Mercurial > hg > CbC > CbC_llvm
view mlir/test/AffineOps/canonicalize.mlir @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children |
line wrap: on
line source
// RUN: mlir-opt %s -split-input-file -pass-pipeline='func(canonicalize)' | FileCheck %s // Affine maps for test case: compose_affine_maps_1dto2d_no_symbols // CHECK-DAG: [[MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0 - 1)> // CHECK-DAG: [[MAP1:#map[0-9]+]] = affine_map<(d0) -> (d0 + 1)> // Affine maps for test case: compose_affine_maps_1dto2d_with_symbols // CHECK-DAG: [[MAP4:#map[0-9]+]] = affine_map<(d0) -> (d0 - 4)> // CHECK-DAG: [[MAP4b:#map[0-9]+]] = affine_map<(d0) -> (d0 - 7)> // CHECK-DAG: [[MAP7:#map[0-9]+]] = affine_map<(d0) -> (d0 * 2 - 3)> // CHECK-DAG: [[MAP7a:#map[0-9]+]] = affine_map<(d0) -> (d0 * 2 + 1)> // Affine map for test case: compose_affine_maps_d2_tile // CHECK-DAG: [[MAP8:#map[0-9]+]] = affine_map<(d0, d1) -> (d1 + (d0 ceildiv 4) * 4 - (d1 floordiv 4) * 4)> // CHECK-DAG: [[MAP8a:#map[0-9]+]] = affine_map<(d0, d1) -> (d1 + (d0 ceildiv 8) * 8 - (d1 floordiv 8) * 8)> // Affine maps for test case: compose_affine_maps_dependent_loads // CHECK-DAG: [[MAP9:#map[0-9]+]] = affine_map<(d0) -> (d0 + 3)> // CHECK-DAG: [[MAP10:#map[0-9]+]] = affine_map<(d0) -> (d0 * 3)> // CHECK-DAG: [[MAP11:#map[0-9]+]] = affine_map<(d0) -> ((d0 + 7) ceildiv 3)> // CHECK-DAG: [[MAP12:#map[0-9]+]] = affine_map<(d0) -> (d0 * 7 - 49)> // Affine maps for test case: compose_affine_maps_diamond_dependency // CHECK-DAG: [[MAP13A:#map[0-9]+]] = affine_map<(d0) -> ((d0 + 6) ceildiv 8)> // CHECK-DAG: [[MAP13B:#map[0-9]+]] = affine_map<(d0) -> ((d0 * 4 - 4) floordiv 3)> // Affine maps for test case: partial_fold_map // CHECK-DAG: [[MAP15:#map[0-9]+]] = affine_map<()[s0] -> (s0 - 42)> // Affine maps for test cases: symbolic_composition_* // CHECK-DAG: [[map_symbolic_composition_a:#map[0-9]+]] = affine_map<()[s0] -> (s0 * 512)> // CHECK-DAG: [[map_symbolic_composition_b:#map[0-9]+]] = affine_map<()[s0] -> (s0 * 4)> // CHECK-DAG: [[map_symbolic_composition_c:#map[0-9]+]] = affine_map<()[s0, s1] -> (s0 * 3 + s1)> // CHECK-DAG: [[map_symbolic_composition_d:#map[0-9]+]] = affine_map<()[s0, s1] -> (s1 * 3 + s0)> // Affine maps for test cases: map_mix_dims_and_symbols_* // CHECK-DAG: [[map_mix_dims_and_symbols_b:#map[0-9]+]] = affine_map<()[s0, s1] -> (s1 + s0 * 42 + 6)> // CHECK-DAG: [[map_mix_dims_and_symbols_c:#map[0-9]+]] = affine_map<()[s0, s1] -> (s1 * 4 + s0 * 168 - 4)> // CHECK-DAG: [[map_mix_dims_and_symbols_d:#map[0-9]+]] = affine_map<()[s0, s1] -> ((s1 + s0 * 42 + 6) ceildiv 8)> // CHECK-DAG: [[map_mix_dims_and_symbols_e:#map[0-9]+]] = affine_map<()[s0, s1] -> ((s1 * 4 + s0 * 168 - 4) floordiv 3)> // Affine maps for test case: symbolic_semi_affine // CHECK-DAG: [[symbolic_semi_affine:#map[0-9]+]] = affine_map<(d0)[s0] -> (d0 floordiv (s0 + 1))> // CHECK-LABEL: func @compose_affine_maps_1dto2d_no_symbols() { func @compose_affine_maps_1dto2d_no_symbols() { %0 = alloc() : memref<4x4xf32> affine.for %i0 = 0 to 15 { // Test load[%x, %x] %x0 = affine.apply affine_map<(d0) -> (d0 - 1)> (%i0) %x1_0 = affine.apply affine_map<(d0, d1) -> (d0)> (%x0, %x0) %x1_1 = affine.apply affine_map<(d0, d1) -> (d1)> (%x0, %x0) // CHECK: [[I0A:%[0-9]+]] = affine.apply [[MAP0]](%{{.