Mercurial > hg > CbC > CbC_llvm
view llvm/unittests/CodeGen/InstrRefLDVTest.cpp @ 252:1f2b6ac9f198 llvm-original
LLVM16-1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Aug 2023 09:04:13 +0900 |
parents | c4bab56944e8 |
children |
line wrap: on
line source
//===------------- llvm/unittest/CodeGen/InstrRefLDVTest.cpp --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MIRParser/MIRParser.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/IRBuilder.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "../lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h" #include "gtest/gtest.h" using namespace llvm; using namespace LiveDebugValues; // Include helper functions to ease the manipulation of MachineFunctions #include "MFCommon.inc" class InstrRefLDVTest : public testing::Test { public: friend class InstrRefBasedLDV; using MLocTransferMap = InstrRefBasedLDV::MLocTransferMap; LLVMContext Ctx; std::unique_ptr<Module> Mod; std::unique_ptr<TargetMachine> Machine; std::unique_ptr<MachineFunction> MF; std::unique_ptr<MachineDominatorTree> DomTree; std::unique_ptr<MachineModuleInfo> MMI; DICompileUnit *OurCU; DIFile *OurFile; DISubprogram *OurFunc; DILexicalBlock *OurBlock, *AnotherBlock; DISubprogram *ToInlineFunc; DILexicalBlock *ToInlineBlock; DILocalVariable *FuncVariable; DIBasicType *LongInt; DIExpression *EmptyExpr; LiveDebugValues::OverlapMap Overlaps; DebugLoc OutermostLoc, InBlockLoc, NotNestedBlockLoc, InlinedLoc; MachineBasicBlock *MBB0, *MBB1, *MBB2, *MBB3, *MBB4; std::unique_ptr<InstrRefBasedLDV> LDV; std::unique_ptr<MLocTracker> MTracker; std::unique_ptr<VLocTracker> VTracker; SmallString<256> MIRStr; InstrRefLDVTest() : Ctx(), Mod(std::make_unique<Module>("beehives", Ctx)) {} void SetUp() { // Boilerplate that creates a MachineFunction and associated blocks. Mod->setDataLayout("e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-" "n8:16:32:64-S128"); Triple TargetTriple("x86_64--"); std::string Error; const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error); if (!T) GTEST_SKIP(); TargetOptions Options; Machine = std::unique_ptr<TargetMachine>(T->createTargetMachine( Triple::normalize("x86_64--"), "", "", Options, std::nullopt, std::nullopt, CodeGenOpt::Aggressive)); auto Type = FunctionType::get(Type::getVoidTy(Ctx), false); auto F = Function::Create(Type, GlobalValue::ExternalLinkage, "Test", &*Mod); unsigned FunctionNum = 42; MMI = std::make_unique<MachineModuleInfo>((LLVMTargetMachine *)&*Machine); const TargetSubtargetInfo &STI = *Machine->getSubtargetImpl(*F); MF = std::make_unique<MachineFunction>(*F, (LLVMTargetMachine &)*Machine, STI, FunctionNum, *MMI); // Create metadata: CU, subprogram, some blocks and an inline function // scope. DIBuilder DIB(*Mod); OurFile = DIB.createFile("xyzzy.c", "/cave"); OurCU = DIB.createCompileUnit(dwarf::DW_LANG_C99, OurFile, "nou", false, "", 0); auto OurSubT = DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt)); OurFunc = DIB.createFunction(OurCU, "bees", "", OurFile, 1, OurSubT, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition); F->setSubprogram(OurFunc); OurBlock = DIB.createLexicalBlock(OurFunc, OurFile, 2, 3); AnotherBlock = DIB.createLexicalBlock(OurFunc, OurFile, 2, 6); ToInlineFunc = DIB.createFunction(OurFile, "shoes", "", OurFile, 10, OurSubT, 10, DINode::FlagZero, DISubprogram::SPFlagDefinition); // Make some nested scopes. OutermostLoc = DILocation::get(Ctx, 3, 1, OurFunc); InBlockLoc = DILocation::get(Ctx, 4, 1, OurBlock); InlinedLoc = DILocation::get(Ctx, 10, 1, ToInlineFunc, InBlockLoc.get()); // Make a scope that isn't nested within the others. NotNestedBlockLoc = DILocation::get(Ctx, 4, 1, AnotherBlock); LongInt = DIB.createBasicType("long", 64, llvm::dwarf::DW_ATE_unsigned); FuncVariable = DIB.createAutoVariable(OurFunc, "lala", OurFile, 1, LongInt); EmptyExpr = DIExpression::get(Ctx, {}); DIB.finalize(); } Register getRegByName(const char *WantedName) { auto *TRI = MF->getRegInfo().getTargetRegisterInfo(); // Slow, but works. for (unsigned int I = 1; I < TRI->getNumRegs(); ++I) { const char *Name = TRI->getName(I); if (strcmp(WantedName, Name) == 0) return I; } // If this ever fails, something is very wrong with this unit test. llvm_unreachable("Can't find register by name"); } InstrRefBasedLDV *setupLDVObj(MachineFunction *MF) { // Create a new LDV object, and plug some relevant object ptrs into it. LDV = std::make_unique<InstrRefBasedLDV>(); const TargetSubtargetInfo &STI = MF->getSubtarget(); LDV->TII = STI.getInstrInfo(); LDV->TRI = STI.getRegisterInfo(); LDV->TFI = STI.getFrameLowering(); LDV->MFI = &MF->getFrameInfo(); LDV->MRI = &MF->getRegInfo(); DomTree = std::make_unique<MachineDominatorTree>(*MF); LDV->DomTree = &*DomTree; // Future work: unit tests for mtracker / vtracker / ttracker. // Setup things like the artifical block map, and BlockNo <=> RPO Order // mappings. LDV->initialSetup(*MF); LDV->LS.initialize(*MF); addMTracker(MF); return &*LDV; } void addMTracker(MachineFunction *MF) { ASSERT_TRUE(LDV); // Add a machine-location-tracking object to LDV. Don't initialize any // register locations within it though. const TargetSubtargetInfo &STI = MF->getSubtarget(); MTracker = std::make_unique<MLocTracker>( *MF, *LDV->TII, *LDV->TRI, *STI.getTargetLowering()); LDV->MTracker = &*MTracker; } void addVTracker() { ASSERT_TRUE(LDV); VTracker = std::make_unique<VLocTracker>(Overlaps, EmptyExpr); LDV->VTracker = &*VTracker; } DbgOpID addValueDbgOp(ValueIDNum V) { return LDV->DbgOpStore.insert(DbgOp(V)); } DbgOpID addConstDbgOp(MachineOperand MO) { return LDV->DbgOpStore.insert(DbgOp(MO)); } // Some routines for bouncing into LDV, void buildMLocValueMap(FuncValueTable &MInLocs, FuncValueTable &MOutLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { LDV->buildMLocValueMap(*MF, MInLocs, MOutLocs, MLocTransfer); } void placeMLocPHIs(MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { LDV->placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); } bool pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, const InstrRefBasedLDV::LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { return LDV->pickVPHILoc(OutValues, MBB, LiveOuts, MOutLocs, BlockOrders); } bool vlocJoin(MachineBasicBlock &MBB, InstrRefBasedLDV::LiveIdxT &VLOCOutLocs, SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, DbgValue &InLoc) { return LDV->vlocJoin(MBB, VLOCOutLocs, BlocksToExplore, InLoc); } void buildVLocValueMap(const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout, SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, InstrRefBasedLDV::LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, SmallVectorImpl<VLocTracker> &AllTheVLocs) { LDV->buildVLocValueMap(DILoc, VarsWeCareAbout, AssignBlocks, Output, MOutLocs, MInLocs, AllTheVLocs); } void initValueArray(FuncValueTable &Nums, unsigned Blks, unsigned Locs) { for (unsigned int I = 0; I < Blks; ++I) for (unsigned int J = 0; J < Locs; ++J) Nums[I][J] = ValueIDNum::EmptyValue; } void setupSingleBlock() { // Add an entry block with nothing but 'ret void' in it. Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "entry", &F); IRBuilder<> IRB(BB0); IRB.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MF->RenumberBlocks(); setupLDVObj(&*MF); } void setupDiamondBlocks() { // entry // / \ // br1 br2 // \ / // ret llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "a", &F); auto *BB1 = BasicBlock::Create(Ctx, "b", &F); auto *BB2 = BasicBlock::Create(Ctx, "c", &F); auto *BB3 = BasicBlock::Create(Ctx, "d", &F); IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3); IRB0.CreateBr(BB1); IRB1.CreateBr(BB2); IRB2.CreateBr(BB3); IRB3.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MBB1 = MF->CreateMachineBasicBlock(BB1); MF->insert(MF->end(), MBB1); MBB2 = MF->CreateMachineBasicBlock(BB2); MF->insert(MF->end(), MBB2); MBB3 = MF->CreateMachineBasicBlock(BB3); MF->insert(MF->end(), MBB3); MBB0->addSuccessor(MBB1); MBB0->addSuccessor(MBB2); MBB1->addSuccessor(MBB3); MBB2->addSuccessor(MBB3); MF->RenumberBlocks(); setupLDVObj(&*MF); } void setupSimpleLoop() { // entry // | // |/-----\ // loopblk | // |\-----/ // | // ret llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "entry", &F); auto *BB1 = BasicBlock::Create(Ctx, "loop", &F); auto *BB2 = BasicBlock::Create(Ctx, "ret", &F); IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2); IRB0.CreateBr(BB1); IRB1.CreateBr(BB2); IRB2.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MBB1 = MF->CreateMachineBasicBlock(BB1); MF->insert(MF->end(), MBB1); MBB2 = MF->CreateMachineBasicBlock(BB2); MF->insert(MF->end(), MBB2); MBB0->addSuccessor(MBB1); MBB1->addSuccessor(MBB2); MBB1->addSuccessor(MBB1); MF->RenumberBlocks(); setupLDVObj(&*MF); } void setupNestedLoops() { // entry // | // loop1 // ^\ // | \ /-\ // | loop2 | // | / \-/ // ^ / // join // | // ret llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "entry", &F); auto *BB1 = BasicBlock::Create(Ctx, "loop1", &F); auto *BB2 = BasicBlock::Create(Ctx, "loop2", &F); auto *BB3 = BasicBlock::Create(Ctx, "join", &F); auto *BB4 = BasicBlock::Create(Ctx, "ret", &F); IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4); IRB0.CreateBr(BB1); IRB1.CreateBr(BB2); IRB2.CreateBr(BB3); IRB3.CreateBr(BB4); IRB4.