Mercurial > hg > CbC > CbC_llvm
view lldb/source/Target/ThreadPlanStack.cpp @ 252:1f2b6ac9f198 llvm-original
LLVM16-1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Aug 2023 09:04:13 +0900 |
parents | c4bab56944e8 |
children |
line wrap: on
line source
//===-- ThreadPlanStack.cpp -------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Target/ThreadPlanStack.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlan.h" #include "lldb/Utility/Log.h" using namespace lldb; using namespace lldb_private; static void PrintPlanElement(Stream &s, const ThreadPlanSP &plan, lldb::DescriptionLevel desc_level, int32_t elem_idx) { s.IndentMore(); s.Indent(); s.Printf("Element %d: ", elem_idx); plan->GetDescription(&s, desc_level); s.EOL(); s.IndentLess(); } ThreadPlanStack::ThreadPlanStack(const Thread &thread, bool make_null) { if (make_null) { // The ThreadPlanNull doesn't do anything to the Thread, so this is actually // still a const operation. m_plans.push_back( ThreadPlanSP(new ThreadPlanNull(const_cast<Thread &>(thread)))); } } void ThreadPlanStack::DumpThreadPlans(Stream &s, lldb::DescriptionLevel desc_level, bool include_internal) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); s.IndentMore(); PrintOneStack(s, "Active plan stack", m_plans, desc_level, include_internal); PrintOneStack(s, "Completed plan stack", m_completed_plans, desc_level, include_internal); PrintOneStack(s, "Discarded plan stack", m_discarded_plans, desc_level, include_internal); s.IndentLess(); } void ThreadPlanStack::PrintOneStack(Stream &s, llvm::StringRef stack_name, const PlanStack &stack, lldb::DescriptionLevel desc_level, bool include_internal) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); // If the stack is empty, just exit: if (stack.empty()) return; // Make sure there are public completed plans: bool any_public = false; if (!include_internal) { for (auto plan : stack) { if (!plan->GetPrivate()) { any_public = true; break; } } } if (include_internal || any_public) { int print_idx = 0; s.Indent(); s << stack_name << ":\n"; for (auto plan : stack) { if (!include_internal && plan->GetPrivate()) continue; PrintPlanElement(s, plan, desc_level, print_idx++); } } } size_t ThreadPlanStack::CheckpointCompletedPlans() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); m_completed_plan_checkpoint++; m_completed_plan_store.insert( std::make_pair(m_completed_plan_checkpoint, m_completed_plans)); return m_completed_plan_checkpoint; } void ThreadPlanStack::RestoreCompletedPlanCheckpoint(size_t checkpoint) { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); auto result = m_completed_plan_store.find(checkpoint); assert(result != m_completed_plan_store.end() && "Asked for a checkpoint that didn't exist"); m_completed_plans.swap((*result).second); m_completed_plan_store.erase(result); } void ThreadPlanStack::DiscardCompletedPlanCheckpoint(size_t checkpoint) { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); m_completed_plan_store.erase(checkpoint); } void ThreadPlanStack::ThreadDestroyed(Thread *thread) { // Tell the plan stacks that this thread is going away: std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); for (ThreadPlanSP plan : m_plans) plan->ThreadDestroyed(); for (ThreadPlanSP plan : m_discarded_plans) plan->ThreadDestroyed(); for (ThreadPlanSP plan : m_completed_plans) plan->ThreadDestroyed(); // Now clear the current plan stacks: m_plans.clear(); m_discarded_plans.clear(); m_completed_plans.clear(); // Push a ThreadPlanNull on the plan stack. That way we can continue // assuming that the plan stack is never empty, but if somebody errantly asks // questions of a destroyed thread without checking first whether it is // destroyed, they won't crash. if (thread != nullptr) { lldb::ThreadPlanSP null_plan_sp(new ThreadPlanNull(*thread)); m_plans.push_back(null_plan_sp); } } void ThreadPlanStack::PushPlan(lldb::ThreadPlanSP new_plan_sp) { // If the thread plan doesn't already have a tracer, give it its parent's // tracer: // The first plan has to be a base plan: std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); assert((m_plans.size() > 0 || new_plan_sp->IsBasePlan()) && "Zeroth plan must be a base plan"); if (!new_plan_sp->GetThreadPlanTracer()) { assert(!m_plans.empty()); new_plan_sp->SetThreadPlanTracer(m_plans.back()->GetThreadPlanTracer()); } m_plans.push_back(new_plan_sp); new_plan_sp->DidPush(); } lldb::ThreadPlanSP ThreadPlanStack::PopPlan() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); assert(m_plans.size() > 1 && "Can't pop the base thread plan"); // Note that moving the top element of the vector would leave it in an // undefined state, and break the guarantee that the stack's thread plans are // all valid. lldb::ThreadPlanSP plan_sp = m_plans.back(); m_plans.pop_back(); m_completed_plans.push_back(plan_sp); plan_sp->DidPop(); return