*}}) // CHECK-NEXT: load %0{{\[}}[[I0A]], [[I0A]]{{\]}} %v0 = load %0[%x1_0, %x1_1] : memref<4x4xf32> // Test load[%y, %y] %y0 = affine.apply affine_map<(d0) -> (d0 + 1)> (%i0) %y1_0 = affine.apply affine_map<(d0, d1) -> (d0)> (%y0, %y0) %y1_1 = affine.apply affine_map<(d0, d1) -> (d1)> (%y0, %y0) // CHECK-NEXT: [[I1A:%[0-9]+]] = affine.apply [[MAP1]](%{{.*}}) // CHECK-NEXT: load %0{{\[}}[[I1A]], [[I1A]]{{\]}} %v1 = load %0[%y1_0, %y1_1] : memref<4x4xf32> // Test load[%x, %y] %xy_0 = affine.apply affine_map<(d0, d1) -> (d0)> (%x0, %y0) %xy_1 = affine.apply affine_map<(d0, d1) -> (d1)> (%x0, %y0) // CHECK-NEXT: load %0{{\[}}[[I0A]], [[I1A]]{{\]}} %v2 = load %0[%xy_0, %xy_1] : memref<4x4xf32> // Test load[%y, %x] %yx_0 = affine.apply affine_map<(d0, d1) -> (d0)> (%y0, %x0) %yx_1 = affine.apply affine_map<(d0, d1) -> (d1)> (%y0, %x0) // CHECK-NEXT: load %0{{\[}}[[I1A]], [[I0A]]{{\]}} %v3 = load %0[%yx_0, %yx_1] : memref<4x4xf32> } return } // CHECK-LABEL: func @compose_affine_maps_1dto2d_with_symbols() { func @compose_affine_maps_1dto2d_with_symbols() { %0 = alloc() : memref<4x4xf32> affine.for %i0 = 0 to 15 { // Test load[%x0, %x0] with symbol %c4 %c4 = constant 4 : index %x0 = affine.apply affine_map<(d0)[s0] -> (d0 - s0)> (%i0)[%c4] // CHECK: [[I0:%[0-9]+]] = affine.apply [[MAP4]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I0]], [[I0]]{{\]}} %v0 = load %0[%x0, %x0] : memref<4x4xf32> // Test load[%x0, %x1] with symbol %c4 captured by '%x0' map. %x1 = affine.apply affine_map<(d0) -> (d0 + 1)> (%i0) %y1 = affine.apply affine_map<(d0, d1) -> (d0+d1)> (%x0, %x1) // CHECK-NEXT: [[I1:%[0-9]+]] = affine.apply [[MAP7]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I1]], [[I1]]{{\]}} %v1 = load %0[%y1, %y1] : memref<4x4xf32> // Test load[%x1, %x0] with symbol %c4 captured by '%x0' map. %y2 = affine.apply affine_map<(d0, d1) -> (d0 + d1)> (%x1, %x0) // CHECK-NEXT: [[I2:%[0-9]+]] = affine.apply [[MAP7]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I2]], [[I2]]{{\]}} %v2 = load %0[%y2, %y2] : memref<4x4xf32> // Test load[%x2, %x0] with symbol %c4 from '%x0' and %c5 from '%x2' %c5 = constant 5 : index %x2 = affine.apply affine_map<(d0)[s0] -> (d0 + s0)> (%i0)[%c5] %y3 = affine.apply affine_map<(d0, d1) -> (d0 + d1)> (%x2, %x0) // CHECK: [[I3:%[0-9]+]] = affine.apply [[MAP7a]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I3]], [[I3]]{{\]}} %v3 = load %0[%y3, %y3] : memref<4x4xf32> } return } // CHECK-LABEL: func @compose_affine_maps_2d_tile() { func @compose_affine_maps_2d_tile() { %0 = alloc() : memref<16x32xf32> %1 = alloc() : memref<16x32xf32> %c4 = constant 4 : index %c8 = constant 8 : index affine.for %i0 = 0 to 3 { %x0 = affine.apply affine_map<(d0)[s0] -> (d0 ceildiv s0)> (%i0)[%c4] affine.for %i1 = 0 to 3 { %x1 = affine.apply affine_map<(d0)[s0] -> (d0 ceildiv