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MBB1 = MF->CreateMachineBasicBlock(BB1); MF->insert(MF->end(), MBB1); MBB2 = MF->CreateMachineBasicBlock(BB2); MF->insert(MF->end(), MBB2); MBB3 = MF->CreateMachineBasicBlock(BB3); MF->insert(MF->end(), MBB3); MBB4 = MF->CreateMachineBasicBlock(BB4); MF->insert(MF->end(), MBB4); MBB0->addSuccessor(MBB1); MBB1->addSuccessor(MBB2); MBB2->addSuccessor(MBB2); MBB2->addSuccessor(MBB3); MBB3->addSuccessor(MBB1); MBB3->addSuccessor(MBB4); MF->RenumberBlocks(); setupLDVObj(&*MF); } void setupNoDominatingLoop() { // entry // / \ // / \ // / \ // head1 head2 // ^ \ / ^ // ^ \ / ^ // \-joinblk -/ // | // ret llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "entry", &F); auto *BB1 = BasicBlock::Create(Ctx, "head1", &F); auto *BB2 = BasicBlock::Create(Ctx, "head2", &F); auto *BB3 = BasicBlock::Create(Ctx, "joinblk", &F); auto *BB4 = BasicBlock::Create(Ctx, "ret", &F); IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4); IRB0.CreateBr(BB1); IRB1.CreateBr(BB2); IRB2.CreateBr(BB3); IRB3.CreateBr(BB4); IRB4.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MBB1 = MF->CreateMachineBasicBlock(BB1); MF->insert(MF->end(), MBB1); MBB2 = MF->CreateMachineBasicBlock(BB2); MF->insert(MF->end(), MBB2); MBB3 = MF->CreateMachineBasicBlock(BB3); MF->insert(MF->end(), MBB3); MBB4 = MF->CreateMachineBasicBlock(BB4); MF->insert(MF->end(), MBB4); MBB0->addSuccessor(MBB1); MBB0->addSuccessor(MBB2); MBB1->addSuccessor(MBB3); MBB2->addSuccessor(MBB3); MBB3->addSuccessor(MBB1); MBB3->addSuccessor(MBB2); MBB3->addSuccessor(MBB4); MF->RenumberBlocks(); setupLDVObj(&*MF); } void setupBadlyNestedLoops() { // entry // | // loop1 -o // | ^ // | ^ // loop2 -o // | ^ // | ^ // loop3 -o // | // ret // // NB: the loop blocks self-loop, which is a bit too fiddly to draw on // accurately. llvm::Function &F = const_cast<llvm::Function &>(MF->getFunction()); auto *BB0 = BasicBlock::Create(Ctx, "entry", &F); auto *BB1 = BasicBlock::Create(Ctx, "loop1", &F); auto *BB2 = BasicBlock::Create(Ctx, "loop2", &F); auto *BB3 = BasicBlock::Create(Ctx, "loop3", &F); auto *BB4 = BasicBlock::Create(Ctx, "ret", &F); IRBuilder<> IRB0(BB0), IRB1(BB1), IRB2(BB2), IRB3(BB3), IRB4(BB4); IRB0.CreateBr(BB1); IRB1.CreateBr(BB2); IRB2.CreateBr(BB3); IRB3.CreateBr(BB4); IRB4.CreateRetVoid(); MBB0 = MF->CreateMachineBasicBlock(BB0); MF->insert(MF->end(), MBB0); MBB1 = MF->CreateMachineBasicBlock(BB1); MF->insert(MF->end(), MBB1); MBB2 = MF->CreateMachineBasicBlock(BB2); MF->insert(MF->end(), MBB2); MBB3 = MF->CreateMachineBasicBlock(BB3); MF->insert(MF->end(), MBB3); MBB4 = MF->CreateMachineBasicBlock(BB4); MF->insert(MF->end(), MBB4); MBB0->addSuccessor(MBB1); MBB1->addSuccessor(MBB1); MBB1->addSuccessor(MBB2); MBB2->addSuccessor(MBB1); MBB2->addSuccessor(MBB2); MBB2->addSuccessor(MBB3); MBB3->addSuccessor(MBB2); MBB3->addSuccessor(MBB3); MBB3->addSuccessor(MBB4); MF->RenumberBlocks(); setupLDVObj(&*MF); } MachineFunction *readMIRBlock(const char *Input) { MIRStr.clear(); StringRef S = Twine(Twine(R"MIR( --- | target triple = "x86_64-unknown-linux-gnu" define void @test() { ret void } ... --- name: test tracksRegLiveness: true stack: - { id: 0, name: '', type: spill-slot, offset: -16, size: 8, alignment: 8, stack-id: default, callee-saved-register: '', callee-saved-restored: true, debug-info-variable: '', debug-info-expression: '', debug-info-location: '' } body: | bb.0: liveins: $rdi, $rsi )MIR") + Twine(Input) + Twine("...\n")) .toNullTerminatedStringRef(MIRStr); ; // Clear the "test" function from MMI if it's still present. if (Function *Fn = Mod->getFunction("test")) MMI->deleteMachineFunctionFor(*Fn); auto MemBuf = MemoryBuffer::getMemBuffer(S, "<input>"); auto MIRParse = createMIRParser(std::move(MemBuf), Ctx); Mod = MIRParse->parseIRModule(); assert(Mod); Mod->setDataLayout("e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-" "n8:16:32:64-S128"); bool Result = MIRParse->parseMachineFunctions(*Mod, *MMI); assert(!Result && "Failed to parse unit test machine function?"); (void)Result; Function *Fn = Mod->getFunction("test"); assert(Fn && "Failed to parse a unit test module string?"); Fn->setSubprogram(OurFunc); return MMI->getMachineFunction(*Fn); } void produceMLocTransferFunction(MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, unsigned MaxNumBlocks) { LDV->produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); } std::pair<FuncValueTable, FuncValueTable> allocValueTables(unsigned Blocks, unsigned Locs) { FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(Blocks); FuncValueTable MInLocs = std::make_unique<ValueTable[]>(Blocks); for (unsigned int I = 0; I < Blocks; ++I) { MOutLocs[I] = std::make_unique<ValueIDNum[]>(Locs); MInLocs[I] = std::make_unique<ValueIDNum[]>(Locs); } return std::make_pair(std::move(MOutLocs), std::move(MInLocs)); } }; TEST_F(InstrRefLDVTest, MTransferDefs) { MachineFunction *MF = readMIRBlock( " $rax = MOV64ri 0\n" " RET64 $rax\n"); setupLDVObj(MF); // We should start with only SP tracked. EXPECT_TRUE(MTracker->getNumLocs() == 1); SmallVector<MLocTransferMap, 1> TransferMap; TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // Code contains only one register write: that should assign to each of the // aliasing registers. Test that all of them get locations, and have a // corresponding def at the first instr in the function. const char *RegNames[] = {"RAX", "HAX", "EAX", "AX", "AH", "AL"}; EXPECT_TRUE(MTracker->getNumLocs() == 7); for (const char *RegName : RegNames) { Register R = getRegByName(RegName); ASSERT_TRUE(MTracker->isRegisterTracked(R)); LocIdx L = MTracker->getRegMLoc(R); ValueIDNum V = MTracker->readReg(R); // Value of this register should be: block zero, instruction 1, and the // location it's defined in is itself. ValueIDNum ToCmp(0, 1, L); EXPECT_EQ(V, ToCmp); } // Do the same again, but with an aliasing write. This should write to all // the same registers again, except $ah and $hax (the upper 8 bits of $ax // and 32 bits of $rax resp.). MF = readMIRBlock( " $rax = MOV64ri 0\n" " $al = MOV8ri 0\n" " RET64 $rax\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); auto TestRegSetSite = [&](const char *Name, unsigned InstrNum) { Register R = getRegByName(Name); ASSERT_TRUE(MTracker->isRegisterTracked(R)); LocIdx L = MTracker->getRegMLoc(R); ValueIDNum V = MTracker->readMLoc(L); ValueIDNum ToCmp(0, InstrNum, L); EXPECT_EQ(V, ToCmp); }; TestRegSetSite("AL", 2); TestRegSetSite("AH", 1); TestRegSetSite("AX", 2); TestRegSetSite("EAX", 2); TestRegSetSite("HAX", 1); TestRegSetSite("RAX", 2); // This call should: // * Def rax via the implicit-def, // * Clobber rsi/rdi and all their subregs, via the register mask // * Same for rcx, despite it not being a use in the instr, it's in the mask // * NOT clobber $rsp / $esp $ sp, LiveDebugValues deliberately ignores // these. // * NOT clobber $rbx, because it's non-volatile // * Not track every other register in the machine, only those needed. MF = readMIRBlock( " $rax = MOV64ri 0\n" // instr 1 " $rbx = MOV64ri 0\n" // instr 2 " $rcx = MOV64ri 0\n" // instr 3 " $rdi = MOV64ri 0\n" // instr 4 " $rsi = MOV64ri 0\n" // instr 5 " CALL64r $rax, csr_64, implicit $rsp, implicit $ssp, implicit $rdi, implicit $rsi, implicit-def $rsp, implicit-def $ssp, implicit-def $rax, implicit-def $esp, implicit-def $sp\n\n\n\n" // instr 6 " RET64 $rax\n"); // instr 7 setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); const char *RegsSetInCall[] = {"AL", "AH", "AX", "EAX", "HAX", "RAX", "DIL", "DIH", "DI", "EDI", "HDI", "RDI", "SIL", "SIH", "SI", "ESI", "HSI", "RSI", "CL", "CH", "CX", "ECX", "HCX", "RCX"}; for (const char *RegSetInCall : RegsSetInCall) TestRegSetSite(RegSetInCall, 6); const char *RegsLeftAlone[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"}; for (const char *RegLeftAlone : RegsLeftAlone) TestRegSetSite(RegLeftAlone, 2); // Stack pointer should be the live-in to the function, instruction zero. TestRegSetSite("RSP", 0); // These stack regs should not be tracked either. Nor the (fake) subregs. EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("ESP"))); EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SP"))); EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SPL"))); EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("SPH"))); EXPECT_FALSE(MTracker->isRegisterTracked(getRegByName("HSP"))); // Should only be tracking: 6 x {A, B, C, DI, SI} registers = 30, // Plus RSP, SSP = 