists. This allow us to optimize the // instructions that belong to a certain scop statement. As the code // structure of region statements might be arbitrary complex, optimizing the // instruction list is not yet supported. if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) for (Instruction *Inst : Stmt.getInstructions()) copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); else for (Instruction &Inst : *BB) copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); } Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); return getOrCreateAlloca(Access.getLatestScopArrayInfo()); } Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); auto &Addr = ScalarMap[Array]; if (Addr) { // Allow allocas to be (temporarily) redirected once by adding a new // old-alloca-addr to new-addr mapping to GlobalMap. This functionality // is used for example by the OpenMP code generation where a first use // of a scalar while still in the host code allocates a normal alloca with // getOrCreateAlloca. When the values of this scalar are accessed during // the generation of the parallel subfunction, these values are copied over // to the parallel subfunction and each request for a scalar alloca slot // must be forwarded to the temporary in-subfunction slot. This mapping is // removed when the subfunction has been generated and again normal host // code is generated. Due to the following reasons it is not possible to // perform the GlobalMap lookup right after creating the alloca below, but // instead we need to check GlobalMap at each call to getOrCreateAlloca: // // 1) GlobalMap may be changed multiple times (for each parallel loop), // 2) The temporary mapping is commonly only known after the initial // alloca has already been generated, and // 3) The original alloca value must be restored after leaving the // sub-function. if (Value *NewAddr = GlobalMap.lookup(&*Addr)) return NewAddr; return Addr; } Type *Ty = Array->getElementType(); Value *ScalarBase = Array->getBasePtr(); std::string NameExt; if (Array->isPHIKind()) NameExt = ".phiops"; else NameExt = ".s2a"; const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr, DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt); EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); return Addr; } void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { Instruction *Inst = cast<Instruction>(Array->getBasePtr()); // If there are escape users we get the alloca for this instruction and put it // in the EscapeMap for later finalization. Lastly, if the instruction was // copied multiple times we already did this and can exit. if (EscapeMap.count(Inst)) return; EscapeUserVectorTy EscapeUsers; for (User *U : Inst->users()) { // Non-instruction user will never escape. Instruction *UI = dyn_cast<Instruction>(U); if (!UI) continue; if (S.contains(UI)) continue; EscapeUsers.push_back(UI); } // Exit if no escape uses were found. if (EscapeUsers.empty()) return; // Get or create an escape alloca for this instruction. auto *ScalarAddr = getOrCreateAlloca(Array); // Remember that this instruction has escape uses and the escape alloca. EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); } void BlockGenerator::generateScalarLoads( ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, __isl_keep isl_id_to_ast_expr *NewAccesses) { for (MemoryAccess *MA : Stmt) { if (MA->isOriginalArrayKind() || MA->isWrite()) continue; #ifndef NDEBUG auto StmtDom = Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); auto AccDom = MA->getAccessRelation().domain(); assert(!StmtDom.is_subset(AccDom).is_false() && "Scalar must be loaded in all statement instances"); #endif auto *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); assert((!isa<Instruction>(Address) || DT.dominates(cast<Instruction>(Address)->getParent(), Builder.GetInsertBlock())) && "Domination violation"); BBMap[MA->getAccessValue()] = Builder.CreateLoad( MA->getElementType(), Address, Address->getName() + ".reload"); } } Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain) { isl::ast_build AstBuild = Stmt.getAstBuild(); isl::set Domain = Stmt.getDomain(); isl::union_map USchedule = AstBuild.get_schedule(); USchedule = USchedule.intersect_domain(Domain); assert(!USchedule.is_empty()); isl::map Schedule = isl::map::from_union_map(USchedule); isl::set ScheduledDomain = Schedule.range(); isl::set ScheduledSet = Subdomain.apply(Schedule); isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); IsInSetExpr = Builder.CreateICmpNE( IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); return IsInSetExpr; } void BlockGenerator::generateConditionalExecution( ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, const std::function<void()> &GenThenFunc) { isl::set StmtDom = Stmt.getDomain(); // If the condition is a tautology, don't generate a condition around the // code. bool IsPartialWrite = !StmtDom.intersect_params(Stmt.getParent()->getContext()) .is_subset(Subdomain); if (!IsPartialWrite) { GenThenFunc(); return; } // Generate the condition. Value *Cond = buildContainsCondition(Stmt, Subdomain); // Don't call GenThenFunc if it is never executed. An ast index expression // might not be defined in this case. if (auto *Const = dyn_cast<ConstantInt>(Cond)) if (Const->isZero()) return; BasicBlock *HeadBlock = Builder.GetInsertBlock(); StringRef BlockName = HeadBlock->getName(); // Generate the conditional block. SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, &DT, &LI); BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); BasicBlock *ThenBlock = Branch->getSuccessor(0); BasicBlock *TailBlock = Branch->getSuccessor(1); // Assign descriptive names. if (auto *CondInst = dyn_cast<Instruction>(Cond)) CondInst->setName("polly." + Subject + ".cond"); ThenBlock->setName(BlockName + "." + Subject + ".partial"); TailBlock->setName(BlockName + ".cont"); // Put the client code into the conditional block and continue in the merge // block afterwards. Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); GenThenFunc(); Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); } static std::string getInstName(Value *Val) { std::string Result; raw_string_ostream OS(Result); Val->printAsOperand(OS, false); return OS.str(); } void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap) { if (!TraceStmts) return; Scop *S = Stmt.getParent(); const char *BaseName = Stmt.getBaseName(); isl::ast_build AstBuild = Stmt.getAstBuild(); isl::set Domain = Stmt.getDomain(); isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); isl::map Schedule = isl::map::from_union_map(USchedule); assert(Schedule.is_empty().is_false() && "The stmt must have a valid instance"); isl::multi_pw_aff ScheduleMultiPwAff = isl::pw_multi_aff::from_map(Schedule.reverse()); isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); // Sequence of strings to print. SmallVector<llvm::Value *, 8> Values; // Print the name of the statement. // TODO: Indent by the depth of the statement instance in the schedule tree. Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); // Add the coordinate of the statement instance. int DomDims = ScheduleMultiPwAff.dim(isl::dim::out); for (int i = 0; i < DomDims; i += 1) { if (i > 0) Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i)); Values.push_back(ExprBuilder->create(IsInSet.copy())); } if (TraceScalars) { Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); DenseSet<Instruction *> Encountered; // Add the value of each scalar (and the result of PHIs) used in the // statement. // TODO: Values used in region-statements. for (Instruction *Inst : Stmt.insts()) { if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) continue; if (isa<PHINode>(Inst)) { Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); Values.push_back(RuntimeDebugBuilder::getPrintableString( Builder, getInstName(Inst))); Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, LI.getLoopFor(Inst->getParent()))); } else { for (Value *Op : Inst->operand_values()) { // Do not print values that cannot change during the execution of the // SCoP. auto *OpInst = dyn_cast<Instruction>(Op); if (!OpInst) continue; if (!S->contains(OpInst)) continue; // Print each scalar at most once, and exclude values defined in the // statement itself. if (Encountered.count(OpInst)) continue; Values.push_back( RuntimeDebugBuilder::getPrintableString(Builder, " ")); Values.push_back(RuntimeDebugBuilder::getPrintableString( Builder, getInstName(OpInst))); Values.push_back( RuntimeDebugBuilder::getPrintableString(Builder, "=")); Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, LI.getLoopFor(Inst->getParent()))); Encountered.insert(OpInst); } } Encountered.insert(Inst); } Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); } else { Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); } RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); } void BlockGenerator::generateScalarStores( ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, __isl_keep isl_id_to_ast_expr *NewAccesses) { Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); assert(Stmt.isBlockStmt() && "Region statements need to use the generateScalarStores() function in " "the RegionGenerator"); for (MemoryAccess *MA : Stmt) { if (MA->isOriginalArrayKind() || MA->isRead()) continue; isl::set AccDom = MA->getAccessRelation().domain(); std::string Subject = MA->getId().get_name(); generateConditionalExecution( Stmt, AccDom, Subject.c_str(), [&, this, MA]() { Value *Val = MA->getAccessValue(); if (MA->isAnyPHIKind()) { assert(MA->getIncoming().size() >= 1 && "Block statements have exactly one exiting block, or " "multiple but " "with same incoming block and value"); assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), [&](std::pair<BasicBlock *, Value *> p) -> bool { return p.first == Stmt.getBasicBlock(); }) && "Incoming block must be statement's block"); Val = MA->getIncoming()[0].second; } auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); Val = getNewValue(Stmt, Val, BBMap, LTS, L); assert((!isa<Instruction>(Val) || DT.dominates(cast<Instruction>(Val)->getParent(), Builder.GetInsertBlock())) && "Domination violation"); assert((!isa<Instruction>(Address) || DT.dominates(cast<Instruction>(Address)->getParent(), Builder.GetInsertBlock())) && "Domination violation"); // The new Val might have a different type than the old Val due to // ScalarEvolution looking through bitcasts. if (Val->getType() != Address->getType()->getPointerElementType()) Address = Builder.CreateBitOrPointerCast( Address, Val->getType()->getPointerTo()); Builder.CreateStore(Val, Address); }); } } void BlockGenerator::createScalarInitialization(Scop &S) { BasicBlock *ExitBB = S.getExit(); BasicBlock *PreEntryBB = S.getEnteringBlock(); Builder.SetInsertPoint(&*StartBlock->begin()); for (auto &Array : S.arrays()) { if (Array->getNumberOfDimensions() != 0) continue; if (Array->isPHIKind()) { // For PHI nodes, the only values we need to store are the ones that // reach the PHI node from outside the region. In general there should // only be one such incoming edge and this edge should enter through // 'PreEntryBB'. auto PHI = cast<PHINode>(Array->getBasePtr()); for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) if (!S.contains(*BI) && *BI != PreEntryBB) llvm_unreachable("Incoming edges from outside the scop should always " "come from PreEntryBB"); int Idx = PHI->getBasicBlockIndex(PreEntryBB); if (Idx < 0) continue; Value *ScalarValue = PHI->getIncomingValue(Idx); Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); continue; } auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); if (Inst && S.contains(Inst)) continue; // PHI nodes that are not marked as such in their SAI object are either exit // PHI nodes we model as common scalars but without initialization, or // incoming phi nodes that need to be initialized. Check if the first is the // case for Inst and do not create and initialize memory if so. if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) continue; Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); } } void BlockGenerator::createScalarFinalization(Scop &S) { // The exit block of the __unoptimized__ region. BasicBlock *ExitBB = S.getExitingBlock(); // The merge block __just after__ the region and the optimized region. BasicBlock *MergeBB = S.getExit(); // The exit block of the __optimized__ region. BasicBlock *OptExitBB = *(pred_begin(MergeBB)); if (OptExitBB == ExitBB) OptExitBB = *(++pred_begin(MergeBB)); Builder.SetInsertPoint(OptExitBB->getTerminator()); for (const auto &EscapeMapping : EscapeMap) { // Extract the escaping instruction and the escaping users as well as the // alloca the instruction was demoted to. Instruction *EscapeInst = EscapeMapping.first; const auto &EscapeMappingValue = EscapeMapping.second; const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; auto *ScalarAddr = cast<AllocaInst>(&*EscapeMappingValue.first); // Reload the demoted instruction in the optimized version of the SCoP. Value *EscapeInstReload = Builder.CreateLoad(ScalarAddr->getAllocatedType(), ScalarAddr, EscapeInst->getName() + ".final_reload"); EscapeInstReload = Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); // Create the merge PHI that merges the optimized and unoptimized version. PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, EscapeInst->getName() + ".merge"); MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); // Add the respective values to the merge PHI. MergePHI->addIncoming(EscapeInstReload, OptExitBB); MergePHI->addIncoming(EscapeInst, ExitBB); // The information of scalar evolution about the escaping instruction needs // to be revoked so the new merged instruction will be used. if (SE.isSCEVable(EscapeInst->getType())) SE.forgetValue(EscapeInst); // Replace all uses of the demoted instruction with the merge PHI. for (Instruction *EUser : EscapeUsers) EUser->replaceUsesOfWith(EscapeInst, MergePHI); } } void BlockGenerator::findOutsideUsers(Scop &S) { for (auto &Array : S.arrays()) { if (Array->getNumberOfDimensions() != 0) continue; if (Array->isPHIKind()) continue; auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); if (!Inst) continue; // Scop invariant hoisting moves some of the base pointers out of the scop. // We can ignore these, as the invariant load hoisting already registers the // relevant outside users. if (!S.contains(Inst)) continue; handleOutsideUsers(S, Array); } } void BlockGenerator::createExitPHINodeMerges(Scop &S) { if (S.hasSingleExitEdge()) return; auto *ExitBB = S.getExitingBlock(); auto *MergeBB = S.getExit(); auto *AfterMergeBB = MergeBB->getSingleSuccessor(); BasicBlock *OptExitBB = *(pred_begin(MergeBB)); if (OptExitBB == ExitBB) OptExitBB = *(++pred_begin(MergeBB)); Builder.SetInsertPoint(OptExitBB->getTerminator()); for (auto &SAI : S.arrays()) { auto *Val = SAI->getBasePtr(); // Only Value-like scalars need a merge PHI. Exit block PHIs receive either // the original PHI's value or the reloaded incoming values from the // generated code. An llvm::Value is merged between the original code's // value or the generated one. if (!SAI->isExitPHIKind()) continue; PHINode *PHI = dyn_cast<PHINode>(Val); if (!PHI) continue; if (PHI->getParent() != AfterMergeBB) continue; std::string Name = PHI->getName().str(); Value *ScalarAddr = getOrCreateAlloca(SAI); Value *Reload = Builder.CreateLoad(SAI->getElementType(), ScalarAddr, Name + ".ph.final_reload"); Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); assert((!isa<Instruction>(OriginalValue) || cast<Instruction>(OriginalValue)->getParent() != MergeBB) && "Original value must no be one we just generated."); auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); MergePHI->addIncoming(Reload, OptExitBB); MergePHI->addIncoming(OriginalValue, ExitBB); int Idx = PHI->getBasicBlockIndex(MergeBB); PHI->setIncomingValue(Idx, MergePHI); } } void BlockGenerator::invalidateScalarEvolution(Scop &S) { for (auto &Stmt : S) if (Stmt.isCopyStmt()) continue; else if (Stmt.isBlockStmt()) for (auto &Inst : *Stmt.getBasicBlock()) SE.forgetValue(&Inst); else if (Stmt.isRegionStmt()) for (auto *BB : Stmt.getRegion()->blocks()) for (auto &Inst : *BB) SE.forgetValue(&Inst); else llvm_unreachable("Unexpected statement type found"); // Invalidate SCEV of loops surrounding the EscapeUsers. for (const auto &EscapeMapping : EscapeMap) { const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; for (Instruction *EUser : EscapeUsers) { if (Loop *L = LI.getLoopFor(EUser->getParent())) while (L) { SE.forgetLoop(L); L = L->getParentLoop(); } } } } void BlockGenerator::finalizeSCoP(Scop &S) { findOutsideUsers(S); createScalarInitialization(S); createExitPHINodeMerges(S); createScalarFinalization(S); invalidateScalarEvolution(S); } VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, std::vector<LoopToScevMapT> &VLTS, isl_map *Schedule) : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { assert(Schedule && "No statement domain provided"); } Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, Loop *L) { if (Value *NewValue = VectorMap.lookup(Old)) return NewValue; int Width = getVectorWidth(); Value *Vector = UndefValue::get(FixedVectorType::get(Old->getType(), Width)); for (int Lane = 0; Lane < Width; Lane++) Vector = Builder.CreateInsertElement( Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), Builder.getInt32(Lane)); VectorMap[Old] = Vector; return Vector; } Value *VectorBlockGenerator::generateStrideOneLoad( ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { unsigned VectorWidth = getVectorWidth(); Type *VectorType = FixedVectorType::get(Load->getType(), VectorWidth); Type *VectorPtrType = PointerType::get(VectorType, Load->getPointerAddressSpace()); unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], VLTS[Offset], NewAccesses); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); LoadInst *VecLoad = Builder.CreateLoad(VectorType, VectorPtr, Load->getName() + "_p_vec_full"); if (!Aligned) VecLoad->setAlignment(Align(8)); if (NegativeStride) { SmallVector<Constant *, 16> Indices; for (int i = VectorWidth - 1; i >= 0; i--) Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); Constant *SV = llvm::ConstantVector::get(Indices); Value *RevVecLoad = Builder.CreateShuffleVector( VecLoad, VecLoad, SV, Load->getName() + "_reverse"); return RevVecLoad; } return VecLoad; } Value *VectorBlockGenerator::generateStrideZeroLoad( ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, __isl_keep isl_id_to_ast_expr *NewAccesses) { Type *VectorType = FixedVectorType::get(Load->getType(), 1); Type *VectorPtrType = PointerType::get(VectorType, Load->getPointerAddressSpace()); Value *NewPointer = generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, Load->getName() + "_p_vec_p"); LoadInst *ScalarLoad = Builder.CreateLoad(VectorType, VectorPtr, Load->getName() + "_p_splat_one"); if (!Aligned) ScalarLoad->setAlignment(Align(8)); Constant *SplatVector = Constant::getNullValue( FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth())); Value *VectorLoad = Builder.CreateShuffleVector( ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); return VectorLoad; } Value *VectorBlockGenerator::generateUnknownStrideLoad( ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { int VectorWidth = getVectorWidth(); Type *ElemTy = Load->getType(); auto *FVTy = FixedVectorType::get(ElemTy, VectorWidth); Value *Vector = UndefValue::get(FVTy); for (int i = 0; i < VectorWidth; i++) { Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); Value *ScalarLoad = Builder.CreateLoad(ElemTy, NewPointer, Load->getName() + "_p_scalar_"); Vector = Builder.CreateInsertElement( Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); } return Vector; } void VectorBlockGenerator::generateLoad( ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { if (Value *PreloadLoad = GlobalMap.lookup(Load)) { VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, Load->getName() + "_p"); return; } if (!VectorType::isValidElementType(Load->getType())) { for (int i = 0; i < getVectorWidth(); i++) ScalarMaps[i][Load] = generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); return; } const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); // Make sure we have scalar values available to access the pointer to // the data location. extractScalarValues(Load, VectorMap, ScalarMaps); Value *NewLoad; if (Access.isStrideZero(isl::manage_copy(Schedule))) NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); else if (Access.isStrideOne(isl::manage_copy(Schedule))) NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); else NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); VectorMap[Load] = NewLoad; } void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { int VectorWidth = getVectorWidth(); Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, ScalarMaps, getLoopForStmt(Stmt)); assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); const CastInst *Cast = dyn_cast<CastInst>(Inst); auto *DestType = FixedVectorType::get(Inst->getType(), VectorWidth); VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); } void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { Loop *L = getLoopForStmt(Stmt); Value *OpZero = Inst->getOperand(0); Value *OpOne = Inst->getOperand(1); Value *NewOpZero, *NewOpOne; NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, Inst->getName() + "p_vec"); VectorMap[Inst] = NewInst; } void VectorBlockGenerator::copyStore( ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, ScalarMaps, getLoopForStmt(Stmt)); // Make sure we have scalar values available to access the pointer to // the data location. extractScalarValues(Store, VectorMap, ScalarMaps); if (Access.isStrideOne(isl::manage_copy(Schedule))) { Type *VectorType = FixedVectorType::get(Store->getValueOperand()->getType(), getVectorWidth()); Type *VectorPtrType = PointerType::get(VectorType, Store->getPointerAddressSpace()); Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], VLTS[0], NewAccesses); Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); if (!Aligned) Store->setAlignment(Align(8)); } else { for (unsigned i = 0; i < ScalarMaps.size(); i++) { Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], VLTS[i], NewAccesses); Builder.CreateStore(Scalar, NewPointer); } } } bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap) { for (Value *Operand : Inst->operands()) if (VectorMap.count(Operand)) return true; return false; } bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps) { bool HasVectorOperand = false; int VectorWidth = getVectorWidth(); for (Value *Operand : Inst->operands()) { ValueMapT::iterator VecOp = VectorMap.find(Operand); if (VecOp == VectorMap.end()) continue; HasVectorOperand = true; Value *NewVector = VecOp->second; for (int i = 0; i < VectorWidth; ++i) { ValueMapT &SM = ScalarMaps[i]; // If there is one scalar extracted, all scalar elements should have // already been extracted by the code here. So no need to check for the // existence of all of them. if (SM.count(Operand)) break; SM[Operand] = Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); } } return HasVectorOperand; } void VectorBlockGenerator::copyInstScalarized( ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { bool HasVectorOperand; int VectorWidth = getVectorWidth(); HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], VLTS[VectorLane], NewAccesses); if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) return; // Make the result available as vector value. auto *FVTy = FixedVectorType::get(Inst->getType(), VectorWidth); Value *Vector = UndefValue::get(FVTy); for (int i = 0; i < VectorWidth; i++) Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], Builder.getInt32(i)); VectorMap[Inst] = Vector; } int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } void VectorBlockGenerator::copyInstruction( ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { // Terminator instructions control the control flow. They are explicitly // expressed in the clast and do not need to be copied. if (Inst->isTerminator()) return; if (canSyntheziseInStmt(Stmt, Inst)) return; if (auto *Load = dyn_cast<LoadInst>(Inst)) { generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); return; } if (hasVectorOperands(Inst, VectorMap)) { if (auto *Store = dyn_cast<StoreInst>(Inst)) { // Identified as redundant by -polly-simplify. if (!Stmt.getArrayAccessOrNULLFor(Store)) return; copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); return; } if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); return; } if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); return; } // Fallthrough: We generate scalar instructions, if we don't know how to // generate vector code. } copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); } void VectorBlockGenerator::generateScalarVectorLoads( ScopStmt &Stmt, ValueMapT &VectorBlockMap) { for (MemoryAccess *MA : Stmt) { if (MA->isArrayKind() || MA->isWrite()) continue; auto *Address = getOrCreateAlloca(*MA); Type *VectorType = FixedVectorType::get(MA->getElementType(), 1); Type *VectorPtrType = PointerType::get( VectorType, Address->getType()->getPointerAddressSpace()); Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, Address->getName() + "_p_vec_p"); auto *Val = Builder.CreateLoad(VectorType, VectorPtr, Address->getName() + ".reload"); Constant *SplatVector = Constant::getNullValue( FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth())); Value *VectorVal = Builder.CreateShuffleVector( Val, Val, SplatVector, Address->getName() + "_p_splat"); VectorBlockMap[MA->getAccessValue()] = VectorVal; } } void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { for (MemoryAccess *MA : Stmt) { if (MA->isArrayKind() || MA->isRead()) continue; llvm_unreachable("Scalar stores not expected in vector loop"); } } void VectorBlockGenerator::copyStmt( ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by the vector block " "generator"); BasicBlock *BB = Stmt.getBasicBlock(); BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); CopyBB->setName("polly.stmt." + BB->getName()); Builder.SetInsertPoint(&CopyBB->front()); // Create two maps that store the mapping from the original instructions of // the old basic block to their copies in the new basic block. Those maps // are basic block local. // // As vector code generation is supported there is one map for scalar values // and one for vector values. // // In case we just do scalar code generation, the vectorMap is not used and // the scalarMap has just one dimension, which contains the mapping. // // In case vector code generation is done, an instruction may either appear // in the vector map once (as it is calculating >vectorwidth< values at a // time. Or (if the values are calculated using scalar operations), it // appears once in every dimension of the scalarMap. VectorValueMapT ScalarBlockMap(getVectorWidth()); ValueMapT VectorBlockMap; generateScalarVectorLoads(Stmt, VectorBlockMap); for (Instruction *Inst : Stmt.getInstructions()) copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); verifyNoScalarStores(Stmt); } BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, BasicBlock *BBCopy) { BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); if (BBCopyIDom) DT.changeImmediateDominator(BBCopy, BBCopyIDom); return StartBlockMap.lookup(BBIDom); } // This is to determine whether an llvm::Value (defined in @p BB) is usable when // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) // does not work in cases where the exit block has edges from outside the // region. In that case the llvm::Value would never be usable in in the exit // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') // for the subregion's exiting edges only. We need to determine whether an // llvm::Value is usable in there. We do this by checking whether it dominates // all exiting blocks individually. static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, BasicBlock *BB) { for (auto ExitingBB : predecessors(R->getExit())) { // Check for non-subregion incoming edges. if (!R->contains(ExitingBB)) continue; if (!DT.dominates(BB, ExitingBB)) return false; } return true; } // Find the direct dominator of the subregion's exit block if the subregion was // simplified. static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { BasicBlock *Common = nullptr; for (auto ExitingBB : predecessors(R->getExit())) { // Check for non-subregion incoming edges. if (!R->contains(ExitingBB)) continue; // First exiting edge. if (!Common) { Common = ExitingBB; continue; } Common = DT.findNearestCommonDominator(Common, ExitingBB); } assert(Common && R->contains(Common)); return Common; } void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, isl_id_to_ast_expr *IdToAstExp) { assert(Stmt.isRegionStmt() && "Only region statements can be copied by the region generator"); // Forget all old mappings. StartBlockMap.clear(); EndBlockMap.clear(); RegionMaps.clear(); IncompletePHINodeMap.clear(); // Collection of all values related to this subregion. ValueMapT ValueMap; // The region represented by the statement. Region *R = Stmt.getRegion(); // Create a dedicated entry for the region where we can reload all demoted // inputs. BasicBlock *EntryBB = R->getEntry(); BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); Builder.SetInsertPoint(&EntryBBCopy->front()); ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); generateBeginStmtTrace(Stmt, LTS, EntryBBMap); for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) if (!R->contains(*PI)) { StartBlockMap[*PI] = EntryBBCopy; EndBlockMap[*PI] = EntryBBCopy; } // Iterate over all