s0)> (%i1)[%c8] affine.for %i2 = 0 to 3 { %x2 = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)> (%i2)[%c4] affine.for %i3 = 0 to 3 { %x3 = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)> (%i3)[%c8] %x40 = affine.apply affine_map<(d0, d1, d2, d3)[s0, s1] -> ((d0 * s0) + d2)> (%x0, %x1, %x2, %x3)[%c4, %c8] %x41 = affine.apply affine_map<(d0, d1, d2, d3)[s0, s1] -> ((d1 * s1) + d3)> (%x0, %x1, %x2, %x3)[%c4, %c8] // CHECK: [[I0:%[0-9]+]] = affine.apply [[MAP8]](%{{.*}}, %{{.*}}) // CHECK: [[I1:%[0-9]+]] = affine.apply [[MAP8a]](%{{.*}}, %{{.*}}) // CHECK-NEXT: [[L0:%[0-9]+]] = load %{{[0-9]+}}{{\[}}[[I0]], [[I1]]{{\]}} %v0 = load %0[%x40, %x41] : memref<16x32xf32> // CHECK-NEXT: store [[L0]], %{{[0-9]+}}{{\[}}[[I0]], [[I1]]{{\]}} store %v0, %1[%x40, %x41] : memref<16x32xf32> } } } } return } // CHECK-LABEL: func @compose_affine_maps_dependent_loads() { func @compose_affine_maps_dependent_loads() { %0 = alloc() : memref<16x32xf32> %1 = alloc() : memref<16x32xf32> affine.for %i0 = 0 to 3 { affine.for %i1 = 0 to 3 { affine.for %i2 = 0 to 3 { %c3 = constant 3 : index %c7 = constant 7 : index %x00 = affine.apply affine_map<(d0, d1, d2)[s0, s1] -> (d0 + s0)> (%i0, %i1, %i2)[%c3, %c7] %x01 = affine.apply affine_map<(d0, d1, d2)[s0, s1] -> (d1 - s1)> (%i0, %i1, %i2)[%c3, %c7] %x02 = affine.apply affine_map<(d0, d1, d2)[s0, s1] -> (d2 * s0)> (%i0, %i1, %i2)[%c3, %c7] // CHECK: [[I0:%[0-9]+]] = affine.apply [[MAP9]](%{{.*}}) // CHECK: [[I1:%[0-9]+]] = affine.apply [[MAP4b]](%{{.*}}) // CHECK: [[I2:%[0-9]+]] = affine.apply [[MAP10]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I0]], [[I1]]{{\]}} %v0 = load %0[%x00, %x01] : memref<16x32xf32> // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I0]], [[I2]]{{\]}} %v1 = load %0[%x00, %x02] : memref<16x32xf32> // Swizzle %i0, %i1 // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I1]], [[I0]]{{\]}} %v2 = load %0[%x01, %x00] : memref<16x32xf32> // Swizzle %x00, %x01 and %c3, %c7 %x10 = affine.apply affine_map<(d0, d1)[s0, s1] -> (d0 * s1)> (%x01, %x00)[%c7, %c3] %x11 = affine.apply affine_map<(d0, d1)[s0, s1] -> (d1 ceildiv s0)> (%x01, %x00)[%c7, %c3] // CHECK-NEXT: [[I2A:%[0-9]+]] = affine.apply [[MAP12]](%{{.*}}) // CHECK-NEXT: [[I2B:%[0-9]+]] = affine.apply [[MAP11]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I2A]], [[I2B]]{{\]}} %v3 = load %0[%x10, %x11] : memref<16x32xf32> } } } return } // CHECK-LABEL: func @compose_affine_maps_diamond_dependency() { func @compose_affine_maps_diamond_dependency() { %0 = alloc() : memref<4x4xf32> affine.for %i0 = 0 to 15 { %a = affine.apply affine_map<(d0) -> (d0 - 1)> (%i0) %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) %c = affine.apply affine_map<(d0) -> (d0 * 4)> (%a) %d0 = affine.apply affine_map<(d0, d1) -> (d0 ceildiv 8)> (%b, %c) %d1 = affine.apply affine_map<(d0, d1) -> (d1 floordiv 3)> (%b, %c) // CHECK: [[I0:%[0-9]+]] = affine.apply [[MAP13A]](%{{.*}}) // CHECK: [[I1:%[0-9]+]] = affine.apply [[MAP13B]](%{{.