32. EXPECT_EQ(32u, MTracker->getNumLocs()); // When we DBG_PHI something, we should track all its subregs. MF = readMIRBlock( " DBG_PHI $rdi, 0\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // All DI regs and RSP tracked. EXPECT_EQ(7u, MTracker->getNumLocs()); // All the DI registers should have block live-in values, i.e. the argument // to the function. const char *DIRegs[] = {"DIL", "DIH", "DI", "EDI", "HDI", "RDI"}; for (const char *DIReg : DIRegs) TestRegSetSite(DIReg, 0); } TEST_F(InstrRefLDVTest, MTransferMeta) { // Meta instructions should not have any effect on register values. SmallVector<MLocTransferMap, 1> TransferMap; MachineFunction *MF = readMIRBlock( " $rax = MOV64ri 0\n" " $rax = IMPLICIT_DEF\n" " $rax = KILL killed $rax\n" " RET64 $rax\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); LocIdx RaxLoc = MTracker->getRegMLoc(getRegByName("RAX")); ValueIDNum V = MTracker->readMLoc(RaxLoc); // Def of rax should be from instruction 1, i.e., unmodified. ValueIDNum Cmp(0, 1, RaxLoc); EXPECT_EQ(Cmp, V); } TEST_F(InstrRefLDVTest, MTransferCopies) { SmallVector<MLocTransferMap, 1> TransferMap; // This memory spill should be recognised, and a spill slot created. MachineFunction *MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n" " RET64 $rax\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // Check that the spill location contains the value defined in rax by // instruction 1. The MIR header says -16 offset, but it's stored as -8; // it's not completely clear why, but here we only care about correctly // identifying the slot, not that all the surrounding data is correct. SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)}; SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L); unsigned SpillLocID = MTracker->getLocID(SpillNo, {64, 0}); LocIdx SpillLoc = MTracker->getSpillMLoc(SpillLocID); ValueIDNum V = MTracker->readMLoc(SpillLoc); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->getRegMLoc(RAX); ValueIDNum Cmp(0, 1, RaxLoc); EXPECT_EQ(V, Cmp); // A spill and restore should be recognised. MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n" " $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // Test that rbx contains rax from instruction 1. RAX = getRegByName("RAX"); RaxLoc = MTracker->getRegMLoc(RAX); Register RBX = getRegByName("RBX"); LocIdx RbxLoc = MTracker->getRegMLoc(RBX); Cmp = ValueIDNum(0, 1, RaxLoc); ValueIDNum RbxVal = MTracker->readMLoc(RbxLoc); EXPECT_EQ(RbxVal, Cmp); // Testing that all the subregisters are transferred happens in // MTransferSubregSpills. // Copies and x86 movs should be recognised and honoured. In addition, all // of the subregisters should be copied across too. MF = readMIRBlock( " $rax = MOV64ri 0\n" " $rcx = COPY $rax\n" " $rbx = MOV64rr $rcx\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); const char *ARegs[] = {"AL", "AH", "AX", "EAX", "HAX", "RAX"}; const char *BRegs[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"}; const char *CRegs[] = {"CL", "CH", "CX", "ECX", "HCX", "RCX"}; auto CheckReg = [&](unsigned int I) { LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I])); LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I])); LocIdx C = MTracker->getRegMLoc(getRegByName(CRegs[I])); ValueIDNum ARefVal(0, 1, A); ValueIDNum AVal = MTracker->readMLoc(A); ValueIDNum BVal = MTracker->readMLoc(B); ValueIDNum CVal = MTracker->readMLoc(C); EXPECT_EQ(ARefVal, AVal); EXPECT_EQ(ARefVal, BVal); EXPECT_EQ(ARefVal, CVal); }; for (unsigned int I = 0; I < 6; ++I) CheckReg(I); // When we copy to a subregister, the super-register should be def'd too: it's // value will have changed. MF = readMIRBlock( " $rax = MOV64ri 0\n" " $ecx = COPY $eax\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // First four regs [al, ah, ax, eax] should be copied to *cx. for (unsigned int I = 0; I < 4; ++I) { LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I])); LocIdx C = MTracker->getRegMLoc(getRegByName(CRegs[I])); ValueIDNum ARefVal(0, 1, A); ValueIDNum AVal = MTracker->readMLoc(A); ValueIDNum CVal = MTracker->readMLoc(C); EXPECT_EQ(ARefVal, AVal); EXPECT_EQ(ARefVal, CVal); } // But rcx should contain a value defined by the COPY. LocIdx RcxLoc = MTracker->getRegMLoc(getRegByName("RCX")); ValueIDNum RcxVal = MTracker->readMLoc(RcxLoc); ValueIDNum RcxDefVal(0, 2, RcxLoc); // instr 2 -> the copy EXPECT_EQ(RcxVal, RcxDefVal); } TEST_F(InstrRefLDVTest, MTransferSubregSpills) { SmallVector<MLocTransferMap, 1> TransferMap; MachineFunction *MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n" " $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // Check that all the subregs of rax and rbx contain the same values. One // should completely transfer to the other. const char *ARegs[] = {"AL", "AH", "AX", "EAX", "HAX", "RAX"}; const char *BRegs[] = {"BL", "BH", "BX", "EBX", "HBX", "RBX"}; for (unsigned int I = 0; I < 6; ++I) { LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I])); LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I])); EXPECT_EQ(MTracker->readMLoc(A), MTracker->readMLoc(B)); } // Explicitly check what's in the different subreg slots, on the stack. // Pair up subreg idx fields with the corresponding subregister in $rax. MLocTracker::StackSlotPos SubRegIdxes[] = {{8, 0}, {8, 8}, {16, 0}, {32, 0}, {64, 0}}; const char *SubRegNames[] = {"AL", "AH", "AX", "EAX", "RAX"}; for (unsigned int I = 0; I < 5; ++I) { // Value number where it's defined, LocIdx RegLoc = MTracker->getRegMLoc(getRegByName(SubRegNames[I])); ValueIDNum DefNum(0, 1, RegLoc); // Read the corresponding subreg field from the stack. SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)}; SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L); unsigned SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]); LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc); EXPECT_EQ(DefNum, SpillValue); } // If we have exactly the same code, but we write $eax to the stack slot after // $rax, then we should still have exactly the same output in the lower five // subregisters. Storing $eax to the start of the slot will overwrite with the // same values. $rax, as an aliasing register, should be reset to something // else by that write. // In theory, we could try and recognise that we're writing the _same_ values // to the stack again, and so $rax doesn't need to be reset to something else. // It seems vanishingly unlikely that LLVM would generate such code though, // so the benefits would be small. MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n" " MOV32mr $rsp, 1, $noreg, 16, $noreg, $eax :: (store 4 into %stack.0)\n" " $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); // Check lower five registers up to and include $eax == $ebx, for (unsigned int I = 0; I < 5; ++I) { LocIdx A = MTracker->getRegMLoc(getRegByName(ARegs[I])); LocIdx B = MTracker->getRegMLoc(getRegByName(BRegs[I])); EXPECT_EQ(MTracker->readMLoc(A), MTracker->readMLoc(B)); } // $rbx should contain something else; today it's a def at the spill point // of the 4 byte value. SpillLoc L = {getRegByName("RSP"), StackOffset::getFixed(-8)}; SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L); unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); LocIdx Spill64Loc = MTracker->getSpillMLoc(SpillID); ValueIDNum DefAtSpill64(0, 3, Spill64Loc); LocIdx RbxLoc = MTracker->getRegMLoc(getRegByName("RBX")); EXPECT_EQ(MTracker->readMLoc(RbxLoc), DefAtSpill64); // Same again, test that the lower four subreg slots on the stack are the // value defined by $rax in instruction 1. for (unsigned int I = 0; I < 4; ++I) { // Value number where it's defined, LocIdx RegLoc = MTracker->getRegMLoc(getRegByName(SubRegNames[I])); ValueIDNum DefNum(0, 1, RegLoc); // Read the corresponding subreg field from the stack. SpillNo = *MTracker->getOrTrackSpillLoc(L); SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]); LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc); EXPECT_EQ(DefNum, SpillValue); } // Stack slot for $rax should be a different value, today it's EmptyValue. ValueIDNum SpillValue = MTracker->readMLoc(Spill64Loc); EXPECT_EQ(SpillValue, DefAtSpill64); // If we write something to the stack, then over-write with some register // from a completely different hierarchy, none of the "old" values should be // readable. // NB: slight hack, store 16 in to a 8 byte stack slot. MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV64mr $rsp, 1, $noreg, 16, $noreg, $rax :: (store 8 into %stack.0)\n" " $xmm0 = IMPLICIT_DEF\n" " MOVUPDmr $rsp, 1, $noreg, 16, $noreg, killed $xmm0 :: (store (s128) into %stack.0)\n" " $rbx = MOV64rm $rsp, 1, $noreg, 0, $noreg :: (load 8 from %stack.0)\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); for (unsigned int I = 0; I < 5; ++I) { // Read subreg fields from the stack. SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(L); unsigned SpillID = MTracker->getLocID(SpillNo, SubRegIdxes[I]); LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); ValueIDNum SpillValue = MTracker->readMLoc(SpillLoc); // Value should be defined by the spill-to-xmm0 instr, get value of a def // at the point of the spill. ValueIDNum SpillDef(0, 4, SpillLoc); EXPECT_EQ(SpillValue, SpillDef); } // Read xmm0's position and ensure it has a value. Should be the live-in // value to the block, as IMPLICIT_DEF isn't a real def. SpillNo = *MTracker->getOrTrackSpillLoc(L); SpillID = MTracker->getLocID(SpillNo, {128, 0}); LocIdx Spill128Loc = MTracker->getSpillMLoc(SpillID); SpillValue = MTracker->readMLoc(Spill128Loc); Register XMM0 = getRegByName("XMM0"); LocIdx Xmm0Loc = MTracker->getRegMLoc(XMM0); EXPECT_EQ(ValueIDNum(0, 0, Xmm0Loc), SpillValue); // What happens if we spill ah to the stack, then load al? It should find // the same value. MF = readMIRBlock( " $rax = MOV64ri 0\n" " MOV8mr $rsp, 1, $noreg, 16, $noreg, $ah :: (store 1 into %stack.0)\n" " $al = MOV8rm $rsp, 1, $noreg, 0, $noreg :: (load 1 from %stack.0)\n" " RET64\n"); setupLDVObj(MF); TransferMap.clear(); TransferMap.resize(1); produceMLocTransferFunction(*MF, TransferMap, 1); Register AL = getRegByName("AL"); Register AH = getRegByName("AH"); LocIdx AlLoc = MTracker->getRegMLoc(AL); LocIdx AhLoc = MTracker->getRegMLoc(AH); ValueIDNum AHDef(0, 1, AhLoc); ValueIDNum ALValue = MTracker->readMLoc(AlLoc); EXPECT_EQ(ALValue, AHDef); } TEST_F(InstrRefLDVTest, MLocSingleBlock) { // Test some very simple properties about interpreting the transfer function. setupSingleBlock(); // We should start with a single location, the stack pointer. ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); // Set up live-in and live-out tables for this function: two locations (we // add one later) in a single block. FuncValueTable MOutLocs, MInLocs; std::tie(MOutLocs, MInLocs) = allocValueTables(1, 2); // Transfer function: nothing. SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(1); // Try and build value maps... buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); // The result should be that RSP is marked as a live-in-PHI -- this represents // an argument. And as there's no transfer function, the block live-out should // be the same. EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc)); EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 0, RspLoc)); // Try again, this time initialising the in-locs to be defined by an // instruction. The entry block should always be re-assigned to be the // arguments. initValueArray(MInLocs, 1, 2); initValueArray(MOutLocs, 1, 2); MInLocs[0][0] = ValueIDNum(0, 1, RspLoc); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc)); EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 0, RspLoc)); // Now insert something into the transfer function to assign to the single // machine location. TransferFunc[0].insert({RspLoc, ValueIDNum(0, 1, RspLoc)}); initValueArray(MInLocs, 1, 2); initValueArray(MOutLocs, 1, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc)); EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 1, RspLoc)); TransferFunc[0].clear(); // Add a new register to be tracked, and insert it into the transfer function // as a copy. The output of $rax should be the live-in value of $rsp. Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); TransferFunc[0].insert({RspLoc, ValueIDNum(0, 1, RspLoc)}); TransferFunc[0].insert({RaxLoc, ValueIDNum(0, 0, RspLoc)}); initValueArray(MInLocs, 1, 2); initValueArray(MOutLocs, 1, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], ValueIDNum(0, 0, RspLoc)); EXPECT_EQ(MInLocs[0][1], ValueIDNum(0, 0, RaxLoc)); EXPECT_EQ(MOutLocs[0][0], ValueIDNum(0, 1, RspLoc)); EXPECT_EQ(MOutLocs[0][1], ValueIDNum(0, 0, RspLoc)); // Rax contains RspLoc. TransferFunc[0].clear(); } TEST_F(InstrRefLDVTest, MLocDiamondBlocks) { // Test that information flows from the entry block to two successors. // entry // / \ // br1 br2 // \ / // ret setupDiamondBlocks(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2); // Transfer function: start with nothing. SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(4); // Name some values. unsigned EntryBlk = 0, BrBlk1 = 1, BrBlk2 = 2, RetBlk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum RspDefInBlk0(EntryBlk, 1, RspLoc); ValueIDNum RspDefInBlk1(BrBlk1, 1, RspLoc); ValueIDNum RspDefInBlk2(BrBlk2, 1, RspLoc); ValueIDNum RspPHIInBlk3(RetBlk, 0, RspLoc); ValueIDNum RaxLiveInBlk1(BrBlk1, 0, RaxLoc); ValueIDNum RaxLiveInBlk2(BrBlk2, 0, RaxLoc); // With no transfer function, the live-in values to the entry block should // propagate to all live-outs and the live-ins to the two successor blocks. // IN ADDITION: this checks that the exit block doesn't get a PHI put in it. initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); // (Skipped writing out locations for $rax). // Check that a def of $rsp in the entry block will likewise reach all the // successors. TransferFunc[0].insert({RspLoc, RspDefInBlk0}); initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspDefInBlk0); EXPECT_EQ(MInLocs[2][0], RspDefInBlk0); EXPECT_EQ(MInLocs[3][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk0); TransferFunc[0].clear(); // Def in one branch of the diamond means that we need a PHI in the ret block TransferFunc[0].insert({RspLoc, RspDefInBlk0}); TransferFunc[1].insert({RspLoc, RspDefInBlk1}); initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); // This value map: like above, where RspDefInBlk0 is propagated through one // branch of the diamond, but is def'ed in the live-outs of the other. The // ret / merging block should have a PHI in its live-ins. EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspDefInBlk0); EXPECT_EQ(MInLocs[2][0], RspDefInBlk0); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3); TransferFunc[0].clear(); TransferFunc[1].clear(); // If we have differeing defs in either side of the diamond, we should // continue to produce a PHI, TransferFunc[0].insert({RspLoc, RspDefInBlk0}); TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[2].insert({RspLoc, RspDefInBlk2}); initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspDefInBlk0); EXPECT_EQ(MInLocs[2][0], RspDefInBlk0); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3); TransferFunc[0].clear(); TransferFunc[1].clear(); TransferFunc[2].clear(); // If we have defs of the same value on either side of the branch, a PHI will // initially be created, however value propagation should then eliminate it. // Encode this by copying the live-in value to $rax, and copying it to $rsp // from $rax in each branch of the diamond. We don't allow the definition of // arbitary values in transfer functions. TransferFunc[0].insert({RspLoc, RspDefInBlk0}); TransferFunc[0].insert({RaxLoc, LiveInRsp}); TransferFunc[1].insert({RspLoc, RaxLiveInBlk1}); TransferFunc[2].insert({RspLoc, RaxLiveInBlk2}); initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspDefInBlk0); EXPECT_EQ(MInLocs[2][0], RspDefInBlk0); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], RspDefInBlk0); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); TransferFunc[0].clear(); TransferFunc[1].clear(); TransferFunc[2].clear(); } TEST_F(InstrRefLDVTest, MLocDiamondSpills) { // Test that defs in stack locations that require PHIs, cause PHIs to be // installed in aliasing locations. i.e., if there's a PHI in the lower // 8 bits of the stack, there should be PHIs for 16/32/64 bit locations // on the stack too. // Technically this isn't needed for accuracy: we should calculate PHIs // independently for each location. However, because there's an optimisation // that only places PHIs for the lower "interfering" parts of stack slots, // test for this behaviour. setupDiamondBlocks(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); // Create a stack location and ensure it's tracked. SpillLoc SL = {getRegByName("RSP"), StackOffset::getFixed(-8)}; SpillLocationNo SpillNo = *MTracker->getOrTrackSpillLoc(SL); ASSERT_EQ(MTracker->getNumLocs(), 11u); // Tracks all possible stack locs. // Locations are: RSP, stack slots from 2^3 bits wide up to 2^9 for zmm regs, // then slots for sub_8bit_hi and sub_16bit_hi ({8, 8} and {16, 16}). // Finally, one for spilt fp80 registers. // Pick out the locations on the stack that various x86 regs would be written // to. HAX is the upper 16 bits of EAX. unsigned ALID = MTracker->getLocID(SpillNo, {8, 0}); unsigned AHID = MTracker->getLocID(SpillNo, {8, 8}); unsigned AXID = MTracker->getLocID(SpillNo, {16, 0}); unsigned EAXID = MTracker->getLocID(SpillNo, {32, 0}); unsigned HAXID = MTracker->getLocID(SpillNo, {16, 16}); unsigned RAXID = MTracker->getLocID(SpillNo, {64, 0}); LocIdx ALStackLoc = MTracker->getSpillMLoc(ALID); LocIdx AHStackLoc = MTracker->getSpillMLoc(AHID); LocIdx AXStackLoc = MTracker->getSpillMLoc(AXID); LocIdx