blocks in the region in a breadth-first search. std::deque<BasicBlock *> Blocks; SmallSetVector<BasicBlock *, 8> SeenBlocks; Blocks.push_back(EntryBB); SeenBlocks.insert(EntryBB); while (!Blocks.empty()) { BasicBlock *BB = Blocks.front(); Blocks.pop_front(); // First split the block and update dominance information. BasicBlock *BBCopy = splitBB(BB); BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); // Get the mapping for this block and initialize it with either the scalar // loads from the generated entering block (which dominates all blocks of // this subregion) or the maps of the immediate dominator, if part of the // subregion. The latter necessarily includes the former. ValueMapT *InitBBMap; if (BBCopyIDom) { assert(RegionMaps.count(BBCopyIDom)); InitBBMap = &RegionMaps[BBCopyIDom]; } else InitBBMap = &EntryBBMap; auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); ValueMapT &RegionMap = Inserted.first->second; // Copy the block with the BlockGenerator. Builder.SetInsertPoint(&BBCopy->front()); copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); // In order to remap PHI nodes we store also basic block mappings. StartBlockMap[BB] = BBCopy; EndBlockMap[BB] = Builder.GetInsertBlock(); // Add values to incomplete PHI nodes waiting for this block to be copied. for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); IncompletePHINodeMap[BB].clear(); // And continue with new successors inside the region. for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) if (R->contains(*SI) && SeenBlocks.insert(*SI)) Blocks.push_back(*SI); // Remember value in case it is visible after this subregion. if (isDominatingSubregionExit(DT, R, BB)) ValueMap.insert(RegionMap.begin(), RegionMap.end()); } // Now create a new dedicated region exit block and add it to the region map. BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); StartBlockMap[R->getExit()] = ExitBBCopy; EndBlockMap[R->getExit()] = ExitBBCopy; BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); assert(ExitDomBBCopy && "Common exit dominator must be within region; at least the entry node " "must match"); DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); // As the block generator doesn't handle control flow we need to add the // region control flow by hand after all blocks have been copied. for (BasicBlock *BB : SeenBlocks) { BasicBlock *BBCopyStart = StartBlockMap[BB]; BasicBlock *BBCopyEnd = EndBlockMap[BB]; Instruction *TI = BB->getTerminator(); if (isa<UnreachableInst>(TI)) { while (!BBCopyEnd->empty()) BBCopyEnd->begin()->eraseFromParent(); new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); continue; } Instruction *BICopy = BBCopyEnd->getTerminator(); ValueMapT &RegionMap = RegionMaps[BBCopyStart]; RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); Builder.SetInsertPoint(BICopy); copyInstScalar(Stmt, TI, RegionMap, LTS); BICopy->eraseFromParent(); } // Add counting PHI nodes to all loops in the region that can be used as // replacement for SCEVs referring to the old loop. for (BasicBlock *BB : SeenBlocks) { Loop *L = LI.getLoopFor(BB); if (L == nullptr || L->getHeader() != BB || !R->contains(L)) continue; BasicBlock *BBCopy = StartBlockMap[BB]; Value *NullVal = Builder.getInt32(0); PHINode *LoopPHI = PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); Instruction *LoopPHIInc = BinaryOperator::CreateAdd( LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); LoopPHI->insertBefore(&BBCopy->front()); LoopPHIInc->insertBefore(BBCopy->getTerminator()); for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { if (!R->contains(PredBB)) continue; if (L->contains(PredBB)) LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); else LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); } for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) LoopPHI->addIncoming(NullVal, PredBBCopy); LTS[L] = SE.getUnknown(LoopPHI); } // Continue generating code in the exit block. Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); // Write values visible to other statements. generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); StartBlockMap.clear(); EndBlockMap.clear(); RegionMaps.clear(); IncompletePHINodeMap.clear(); } PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap, Loop *L) { ScopStmt *Stmt = MA->getStatement(); Region *SubR = Stmt->getRegion(); auto Incoming = MA->getIncoming(); PollyIRBuilder::InsertPointGuard IPGuard(Builder); PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); // This can happen if the subregion is simplified after the ScopStmts // have been created; simplification happens as part of CodeGeneration. if (OrigPHI->getParent() != SubR->getExit()) { BasicBlock *FormerExit = SubR->getExitingBlock(); if (FormerExit) NewSubregionExit = StartBlockMap.lookup(FormerExit); } PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), "polly." + OrigPHI->getName(), NewSubregionExit->getFirstNonPHI()); // Add the incoming values to the PHI. for (auto &Pair : Incoming) { BasicBlock *OrigIncomingBlock = Pair.first; BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); assert(RegionMaps.count(NewIncomingBlockStart)); assert(RegionMaps.count(NewIncomingBlockEnd)); ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; Value *OrigIncomingValue = Pair.second; Value *NewIncomingValue = getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); } return NewPHI; } Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap) { ScopStmt *Stmt = MA->getStatement(); // TODO: Add some test cases that ensure this is really the right choice. Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); if (MA->isAnyPHIKind()) { auto Incoming = MA->getIncoming(); assert(!Incoming.empty() && "PHI WRITEs must have originate from at least one incoming block"); // If there is only one incoming value, we do not need to create a PHI. if (Incoming.size() == 1) { Value *OldVal = Incoming[0].second; return getNewValue(*Stmt, OldVal, BBMap, LTS, L); } return buildExitPHI(MA, LTS, BBMap, L); } // MemoryKind::Value accesses leaving the subregion must dominate the exit // block; just pass the copied value. Value *OldVal = MA->getAccessValue(); return getNewValue(*Stmt, OldVal, BBMap, LTS, L); } void RegionGenerator::generateScalarStores( ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, __isl_keep isl_id_to_ast_expr *NewAccesses) { assert(Stmt.getRegion() && "Block statements need to use the generateScalarStores() " "function in the BlockGenerator"); // Get the exit scalar values before generating the writes. // This is necessary because RegionGenerator::getExitScalar may insert // PHINodes that depend on the region's exiting blocks. But // BlockGenerator::generateConditionalExecution may insert a new basic block // such that the current basic block is not a direct successor of the exiting // blocks anymore. Hence, build the PHINodes while the current block is still // the direct successor. SmallDenseMap<MemoryAccess *, Value *> NewExitScalars; for (MemoryAccess *MA : Stmt) { if (MA->isOriginalArrayKind() || MA->isRead()) continue; Value *NewVal = getExitScalar(MA, LTS, BBMap); NewExitScalars[MA] = NewVal; } for (MemoryAccess *MA : Stmt) { if (MA->isOriginalArrayKind() || MA->isRead()) continue; isl::set AccDom = MA->getAccessRelation().domain(); std::string Subject = MA->getId().get_name(); generateConditionalExecution( Stmt, AccDom, Subject.c_str(), [&, this, MA]() { Value *NewVal = NewExitScalars.lookup(MA); assert(NewVal && "The exit scalar must be determined before"); Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); assert((!isa<Instruction>(NewVal) || DT.dominates(cast<Instruction>(NewVal)->getParent(), Builder.GetInsertBlock())) && "Domination violation"); assert((!isa<Instruction>(Address) || DT.dominates(cast<Instruction>(Address)->getParent(), Builder.GetInsertBlock())) && "Domination violation"); Builder.CreateStore(NewVal, Address); }); } } void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy, BasicBlock *IncomingBB, LoopToScevMapT <S) { // If the incoming block was not yet copied mark this PHI as incomplete. // Once the block will be copied the incoming value will be added. BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; if (!BBCopyStart) { assert(!BBCopyEnd); assert(Stmt.represents(IncomingBB) && "Bad incoming block for PHI in non-affine region"); IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); return; } assert(RegionMaps.count(BBCopyStart) && "Incoming PHI block did not have a BBMap"); ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; Value *OpCopy = nullptr; if (Stmt.represents(IncomingBB)) { Value *Op = PHI->getIncomingValueForBlock(IncomingBB); // If the current insert block is different from the PHIs incoming block // change it, otherwise do not. auto IP = Builder.GetInsertPoint(); if (IP->getParent() != BBCopyEnd) Builder.SetInsertPoint(BBCopyEnd->getTerminator()); OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); if (IP->getParent() != BBCopyEnd) Builder.SetInsertPoint(&*IP); } else { // All edges from outside the non-affine region become a single edge // in the new copy of the non-affine region. Make sure to only add the // corresponding edge the first time we encounter a basic block from // outside the non-affine region. if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) return; // Get the reloaded value. OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); } assert(OpCopy && "Incoming PHI value was not copied properly"); PHICopy->addIncoming(OpCopy, BBCopyEnd); } void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, ValueMapT &BBMap, LoopToScevMapT <S) { unsigned NumIncoming = PHI->getNumIncomingValues(); PHINode *PHICopy = Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); BBMap[PHI] = PHICopy; for (BasicBlock *IncomingBB : PHI->blocks()) addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); }