*}}) // CHECK-NEXT: load %{{[0-9]+}}{{\[}}[[I0]], [[I1]]{{\]}} %v = load %0[%d0, %d1] : memref<4x4xf32> } return } // CHECK-LABEL: func @arg_used_as_dim_and_symbol func @arg_used_as_dim_and_symbol(%arg0: memref<100x100xf32>, %arg1: index) { %c9 = constant 9 : index %1 = alloc() : memref<100x100xf32, 1> %2 = alloc() : memref<1xi32> affine.for %i0 = 0 to 100 { affine.for %i1 = 0 to 100 { %3 = affine.apply affine_map<(d0, d1)[s0, s1] -> (d1 + s0 + s1)> (%i0, %i1)[%arg1, %c9] %4 = affine.apply affine_map<(d0, d1, d3) -> (d3 - (d0 + d1))> (%arg1, %c9, %3) // CHECK: load %{{[0-9]+}}{{\[}}%{{.*}}, %{{.*}}{{\]}} %5 = load %1[%4, %arg1] : memref<100x100xf32, 1> } } return } // CHECK-LABEL: func @trivial_maps func @trivial_maps() { // CHECK-NOT: affine.apply %0 = alloc() : memref<10xf32> %c0 = constant 0 : index %cst = constant 0.000000e+00 : f32 affine.for %i1 = 0 to 10 { %1 = affine.apply affine_map<()[s0] -> (s0)>()[%c0] store %cst, %0[%1] : memref<10xf32> %2 = load %0[%c0] : memref<10xf32> %3 = affine.apply affine_map<()[] -> (0)>()[] store %cst, %0[%3] : memref<10xf32> %4 = load %0[%c0] : memref<10xf32> } return } // CHECK-LABEL: func @partial_fold_map func @partial_fold_map(%arg1: index, %arg2: index) -> index { // TODO: Constant fold one index into affine.apply %c42 = constant 42 : index %2 = affine.apply affine_map<(d0, d1) -> (d0 - d1)> (%arg1, %c42) // CHECK: [[X:%[0-9]+]] = affine.apply [[MAP15]]()[%{{.*}}] return %2 : index } // CHECK-LABEL: func @symbolic_composition_a(%{{.*}}: index, %{{.*}}: index) -> index { func @symbolic_composition_a(%arg0: index, %arg1: index) -> index { %0 = affine.apply affine_map<(d0) -> (d0 * 4)>(%arg0) %1 = affine.apply affine_map<()[s0, s1] -> (8 * s0)>()[%0, %arg0] %2 = affine.apply affine_map<()[s0, s1] -> (16 * s1)>()[%arg1, %1] // CHECK: %{{.*}} = affine.apply [[map_symbolic_composition_a]]()[%{{.*}}] return %2 : index } // CHECK-LABEL: func @symbolic_composition_b(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { func @symbolic_composition_b(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { %0 = affine.apply affine_map<(d0) -> (d0)>(%arg0) %1 = affine.apply affine_map<()[s0, s1, s2, s3] -> (s0 + s1 + s2 + s3)>()[%0, %0, %0, %0] // CHECK: %{{.*}} = affine.apply [[map_symbolic_composition_b]]()[%{{.*}}] return %1 : index } // CHECK-LABEL: func @symbolic_composition_c(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { func @symbolic_composition_c(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { %0 = affine.apply affine_map<(d0) -> (d0)>(%arg0) %1 = affine.apply affine_map<(d0) -> (d0)>(%arg1) %2 = affine.apply affine_map<()[s0, s1, s2, s3] -> (s0 + s1 + s2 + s3)>()[%0, %0, %0, %1] // CHECK: %{{.*}} = affine.apply [[map_symbolic_composition_c]]()[%{{.*}}, %{{.*}}] return %2 : index } // CHECK-LABEL: func @symbolic_composition_d(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { func @symbolic_composition_d(%arg0: index, %arg1: index, %arg2: index, %arg3: index) -> index { %0 = affine.apply affine_map<(d0) -> (d0)>(%arg0) %1 = affine.apply affine_map<()[s0] -> (s0)>()[%arg1] %2 = affine.apply affine_map<()[s0, s1, s2, s3] -> (s0 + s1 + s2 + s3)>()[%0, %0, %0, %1] // CHECK: %{{.