plan_sp; } lldb::ThreadPlanSP ThreadPlanStack::DiscardPlan() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); assert(m_plans.size() > 1 && "Can't discard the base thread plan"); // Note that moving the top element of the vector would leave it in an // undefined state, and break the guarantee that the stack's thread plans are // all valid. lldb::ThreadPlanSP plan_sp = m_plans.back(); m_plans.pop_back(); m_discarded_plans.push_back(plan_sp); plan_sp->DidPop(); return plan_sp; } // If the input plan is nullptr, discard all plans. Otherwise make sure this // plan is in the stack, and if so discard up to and including it. void ThreadPlanStack::DiscardPlansUpToPlan(ThreadPlan *up_to_plan_ptr) { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); int stack_size = m_plans.size(); if (up_to_plan_ptr == nullptr) { for (int i = stack_size - 1; i > 0; i--) DiscardPlan(); return; } bool found_it = false; for (int i = stack_size - 1; i > 0; i--) { if (m_plans[i].get() == up_to_plan_ptr) { found_it = true; break; } } if (found_it) { bool last_one = false; for (int i = stack_size - 1; i > 0 && !last_one; i--) { if (GetCurrentPlan().get() == up_to_plan_ptr) last_one = true; DiscardPlan(); } } } void ThreadPlanStack::DiscardAllPlans() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); int stack_size = m_plans.size(); for (int i = stack_size - 1; i > 0; i--) { DiscardPlan(); } } void ThreadPlanStack::DiscardConsultingControllingPlans() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); while (true) { int controlling_plan_idx; bool discard = true; // Find the first controlling plan, see if it wants discarding, and if yes // discard up to it. for (controlling_plan_idx = m_plans.size() - 1; controlling_plan_idx >= 0; controlling_plan_idx--) { if (m_plans[controlling_plan_idx]->IsControllingPlan()) { discard = m_plans[controlling_plan_idx]->OkayToDiscard(); break; } } // If the controlling plan doesn't want to get discarded, then we're done. if (!discard) return; // First pop all the dependent plans: for (int i = m_plans.size() - 1; i > controlling_plan_idx; i--) { DiscardPlan(); } // Now discard the controlling plan itself. // The bottom-most plan never gets discarded. "OkayToDiscard" for it // means discard it's dependent plans, but not it... if (controlling_plan_idx > 0) { DiscardPlan(); } } } lldb::ThreadPlanSP ThreadPlanStack::GetCurrentPlan() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); assert(m_plans.size() != 0 && "There will always be a base plan."); return m_plans.back(); } lldb::ThreadPlanSP ThreadPlanStack::GetCompletedPlan(bool skip_private) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); if (m_completed_plans.empty()) return {}; if (!skip_private) return m_completed_plans.back(); for (int i = m_completed_plans.size() - 1; i >= 0; i--) { lldb::ThreadPlanSP completed_plan_sp; completed_plan_sp = m_completed_plans[i]; if (!completed_plan_sp->GetPrivate()) return completed_plan_sp; } return {}; } lldb::ThreadPlanSP ThreadPlanStack::GetPlanByIndex(uint32_t plan_idx, bool skip_private) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); uint32_t idx = 0; for (lldb::ThreadPlanSP plan_sp : m_plans) { if (skip_private && plan_sp->GetPrivate()) continue; if (idx == plan_idx) return plan_sp; idx++; } return {}; } lldb::ValueObjectSP ThreadPlanStack::GetReturnValueObject() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); if (m_completed_plans.empty()) return {}; for (int i = m_completed_plans.size() - 1; i >= 0; i--) { lldb::ValueObjectSP return_valobj_sp; return_valobj_sp = m_completed_plans[i]->GetReturnValueObject(); if (return_valobj_sp) return return_valobj_sp; } return {}; } lldb::ExpressionVariableSP ThreadPlanStack::GetExpressionVariable() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); if (m_completed_plans.empty()) return {}; for (int i = m_completed_plans.size() - 1; i >= 0; i--) { lldb::ExpressionVariableSP expression_variable_sp; expression_variable_sp = m_completed_plans[i]->GetExpressionVariable(); if (expression_variable_sp) return expression_variable_sp; } return {}; } bool ThreadPlanStack::AnyPlans() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); // There is always a base plan... return m_plans.size() > 1; } bool ThreadPlanStack::AnyCompletedPlans() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); return !m_completed_plans.empty(); } bool ThreadPlanStack::AnyDiscardedPlans() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); return !m_discarded_plans.empty(); } bool ThreadPlanStack::IsPlanDone(ThreadPlan *in_plan) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); for (auto plan : m_completed_plans) { if (plan.get() == in_plan) return true; } return false; } bool ThreadPlanStack::WasPlanDiscarded(ThreadPlan *in_plan) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); for (auto plan : m_discarded_plans) { if (plan.get() == in_plan) return true; } return false; } ThreadPlan *ThreadPlanStack::GetPreviousPlan(ThreadPlan *current_plan) const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); if (current_plan == nullptr) return nullptr; // Look first in the completed plans, if the plan is here and there is // a completed plan above it, return that. int stack_size = m_completed_plans.size(); for (int i = stack_size - 1; i > 0; i--) { if (current_plan == m_completed_plans[i].get()) return m_completed_plans[i - 1].get(); } // If this is the first completed plan, the previous one is the // bottom of the regular plan stack. if (stack_size > 0 && m_completed_plans[0].get() == current_plan) { return GetCurrentPlan().get(); } // Otherwise look for it in the regular plans. stack_size = m_plans.size(); for (int i = stack_size - 1; i > 0; i--) { if (current_plan == m_plans[i].get()) return m_plans[i - 1].get(); } return nullptr; } ThreadPlan *ThreadPlanStack::GetInnermostExpression() const { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); int stack_size = m_plans.size(); for (int i = stack_size - 1; i > 0; i--) { if (m_plans[i]->GetKind() == ThreadPlan::eKindCallFunction) return m_plans[i].get(); } return nullptr; } void ThreadPlanStack::ClearThreadCache() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); for (lldb::ThreadPlanSP thread_plan_sp : m_plans) thread_plan_sp->ClearThreadCache(); } void ThreadPlanStack::WillResume() { std::lock_guard<std::recursive_mutex> guard(m_stack_mutex); m_completed_plans.clear(); m_discarded_plans.clear(); } void ThreadPlanStackMap::Update(ThreadList ¤t_threads, bool delete_missing, bool check_for_new) { std::lock_guard<std::recursive_mutex> guard(m_stack_map_mutex); // Now find all the new threads and add them to the map: if (check_for_new) { for (auto thread : current_threads.Threads()) { lldb::tid_t cur_tid = thread->GetID(); if (!Find(cur_tid)) { AddThread(*thread); thread->QueueBasePlan(true); } } } // If we aren't reaping missing threads at this point, // we are done. if (!delete_missing) return; // Otherwise scan for absent TID's. std::vector<lldb::tid_t> missing_threads; // If we are going to delete plans from the plan stack, // then scan for absent TID's: for (auto &thread_plans : m_plans_list) { lldb::tid_t cur_tid = thread_plans.first; ThreadSP thread_sp = current_threads.FindThreadByID(cur_tid); if (!thread_sp) missing_threads.push_back(cur_tid); } for (lldb::tid_t tid : missing_threads) { RemoveTID(tid); } } void ThreadPlanStackMap::DumpPlans(Stream &strm, lldb::DescriptionLevel desc_level, bool internal, bool condense_if_trivial, bool skip_unreported) { std::lock_guard<std::recursive_mutex> guard(m_stack_map_mutex); for (auto &elem : m_plans_list) { lldb::tid_t tid = elem.first; uint32_t index_id = 0; ThreadSP thread_sp = m_process.GetThreadList().FindThreadByID(tid); if (skip_unreported) { if (!thread_sp) continue; } if (thread_sp) index_id = thread_sp->GetIndexID(); if (condense_if_trivial) { if (!elem.second.AnyPlans() && !elem.second.AnyCompletedPlans() && !elem.second.AnyDiscardedPlans()) { strm.Printf("thread #%u: tid = 0x%4.4" PRIx64 "\n", index_id, tid); strm.IndentMore(); strm.Indent(); strm.Printf("No active thread plans\n"); strm.IndentLess(); return; } } strm.Indent(); strm.Printf("thread #%u: tid = 0x%4.4" PRIx64 ":\n", index_id, tid); elem.second.DumpThreadPlans(strm, desc_level, internal); } } bool ThreadPlanStackMap::DumpPlansForTID(Stream &strm, lldb::tid_t tid, lldb::DescriptionLevel desc_level, bool internal, bool condense_if_trivial, bool skip_unreported) { std::lock_guard<std::recursive_mutex> guard(m_stack_map_mutex); uint32_t index_id = 0; ThreadSP thread_sp = m_process.GetThreadList().FindThreadByID(tid); if (skip_unreported) { if (!thread_sp) { strm.Format("Unknown TID: {0}", tid); return false; } } if (thread_sp) index_id = thread_sp->GetIndexID(); ThreadPlanStack *stack = Find(tid); if (!stack) { strm.Format("Unknown TID: {0}\n", tid); return false; } if (condense_if_trivial) { if (!stack->AnyPlans() && !stack->AnyCompletedPlans() && !stack->AnyDiscardedPlans()) { strm.Printf("thread #%u: tid = 0x%4.4" PRIx64 "\n", index_id, tid); strm.IndentMore(); strm.Indent(); strm.Printf("No active thread plans\n"); strm.IndentLess(); return true; } } strm.Indent(); strm.Printf("thread #%u: tid = 0x%4.4" PRIx64 ":\n", index_id, tid); stack->DumpThreadPlans(strm, desc_level, internal); return true; } bool ThreadPlanStackMap::PrunePlansForTID(lldb::tid_t tid) { // We only remove the plans for unreported TID's. std::lock_guard<std::recursive_mutex> guard(m_stack_map_mutex); ThreadSP thread_sp = m_process.GetThreadList().FindThreadByID(tid); if (thread_sp) return false; return RemoveTID(tid); }