*}} = affine.apply [[map_symbolic_composition_d]]()[%{{.*}}, %{{.*}}] return %2 : index } // CHECK-LABEL: func @mix_dims_and_symbols_b(%arg0: index, %arg1: index) -> index { func @mix_dims_and_symbols_b(%arg0: index, %arg1: index) -> index { %a = affine.apply affine_map<(d0)[s0] -> (d0 - 1 + 42 * s0)> (%arg0)[%arg1] %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) // CHECK: {{.*}} = affine.apply [[map_mix_dims_and_symbols_b]]()[%{{.*}}, %{{.*}}] return %b : index } // CHECK-LABEL: func @mix_dims_and_symbols_c(%arg0: index, %arg1: index) -> index { func @mix_dims_and_symbols_c(%arg0: index, %arg1: index) -> index { %a = affine.apply affine_map<(d0)[s0] -> (d0 - 1 + 42 * s0)> (%arg0)[%arg1] %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) %c = affine.apply affine_map<(d0) -> (d0 * 4)> (%a) // CHECK: {{.*}} = affine.apply [[map_mix_dims_and_symbols_c]]()[%{{.*}}, %{{.*}}] return %c : index } // CHECK-LABEL: func @mix_dims_and_symbols_d(%arg0: index, %arg1: index) -> index { func @mix_dims_and_symbols_d(%arg0: index, %arg1: index) -> index { %a = affine.apply affine_map<(d0)[s0] -> (d0 - 1 + 42 * s0)> (%arg0)[%arg1] %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) %c = affine.apply affine_map<(d0) -> (d0 * 4)> (%a) %d = affine.apply affine_map<()[s0] -> (s0 ceildiv 8)> ()[%b] // CHECK: {{.*}} = affine.apply [[map_mix_dims_and_symbols_d]]()[%{{.*}}, %{{.*}}] return %d : index } // CHECK-LABEL: func @mix_dims_and_symbols_e(%arg0: index, %arg1: index) -> index { func @mix_dims_and_symbols_e(%arg0: index, %arg1: index) -> index { %a = affine.apply affine_map<(d0)[s0] -> (d0 - 1 + 42 * s0)> (%arg0)[%arg1] %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) %c = affine.apply affine_map<(d0) -> (d0 * 4)> (%a) %d = affine.apply affine_map<()[s0] -> (s0 ceildiv 8)> ()[%b] %e = affine.apply affine_map<(d0) -> (d0 floordiv 3)> (%c) // CHECK: {{.*}} = affine.apply [[map_mix_dims_and_symbols_e]]()[%{{.*}}, %{{.*}}] return %e : index } // CHECK-LABEL: func @mix_dims_and_symbols_f(%arg0: index, %arg1: index) -> index { func @mix_dims_and_symbols_f(%arg0: index, %arg1: index) -> index { %a = affine.apply affine_map<(d0)[s0] -> (d0 - 1 + 42 * s0)> (%arg0)[%arg1] %b = affine.apply affine_map<(d0) -> (d0 + 7)> (%a) %c = affine.apply affine_map<(d0) -> (d0 * 4)> (%a) %d = affine.apply affine_map<()[s0] -> (s0 ceildiv 8)> ()[%b] %e = affine.apply affine_map<(d0) -> (d0 floordiv 3)> (%c) %f = affine.apply affine_map<(d0, d1)[s0, s1] -> (d0 - s1 + d1 - s0)> (%d, %e)[%e, %d] // CHECK: {{.*}} = constant 0 : index return %f : index } // CHECK-LABEL: func @mix_dims_and_symbols_g(%arg0: index, %arg1: index) -> (index, index, index) { func @mix_dims_and_symbols_g(%M: index, %N: index) -> (index, index, index) { %K = affine.apply affine_map<(d0) -> (4*d0)> (%M) %res1 = affine.apply affine_map<()[s0, s1] -> (4 * s0)>()[%N, %K] %res2 = affine.apply affine_map<()[s0, s1] -> (s1)>()[%N, %K] %res3 = affine.apply affine_map<()[s0, s1] -> (1024)>()[%N, %K] // CHECK-DAG: {{.*}} = constant 1024 : index // CHECK-DAG: {{.*}} = affine.apply [[map_symbolic_composition_b]]()[%{{.*}}] // CHECK-DAG: {{.*}} = affine.apply [[map_symbolic_composition_b]]()[%{{.*}}] return %res1, %res2, %res3 : index, index, index } // CHECK-LABEL: func @symbolic_semi_affine(%arg0: index, %arg1: index, %arg2: memref<?xf32>) { func @symbolic_semi_affine(%M: index, %N: index, %A: memref<?xf32>) { %f1 = constant 1.0 : f32 affine.for %i0 = 1 to 100 { %1 = affine.apply affine_map<()[s0] -> (s0 + 1)> ()[%M] %2 = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)> (%i0)[%1] // CHECK-DAG: {{.*}} = affine.apply [[symbolic_semi_affine]](%{{.*}})[%{{.*}}] store %f1, %A[%2] : memref<?xf32> } return } // ----- // CHECK: [[MAP0:#map[0-9]+]] = affine_map<()[s0] -> (0, s0)> // CHECK: [[MAP1:#map[0-9]+]] = affine_map<()[s0] -> (100, s0)> // CHECK-LABEL: func @constant_fold_bounds(%arg0: index) { func @constant_fold_bounds(%N : index) { // CHECK: constant 3 : index // CHECK-NEXT: "foo"() : () -> index %c9 = constant 9 : index %c1 = constant 1 : index %c2 = constant 2 : index %c3 = affine.apply affine_map<(d0, d1) -> (d0 + d1)> (%c1, %c2) %l = "foo"() : () -> index // CHECK: affine.for %{{.*}} = 5 to 7 { affine.for %i = max affine_map<(d0, d1) -> (0, d0 + d1)> (%c2, %c3) to min affine_map<(d0, d1) -> (d0 - 2, 32*d1)> (%c9, %c1) { "foo"(%i, %c3) : (index, index) -> () } // Bound takes a non-constant argument but can still be folded. // CHECK: affine.for %{{.*}} = 1 to 7 { affine.for %j = max affine_map<(d0) -> (0, 1)> (%N) to min affine_map<(d0, d1) -> (7, 9)> (%N, %l) { "foo"(%j, %c3) : (index, index) -> () } // None of the bounds can be folded. // CHECK: affine.for %{{.*}} = max [[MAP0]]()[%{{.*}}] to min [[MAP1]]()[%{{.*}}] { affine.for %k = max affine_map<()[s0] -> (0, s0)> ()[%l] to min affine_map<()[s0] -> (100, s0)> ()[%N] { "foo"(%k, %c3) : (index, index) -> () } return } // ----- // CHECK-LABEL: func @fold_empty_loop() { func @fold_empty_loop() { // CHECK-NOT: affine.for affine.for %i = 0 to 10 { } return } // CHECK: return // ----- // CHECK-DAG: [[SET:#set[0-9]+]] = affine_set<(d0, d1)[s0] : (d0 >= 0, -d0 + 1022 >= 0, d1 >= 0, -d1 + s0 - 2 >= 0)> // CHECK-LABEL: func @canonicalize_affine_if // CHECK-SAME: [[M:%.*]]: index, // CHECK-SAME: [[N:%.*]]: index) func @canonicalize_affine_if(%M : index, %N : index) { %c1022 = constant 1022 : index // Drop unused operand %M, propagate %c1022, and promote %N to symbolic. affine.for %i = 0 to 1024 { affine.for %j = 0 to %N { // CHECK: affine.if [[SET]](%{{.*}}, %{{.*}}){{\[}}[[N]]{{\]}} affine.if affine_set<(d0, d1, d2, d3)[s0] : (d1 >= 0, d0 - d1 >= 0, d2 >= 0, d3 - d2 - 2 >= 0)> (%c1022, %i, %j, %N)[%M] { "foo"() : () -> () } "bar"() : () -> () } } return } // ----- // CHECK-DAG: [[LBMAP:#map[0-9]+]] = affine_map<()[s0] -> (0, s0)> // CHECK-DAG: [[UBMAP:#map[0-9]+]] = affine_map<()[s0] -> (1024, s0 + s0)> // CHECK-LABEL: func @canonicalize_bounds // CHECK-SAME: [[M:%.*]]: index, // CHECK-SAME: [[N:%.*]]: index) func @canonicalize_bounds(%M : index, %N : index) { %c0 = constant 0 : index %c1024 = constant 1024 : index // Drop unused operand %N, drop duplicate operand %M, propagate %c1024, and // promote %M to a symbolic one. // CHECK: affine.for %{{.*}} = 0 to min [[UBMAP]](){{\[}}[[M]]{{\]}} affine.for %i = 0 to min affine_map<(d0, d1, d2, d3) -> (d0, d1 + d2)> (%c1024, %M, %M, %N) { "foo"() : () -> () } // Promote %M to symbolic position. // CHECK: affine.for %{{.*}} = 0 to #map{{[0-9]+}}(){{\[}}[[M]]{{\]}} affine.for %i = 0 to affine_map<(d0) -> (4 * d0)> (%M) { "foo"() : () -> () } // Lower bound canonicalize. // CHECK: affine.for %{{.*}} = max [[LBMAP]](){{\[}}[[N]]{{\]}} to [[M]] affine.for %i = max affine_map<(d0, d1) -> (d0, d1)> (%c0, %N) to %M { "foo"() : () -> () } return } // ----- // Compose maps into affine load and store ops. // CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0) -> (d0 + 1)> // CHECK-LABEL: @compose_into_affine_load_store func @compose_into_affine_load_store(%A : memref<1024xf32>, %u : index) { %cf1 = constant 1.0 : f32 // CHECK: affine.for %[[IV:.*]] = 0 to 1024 affine.for %i = 0 to 1024 { // Make sure the unused operand (%u below) gets dropped as well. %idx = affine.apply affine_map<(d0, d1) -> (d0 + 1)> (%i, %u) affine.load %A[%idx] : memref<1024xf32> affine.store %cf1, %A[%idx] : memref<1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%[[IV]] + 1] // CHECK-NEXT: affine.store %cst, %{{.*}}[%[[IV]] + 1] // Map remains the same, but operand changes on composition. %copy = affine.apply affine_map<(d0) -> (d0)> (%i) affine.load %A[%copy] : memref<1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%[[IV]]] } return } // ----- func @affine_min(%arg0 : index, %arg1 : index, %arg2 : index) { %c511 = constant 511 : index %c1 = constant 0 : index %0 = affine.min affine_map<(d0)[s0] -> (1000, d0 + 512, s0 + 1)> (%c1)[%c511] "op0"(%0) : (index) -> () // CHECK: %[[CST:.*]] = constant 512 : index // CHECK-NEXT: "op0"(%[[CST]]) : (index) -> () // CHECK-NEXT: return return } // ----- func @affine_min(%arg0 : index, %arg1 : index, %arg2 : index) { %c3 = constant 3 : index %c20 = constant 20 : index %0 = affine.min affine_map<(d0)[s0] -> (1000, d0 floordiv 4, (s0 mod 5) + 1)> (%c20)[%c3] "op0"(%0) : (index) -> () // CHECK: %[[CST:.*]] = constant 4 : index // CHECK-NEXT: "op0"(%[[CST]]) : (index) -> () // CHECK-NEXT: return return } // ----- func @affine_max(%arg0 : index, %arg1 : index, %arg2 : index) { %c511 = constant 511 : index %c1 = constant 0 : index %0 = affine.max affine_map<(d0)[s0] -> (1000, d0 + 512, s0 + 1)> (%c1)[%c511] "op0"(%0) : (index) -> () // CHECK: %[[CST:.*]] = constant 1000 : index // CHECK-NEXT: "op0"(%[[CST]]) : (index) -> () // CHECK-NEXT: return return } // ----- func @affine_max(%arg0 : index, %arg1 : index, %arg2 : index) { %c3 = constant 3 : index %c20 = constant 20 : index %0 = affine.max affine_map<(d0)[s0] -> (1000, d0 floordiv 4, (s0 mod 5) + 1)> (%c20)[%c3] "op0"(%0) : (index) -> () // CHECK: %[[CST:.*]] = constant 1000 : index // CHECK-NEXT: "op0"(%[[CST]]) : (index) -> () // CHECK-NEXT: return return }