EAXStackLoc = MTracker->getSpillMLoc(EAXID); LocIdx HAXStackLoc = MTracker->getSpillMLoc(HAXID); LocIdx RAXStackLoc = MTracker->getSpillMLoc(RAXID); // There are other locations, for things like xmm0, which we're going to // ignore here. FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(4, 11); // Transfer function: start with nothing. SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(4); // Name some values. unsigned EntryBlk = 0, Blk1 = 1, RetBlk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum ALLiveIn(EntryBlk, 0, ALStackLoc); ValueIDNum AHLiveIn(EntryBlk, 0, AHStackLoc); ValueIDNum HAXLiveIn(EntryBlk, 0, HAXStackLoc); ValueIDNum ALPHI(RetBlk, 0, ALStackLoc); ValueIDNum AXPHI(RetBlk, 0, AXStackLoc); ValueIDNum EAXPHI(RetBlk, 0, EAXStackLoc); ValueIDNum HAXPHI(RetBlk, 0, HAXStackLoc); ValueIDNum RAXPHI(RetBlk, 0, RAXStackLoc); ValueIDNum ALDefInBlk1(Blk1, 1, ALStackLoc); ValueIDNum HAXDefInBlk1(Blk1, 1, HAXStackLoc); SmallPtrSet<MachineBasicBlock *, 4> AllBlocks{MBB0, MBB1, MBB2, MBB3}; // If we put defs into one side of the diamond, for AL and HAX, then we should // find all aliasing positions have PHIs placed. This isn't technically what // the transfer function says to do: but we're testing that the optimisation // to reduce IDF calculation does the right thing. // AH should not be def'd: it don't alias AL or HAX. // // NB: we don't call buildMLocValueMap, because it will try to eliminate the // upper-slot PHIs, and succeed because of our slightly cooked transfer // function. TransferFunc[1].insert({ALStackLoc, ALDefInBlk1}); TransferFunc[1].insert({HAXStackLoc, HAXDefInBlk1}); initValueArray(MInLocs, 4, 11); placeMLocPHIs(*MF, AllBlocks, MInLocs, TransferFunc); EXPECT_EQ(MInLocs[3][ALStackLoc.asU64()], ALPHI); EXPECT_EQ(MInLocs[3][AXStackLoc.asU64()], AXPHI); EXPECT_EQ(MInLocs[3][EAXStackLoc.asU64()], EAXPHI); EXPECT_EQ(MInLocs[3][HAXStackLoc.asU64()], HAXPHI); EXPECT_EQ(MInLocs[3][RAXStackLoc.asU64()], RAXPHI); // AH should be left untouched, EXPECT_EQ(MInLocs[3][AHStackLoc.asU64()], ValueIDNum::EmptyValue); } TEST_F(InstrRefLDVTest, MLocSimpleLoop) { // entry // | // |/-----\ // loopblk | // |\-----/ // | // ret setupSimpleLoop(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2); SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(3); // Name some values. unsigned EntryBlk = 0, LoopBlk = 1, RetBlk = 2; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum RspPHIInBlk1(LoopBlk, 0, RspLoc); ValueIDNum RspDefInBlk1(LoopBlk, 1, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum RaxPHIInBlk1(LoopBlk, 0, RaxLoc); ValueIDNum RaxPHIInBlk2(RetBlk, 0, RaxLoc); // Begin test with all locations being live-through. initValueArray(MInLocs, 3, 2); initValueArray(MOutLocs, 3, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); // Add a def of $rsp to the loop block: it should be in the live-outs, but // should cause a PHI to be placed in the live-ins. Test the transfer function // by copying that PHI into $rax in the loop, then back to $rsp in the ret // block. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[1].insert({RaxLoc, RspPHIInBlk1}); TransferFunc[2].insert({RspLoc, RaxPHIInBlk2}); initValueArray(MInLocs, 3, 2); initValueArray(MOutLocs, 3, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk1); // Check rax as well, EXPECT_EQ(MInLocs[0][1], LiveInRax); EXPECT_EQ(MInLocs[1][1], RaxPHIInBlk1); EXPECT_EQ(MInLocs[2][1], RspPHIInBlk1); EXPECT_EQ(MOutLocs[0][1], LiveInRax); EXPECT_EQ(MOutLocs[1][1], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][1], RspPHIInBlk1); TransferFunc[1].clear(); TransferFunc[2].clear(); // As with the diamond case, a PHI will be created if there's a (implicit) // def in the entry block and loop block; but should be value propagated away // if it copies in the same value. Copy live-in $rsp to $rax, then copy it // into $rsp in the loop. Encoded as copying the live-in $rax value in block 1 // to $rsp. TransferFunc[0].insert({RaxLoc, LiveInRsp}); TransferFunc[1].insert({RspLoc, RaxPHIInBlk1}); initValueArray(MInLocs, 3, 2); initValueArray(MOutLocs, 3, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); // Check $rax's values. EXPECT_EQ(MInLocs[0][1], LiveInRax); EXPECT_EQ(MInLocs[1][1], LiveInRsp); EXPECT_EQ(MInLocs[2][1], LiveInRsp); EXPECT_EQ(MOutLocs[0][1], LiveInRsp); EXPECT_EQ(MOutLocs[1][1], LiveInRsp); EXPECT_EQ(MOutLocs[2][1], LiveInRsp); TransferFunc[0].clear(); TransferFunc[1].clear(); } TEST_F(InstrRefLDVTest, MLocNestedLoop) { // entry // | // loop1 // ^\ // | \ /-\ // | loop2 | // | / \-/ // ^ / // join // | // ret setupNestedLoops(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2); SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(5); unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2, JoinBlk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc); ValueIDNum RspDefInBlk1(Loop1Blk, 1, RspLoc); ValueIDNum RspPHIInBlk2(Loop2Blk, 0, RspLoc); ValueIDNum RspDefInBlk2(Loop2Blk, 1, RspLoc); ValueIDNum RspDefInBlk3(JoinBlk, 1, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum RaxPHIInBlk1(Loop1Blk, 0, RaxLoc); ValueIDNum RaxPHIInBlk2(Loop2Blk, 0, RaxLoc); // Like the other tests: first ensure that if there's nothing in the transfer // function, then everything is live-through (check $rsp). initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MInLocs[4][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[4][0], LiveInRsp); // A def in the inner loop means we should get PHIs at the heads of both // loops. Live-outs of the last three blocks will be the def, as it dominates // those. TransferFunc[2].insert({RspLoc, RspDefInBlk2}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspDefInBlk2); EXPECT_EQ(MInLocs[4][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk2); TransferFunc[2].clear(); // Adding a def to the outer loop header shouldn't affect this much -- the // live-out of block 1 changes. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[2].insert({RspLoc, RspDefInBlk2}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspDefInBlk2); EXPECT_EQ(MInLocs[4][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk2); TransferFunc[1].clear(); TransferFunc[2].clear(); // Likewise, putting a def in the outer loop tail shouldn't affect where // the PHIs go, and should propagate into the ret block. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[2].insert({RspLoc, RspDefInBlk2}); TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspDefInBlk2); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[1].clear(); TransferFunc[2].clear(); TransferFunc[3].clear(); // However: if we don't def in the inner-loop, then we just have defs in the // head and tail of the outer loop. The inner loop should be live-through. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspDefInBlk1); EXPECT_EQ(MInLocs[3][0], RspDefInBlk1); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[1].clear(); TransferFunc[3].clear(); // Check that this still works if we copy RspDefInBlk1 to $rax and then // copy it back into $rsp in the inner loop. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); TransferFunc[1].insert({RaxLoc, RspDefInBlk1}); TransferFunc[2].insert({RspLoc, RaxPHIInBlk2}); TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspDefInBlk1); EXPECT_EQ(MInLocs[3][0], RspDefInBlk1); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); // Look at raxes value in the relevant blocks, EXPECT_EQ(MInLocs[2][1], RspDefInBlk1); EXPECT_EQ(MOutLocs[1][1], RspDefInBlk1); TransferFunc[1].clear(); TransferFunc[2].clear(); TransferFunc[3].clear(); // If we have a single def in the tail of the outer loop, that should produce // a PHI at the loop head, and be live-through the inner loop. TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[3].clear(); // And if we copy from $rsp to $rax in block 2, it should resolve to the PHI // in block 1, and we should keep that value in rax until the ret block. // There'll be a PHI in block 1 and 2, because we're putting a def in the // inner loop. TransferFunc[2].insert({RaxLoc, RspPHIInBlk2}); TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); // Examining the values of rax, EXPECT_EQ(MInLocs[0][1], LiveInRax); EXPECT_EQ(MInLocs[1][1], RaxPHIInBlk1); EXPECT_EQ(MInLocs[2][1], RaxPHIInBlk2); EXPECT_EQ(MInLocs[3][1], RspPHIInBlk1); EXPECT_EQ(MInLocs[4][1], RspPHIInBlk1); EXPECT_EQ(MOutLocs[0][1], LiveInRax); EXPECT_EQ(MOutLocs[1][1], RaxPHIInBlk1); EXPECT_EQ(MOutLocs[2][1], RspPHIInBlk1); EXPECT_EQ(MOutLocs[3][1], RspPHIInBlk1); EXPECT_EQ(MOutLocs[4][1], RspPHIInBlk1); TransferFunc[2].clear(); TransferFunc[3].clear(); } TEST_F(InstrRefLDVTest, MLocNoDominatingLoop) { // entry // / \ // / \ // / \ // head1 head2 // ^ \ / ^ // ^ \ / ^ // \-joinblk -/ // | // ret setupNoDominatingLoop(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2); SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(5); unsigned EntryBlk = 0, Head1Blk = 1, Head2Blk = 2, JoinBlk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum RspPHIInBlk1(Head1Blk, 0, RspLoc); ValueIDNum RspDefInBlk1(Head1Blk, 1, RspLoc); ValueIDNum RspPHIInBlk2(Head2Blk, 0, RspLoc); ValueIDNum RspDefInBlk2(Head2Blk, 1, RspLoc); ValueIDNum RspPHIInBlk3(JoinBlk, 0, RspLoc); ValueIDNum RspDefInBlk3(JoinBlk, 1, RspLoc); ValueIDNum RaxPHIInBlk1(Head1Blk, 0, RaxLoc); ValueIDNum RaxPHIInBlk2(Head2Blk, 0, RaxLoc); // As ever, test that everything is live-through if there are no defs. initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MInLocs[4][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[4][0], LiveInRsp); // Putting a def in the 'join' block will cause us to have two distinct // PHIs in each loop head, then on entry to the join block. TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[3].clear(); // We should get the same behaviour if we put the def in either of the // loop heads -- it should force the other head to be a PHI. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MInLocs[4][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[4][0], RspPHIInBlk3); TransferFunc[1].clear(); // Check symmetry, TransferFunc[2].insert({RspLoc, RspDefInBlk2}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MInLocs[4][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk2); EXPECT_EQ(MOutLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MOutLocs[4][0], RspPHIInBlk3); TransferFunc[2].clear(); // Test some scenarios where there _shouldn't_ be any PHIs created at heads. // These are those PHIs are created, but value propagation eliminates them. // For example, lets copy rsp-livein to $rsp inside each loop head, so that // there's no need for a PHI in the join block. Put a def of $rsp in block 3 // to force PHIs elsewhere. TransferFunc[0].insert({RaxLoc, LiveInRsp}); TransferFunc[1].insert({RspLoc, RaxPHIInBlk1}); TransferFunc[2].insert({RspLoc, RaxPHIInBlk2}); TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[0].clear(); TransferFunc[1].clear(); TransferFunc[2].clear(); TransferFunc[3].clear(); // In fact, if we eliminate the def in block 3, none of those PHIs are // necessary, as we're just repeatedly copying LiveInRsp into $rsp. They // should all be value propagated out. TransferFunc[0].insert({RaxLoc, LiveInRsp}); TransferFunc[1].insert({RspLoc, RaxPHIInBlk1}); TransferFunc[2].insert({RspLoc, RaxPHIInBlk2}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MInLocs[4][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[4][0], LiveInRsp); TransferFunc[0].clear(); TransferFunc[1].clear(); TransferFunc[2].clear(); } TEST_F(InstrRefLDVTest, MLocBadlyNestedLoops) { // entry // | // loop1 -o // | ^ // | ^ // loop2 -o // | ^ // | ^ // loop3 -o // | // ret setupBadlyNestedLoops(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2); SmallVector<MLocTransferMap, 1> TransferFunc; TransferFunc.resize(5); unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2, Loop3Blk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc); ValueIDNum RspDefInBlk1(Loop1Blk, 1, RspLoc); ValueIDNum RspPHIInBlk2(Loop2Blk, 0, RspLoc); ValueIDNum RspPHIInBlk3(Loop3Blk, 0, RspLoc); ValueIDNum RspDefInBlk3(Loop3Blk, 1, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum RaxPHIInBlk3(Loop3Blk, 0, RaxLoc); // As ever, test that everything is live-through if there are no defs. initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], LiveInRsp); EXPECT_EQ(MInLocs[2][0], LiveInRsp); EXPECT_EQ(MInLocs[3][0], LiveInRsp); EXPECT_EQ(MInLocs[4][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], LiveInRsp); EXPECT_EQ(MOutLocs[2][0], LiveInRsp); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[4][0], LiveInRsp); // A def in loop3 should cause PHIs in every loop block: they're all // reachable from each other. TransferFunc[3].insert({RspLoc, RspDefInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MInLocs[4][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk3); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk3); TransferFunc[3].clear(); // A def in loop1 should cause a PHI in loop1, but not the other blocks. // loop2 and loop3 are dominated by the def in loop1, so they should have // that value live-through. TransferFunc[1].insert({RspLoc, RspDefInBlk1}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspDefInBlk1); EXPECT_EQ(MInLocs[3][0], RspDefInBlk1); EXPECT_EQ(MInLocs[4][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[2][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[3][0], RspDefInBlk1); EXPECT_EQ(MOutLocs[4][0], RspDefInBlk1); TransferFunc[1].clear(); // As with earlier tricks: copy $rsp to $rax in the entry block, then $rax // to $rsp in block 3. The only def of $rsp is simply copying the same value // back into itself, and the value of $rsp is LiveInRsp all the way through. // PHIs should be created, then value-propagated away... however this // doesn't work in practice. // Consider the entry to loop3: we can determine that there's an incoming // PHI value from loop2, and LiveInRsp from the self-loop. This would still // justify having a PHI on entry to loop3. The only way to completely // value-propagate these PHIs away would be to speculatively explore what // PHIs could be eliminated and what that would lead to; which is // combinatorially complex. // Happily: // a) In this scenario, we always have a tracked location for LiveInRsp // anyway, so there's no loss in availability, // b) Only DBG_PHIs of a register would be vunlerable to this scenario, and // even then only if a true PHI became a DBG_PHI and was then optimised // through branch folding to no longer be at a CFG join, // c) The register allocator can spot this kind of redundant COPY easily, // and eliminate it. // // This unit test left in as a reference for the limitations of this // approach. PHIs will be left in $rsp on entry to each block. TransferFunc[0].insert({RaxLoc, LiveInRsp}); TransferFunc[3].insert({RspLoc, RaxPHIInBlk3}); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); buildMLocValueMap(MInLocs, MOutLocs, TransferFunc); EXPECT_EQ(MInLocs[0][0], LiveInRsp); EXPECT_EQ(MInLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MInLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MInLocs[3][0], RspPHIInBlk3); EXPECT_EQ(MInLocs[4][0], LiveInRsp); EXPECT_EQ(MOutLocs[0][0], LiveInRsp); EXPECT_EQ(MOutLocs[1][0], RspPHIInBlk1); EXPECT_EQ(MOutLocs[2][0], RspPHIInBlk2); EXPECT_EQ(MOutLocs[3][0], LiveInRsp); EXPECT_EQ(MOutLocs[4][0], LiveInRsp); // Check $rax's value. It should have $rsps value from the entry block // onwards. EXPECT_EQ(MInLocs[0][1], LiveInRax); EXPECT_EQ(MInLocs[1][1], LiveInRsp); EXPECT_EQ(MInLocs[2][1], LiveInRsp); EXPECT_EQ(MInLocs[3][1], LiveInRsp); EXPECT_EQ(MInLocs[4][1], LiveInRsp); EXPECT_EQ(MOutLocs[0][1], LiveInRsp); EXPECT_EQ(MOutLocs[1][1], LiveInRsp); EXPECT_EQ(MOutLocs[2][1], LiveInRsp); EXPECT_EQ(MOutLocs[3][1], LiveInRsp); EXPECT_EQ(MOutLocs[4][1], LiveInRsp); } TEST_F(InstrRefLDVTest, pickVPHILocDiamond) { // entry // / \ // br1 br2 // \ / // ret setupDiamondBlocks(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2); initValueArray(MOutLocs, 4, 2); unsigned EntryBlk = 0, Br2Blk = 2, RetBlk = 3; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum RspPHIInBlk2(Br2Blk, 0, RspLoc); ValueIDNum RspPHIInBlk3(RetBlk, 0, RspLoc); ValueIDNum RaxPHIInBlk3(RetBlk, 0, RaxLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID RspPHIInBlk2ID = addValueDbgOp(RspPHIInBlk2); DbgOpID RspPHIInBlk3ID = addValueDbgOp(RspPHIInBlk3); DbgOpID RaxPHIInBlk3ID = addValueDbgOp(RaxPHIInBlk3); DbgOpID ConstZeroID = addConstDbgOp(MachineOperand::CreateImm(0)); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); DIExpression *TwoOpExpr = DIExpression::get(Ctx, {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_LLVM_arg, 1, dwarf::DW_OP_plus}); DbgValueProperties TwoOpProps(TwoOpExpr, false, true); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(4, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; VLiveOutIdx[MBB3] = &VLiveOuts[3]; SmallVector<const MachineBasicBlock *, 2> Preds; for (const auto *Pred : MBB3->predecessors()) Preds.push_back(Pred); // Specify the live-outs around the joining block. MOutLocs[1][0] = LiveInRsp; MOutLocs[2][0] = LiveInRax; bool Result; SmallVector<DbgOpID> OutValues; // Simple case: join two distinct values on entry to the block. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRaxID, EmptyProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); // Should have picked a PHI in $rsp in block 3. EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk3ID); } // If the incoming values are swapped between blocks, we should not // successfully join. The CFG merge would select the right values, but in // the wrong conditions. std::swap(VLiveOuts[1], VLiveOuts[2]); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Swap back, std::swap(VLiveOuts[1], VLiveOuts[2]); // Setting one of these to being a constant should prohibit merging. VLiveOuts[1].setDbgOpIDs(ConstZeroID); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Setting both to being identical constants should result in a valid join // with a constant value. VLiveOuts[2] = VLiveOuts[1]; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], ConstZeroID); } // NoVals shouldn't join with anything else. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::NoVal); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // We might merge in another VPHI in such a join. Present pickVPHILoc with // such a scenario: first, where one incoming edge has a VPHI with no known // value. This represents an edge where there was a PHI value that can't be // found in the register file -- we can't subsequently find a PHI here. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // However, if we know the value of the incoming VPHI, we can search for its // location. Use a PHI machine-value for doing this, as VPHIs should always // have PHI values, or they should have been eliminated. MOutLocs[2][0] = RspPHIInBlk2; VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI); VLiveOuts[2].setDbgOpIDs(RspPHIInBlk2ID); // Set location where PHI happens. OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk3ID); } // If that value isn't available from that block, don't join. MOutLocs[2][0] = LiveInRsp; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Check that we don't pick values when the properties disagree, for example // different indirectness or DIExpression. MOutLocs[2][0] = LiveInRax; DIExpression *NewExpr = DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4); DbgValueProperties PropsWithExpr(NewExpr, false, false); VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, PropsWithExpr); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); DbgValueProperties PropsWithIndirect(EmptyExpr, true, false); VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, PropsWithIndirect); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // When we have operands with values [A, B] and [B, A], we do not necessarily // pick identical join locations for each operand if the locations of those // values differ between incoming basic blocks. MOutLocs[1][0] = LiveInRsp; MOutLocs[2][0] = LiveInRax; MOutLocs[1][1] = LiveInRax; MOutLocs[2][1] = LiveInRsp; DbgOpID Locs0[] = {LiveInRspID, LiveInRaxID}; DbgOpID Locs1[] = {LiveInRaxID, LiveInRspID}; VLiveOuts[1] = DbgValue(Locs0, TwoOpProps); VLiveOuts[2] = DbgValue(Locs1, TwoOpProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); // Should have picked PHIs in block 3. EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk3ID); EXPECT_EQ(OutValues[1], RaxPHIInBlk3ID); } // When joining identical constants for an operand, we should simply keep that // constant while joining the remaining operands as normal. DbgOpID Locs2[] = {LiveInRspID, ConstZeroID}; DbgOpID Locs3[] = {LiveInRaxID, ConstZeroID}; VLiveOuts[1] = DbgValue(Locs2, TwoOpProps); VLiveOuts[2] = DbgValue(Locs3, TwoOpProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk3ID); EXPECT_EQ(OutValues[1], ConstZeroID); } // If the debug values have different constants for the same operand, they // cannot be joined. DbgOpID ConstOneID = addConstDbgOp(MachineOperand::CreateImm(1)); DbgOpID Locs4[] = {LiveInRaxID, ConstOneID}; VLiveOuts[1] = DbgValue(Locs3, TwoOpProps); VLiveOuts[2] = DbgValue(Locs4, TwoOpProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB3, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); } TEST_F(InstrRefLDVTest, pickVPHILocLoops) { setupSimpleLoop(); // entry // | // |/-----\ // loopblk | // |\-----/ // | // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2); initValueArray(MOutLocs, 3, 2); unsigned EntryBlk = 0, LoopBlk = 1; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum RspPHIInBlk1(LoopBlk, 0, RspLoc); ValueIDNum RaxPHIInBlk1(LoopBlk, 0, RaxLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID RspPHIInBlk1ID = addValueDbgOp(RspPHIInBlk1); DbgOpID RaxPHIInBlk1ID = addValueDbgOp(RaxPHIInBlk1); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); DIExpression *TwoOpExpr = DIExpression::get(Ctx, {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_LLVM_arg, 1, dwarf::DW_OP_plus}); DbgValueProperties TwoOpProps(TwoOpExpr, false, true); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(3, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; SmallVector<const MachineBasicBlock *, 2> Preds; for (const auto *Pred : MBB1->predecessors()) Preds.push_back(Pred); // Specify the live-outs around the joining block. MOutLocs[0][0] = LiveInRsp; MOutLocs[1][0] = LiveInRax; bool Result; SmallVector<DbgOpID> OutValues; // See that we can merge as normal on a backedge. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(LiveInRaxID, EmptyProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); // Should have picked a PHI in $rsp in block 1. EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk1ID); } // And that, if the desired values aren't available, we don't merge. MOutLocs[1][0] = LiveInRsp; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Test the backedge behaviour: PHIs that feed back into themselves can // carry this variables value. Feed in LiveInRsp in both $rsp and $rax // from the entry block, but only put an appropriate backedge PHI in $rax. // Only the $rax location can form the correct PHI. MOutLocs[0][0] = LiveInRsp; MOutLocs[0][1] = LiveInRsp; MOutLocs[1][0] = RaxPHIInBlk1; MOutLocs[1][1] = RaxPHIInBlk1; VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); // Crucially, a VPHI originating in this block: VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RaxPHIInBlk1ID); } // Test that we can also find a location when joining a backedge PHI with // a variadic debug value. MOutLocs[1][0] = RspPHIInBlk1; MOutLocs[0][1] = LiveInRax; DbgOpID Locs0[] = {LiveInRspID, LiveInRaxID}; VLiveOuts[0] = DbgValue(Locs0, TwoOpProps); // Crucially, a VPHI originating in this block: VLiveOuts[1] = DbgValue(1, TwoOpProps, DbgValue::VPHI); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk1ID); EXPECT_EQ(OutValues[1], RaxPHIInBlk1ID); } // Merging should not be permitted if there's a usable PHI on the backedge, // but it's in the wrong place. (Overwrite $rax). MOutLocs[1][1] = LiveInRax; VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Additionally, if the VPHI coming back on the loop backedge isn't from // this block (block 1), we can't merge it. MOutLocs[1][1] = RaxPHIInBlk1; VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(0, EmptyProps, DbgValue::VPHI); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); } TEST_F(InstrRefLDVTest, pickVPHILocBadlyNestedLoops) { // Run some tests similar to pickVPHILocLoops, with more than one backedge, // and check that we merge correctly over many candidate locations. setupBadlyNestedLoops(); // entry // | // loop1 -o // | ^ // | ^ // loop2 -o // | ^ // | ^ // loop3 -o // | // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); Register RBX = getRegByName("RBX"); LocIdx RbxLoc = MTracker->lookupOrTrackRegister(RBX); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(5, 3); initValueArray(MOutLocs, 5, 3); unsigned EntryBlk = 0, Loop1Blk = 1; ValueIDNum LiveInRsp(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax(EntryBlk, 0, RaxLoc); ValueIDNum LiveInRbx(EntryBlk, 0, RbxLoc); ValueIDNum RspPHIInBlk1(Loop1Blk, 0, RspLoc); ValueIDNum RaxPHIInBlk1(Loop1Blk, 0, RaxLoc); ValueIDNum RbxPHIInBlk1(Loop1Blk, 0, RbxLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID LiveInRbxID = addValueDbgOp(LiveInRbx); DbgOpID RspPHIInBlk1ID = addValueDbgOp(RspPHIInBlk1); addValueDbgOp(RaxPHIInBlk1); DbgOpID RbxPHIInBlk1ID = addValueDbgOp(RbxPHIInBlk1); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(5, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; VLiveOutIdx[MBB3] = &VLiveOuts[3]; VLiveOutIdx[MBB4] = &VLiveOuts[4]; // We're going to focus on block 1. SmallVector<const MachineBasicBlock *, 2> Preds; for (const auto *Pred : MBB1->predecessors()) Preds.push_back(Pred); // Specify the live-outs around the joining block. Incoming edges from the // entry block, self, and loop2. MOutLocs[0][0] = LiveInRsp; MOutLocs[1][0] = LiveInRax; MOutLocs[2][0] = LiveInRbx; bool Result; SmallVector<DbgOpID> OutValues; // See that we can merge as normal on a backedge. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(LiveInRaxID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRbxID, EmptyProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); // Should have picked a PHI in $rsp in block 1. EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk1ID); } // Check too that permuting the live-out locations prevents merging MOutLocs[0][0] = LiveInRax; MOutLocs[1][0] = LiveInRbx; MOutLocs[2][0] = LiveInRsp; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); MOutLocs[0][0] = LiveInRsp; MOutLocs[1][0] = LiveInRax; MOutLocs[2][0] = LiveInRbx; // Feeding a PHI back on one backedge shouldn't merge (block 1 self backedge // wants LiveInRax). MOutLocs[1][0] = RspPHIInBlk1; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // If the variables value on that edge is a VPHI feeding into itself, that's // fine. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); VLiveOuts[2] = DbgValue(LiveInRbxID, EmptyProps); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk1ID); } // Likewise: the other backedge being a VPHI from block 1 should be accepted. MOutLocs[2][0] = RspPHIInBlk1; VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); VLiveOuts[2] = DbgValue(1, EmptyProps, DbgValue::VPHI); OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RspPHIInBlk1ID); } // Here's where it becomes tricky: we should not merge if there are two // _distinct_ backedge PHIs. We can't have a PHI that happens in both rsp // and rax for example. We can only pick one location as the live-in. MOutLocs[2][0] = RaxPHIInBlk1; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // The above test sources correct machine-PHI-value from two places. Now // try with one machine-PHI-value, but placed in two different locations // on the backedge. Again, we can't merge a location here, there's no // location that works on all paths. MOutLocs[0][0] = LiveInRsp; MOutLocs[1][0] = RspPHIInBlk1; MOutLocs[2][0] = LiveInRsp; MOutLocs[2][1] = RspPHIInBlk1; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_FALSE(Result); // Scatter various PHI values across the available locations. Only rbx (loc 2) // has the right value in both backedges -- that's the loc that should be // picked. MOutLocs[0][2] = LiveInRsp; MOutLocs[1][0] = RspPHIInBlk1; MOutLocs[1][1] = RaxPHIInBlk1; MOutLocs[1][2] = RbxPHIInBlk1; MOutLocs[2][0] = LiveInRsp; MOutLocs[2][1] = RspPHIInBlk1; MOutLocs[2][2] = RbxPHIInBlk1; OutValues.clear(); Result = pickVPHILoc(OutValues, *MBB1, VLiveOutIdx, MOutLocs, Preds); EXPECT_TRUE(Result); if (Result) { EXPECT_EQ(OutValues[0], RbxPHIInBlk1ID); } } TEST_F(InstrRefLDVTest, vlocJoinDiamond) { // entry // / \ // br1 br2 // \ / // ret setupDiamondBlocks(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); MTracker->lookupOrTrackRegister(RAX); DbgOpID LiveInRspID = DbgOpID(false, 0); DbgOpID LiveInRaxID = DbgOpID(false, 1); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(4, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; VLiveOutIdx[MBB3] = &VLiveOuts[3]; SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks; AllBlocks.insert(MBB0); AllBlocks.insert(MBB1); AllBlocks.insert(MBB2); AllBlocks.insert(MBB3); SmallVector<const MachineBasicBlock *, 2> Preds; for (const auto *Pred : MBB3->predecessors()) Preds.push_back(Pred); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); // vlocJoin is here to propagate incoming values, and eliminate PHIs. Start // off by propagating a value into the merging block, number 3. DbgValue JoinedLoc = DbgValue(3, EmptyProps, DbgValue::NoVal); VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, EmptyProps); bool Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); // Output locs should have changed. EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // And if we did it a second time, leaving the live-ins as it was, then // we should report no change. Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); // If the live-in variable values are different, but there's no PHI placed // in this block, then just pick a location. It should be the first (in RPO) // predecessor to avoid being a backedge. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRaxID, EmptyProps); JoinedLoc = DbgValue(3, EmptyProps, DbgValue::NoVal); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); // RPO is blocks 0 2 1 3, so LiveInRax is picked as the first predecessor // of this join. EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRaxID); // No tests for whether vlocJoin will pass-through a variable with differing // expressions / properties. Those can only come about due to assignments; and // for any assignment at all, a PHI should have been placed at the dominance // frontier. We rely on the IDF calculator being accurate (which is OK, // because so does the rest of LLVM). // Try placing a PHI. With differing input values (LiveInRsp, LiveInRax), // this PHI should not be eliminated. JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); // Expect no change. EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); // This should not have been assigned a fixed value. EXPECT_EQ(JoinedLoc.getDbgOpID(0), DbgOpID::UndefID); EXPECT_EQ(JoinedLoc.BlockNo, 3); // Try a simple PHI elimination. Put a PHI in block 3, but LiveInRsp on both // incoming edges. Re-load in and out-locs with unrelated values; they're // irrelevant. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, EmptyProps); JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // Try the same PHI elimination but with one incoming value being a VPHI // referring to the same value. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI); VLiveOuts[2].setDbgOpIDs(LiveInRspID); JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // If the "current" live-in is a VPHI, but not a VPHI generated in the current // block, then it's the remains of an earlier value propagation. We should // value propagate through this merge. Even if the current incoming values // disagree, because we've previously determined any VPHI here is redundant. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRaxID, EmptyProps); JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRaxID); // from block 2 // The above test, but test that we will install one value-propagated VPHI // over another. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(0, EmptyProps, DbgValue::VPHI); JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 0); // We shouldn't eliminate PHIs when properties disagree. DbgValueProperties PropsWithIndirect(EmptyExpr, true, false); VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, PropsWithIndirect); JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 3); // Even if properties disagree, we should still value-propagate if there's no // PHI to be eliminated. The disagreeing values should work themselves out, // seeing how we've determined no PHI is necessary. VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, PropsWithIndirect); JoinedLoc = DbgValue(2, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // Also check properties come from block 2, the first RPO predecessor to block // three. EXPECT_EQ(JoinedLoc.Properties, PropsWithIndirect); // Again, disagreeing properties, this time the expr, should cause a PHI to // not be eliminated. DIExpression *NewExpr = DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4); DbgValueProperties PropsWithExpr(NewExpr, false, false); VLiveOuts[1] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRspID, PropsWithExpr); JoinedLoc = DbgValue(3, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); // Try placing a PHI with variadic debug values. With differing input values // (LiveInRsp, LiveInRax), this PHI should not be eliminated. DIExpression *TwoOpExpr = DIExpression::get(Ctx, {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_LLVM_arg, 1, dwarf::DW_OP_plus}); DbgValueProperties TwoOpProps(TwoOpExpr, false, true); DbgOpID Locs0[] = {LiveInRspID, LiveInRaxID}; DbgOpID Locs1[] = {LiveInRaxID, LiveInRspID}; JoinedLoc = DbgValue(3, TwoOpProps, DbgValue::VPHI); VLiveOuts[1] = DbgValue(Locs0, TwoOpProps); VLiveOuts[2] = DbgValue(Locs1, TwoOpProps); Result = vlocJoin(*MBB3, VLiveOutIdx, AllBlocks, JoinedLoc); // Expect no change. EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); // This should not have been assigned a fixed value. EXPECT_EQ(JoinedLoc.getDbgOpID(0), DbgOpID::UndefID); EXPECT_EQ(JoinedLoc.BlockNo, 3); } TEST_F(InstrRefLDVTest, vlocJoinLoops) { setupSimpleLoop(); // entry // | // |/-----\ // loopblk | // |\-----/ // | // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); MTracker->lookupOrTrackRegister(RAX); DbgOpID LiveInRspID = DbgOpID(false, 0); DbgOpID LiveInRaxID = DbgOpID(false, 1); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(3, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks; AllBlocks.insert(MBB0); AllBlocks.insert(MBB1); AllBlocks.insert(MBB2); SmallVector<const MachineBasicBlock *, 2> Preds; for (const auto *Pred : MBB1->predecessors()) Preds.push_back(Pred); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); // Test some back-edge-specific behaviours of vloc join. Mostly: the fact that // VPHIs that arrive on backedges can be eliminated, despite having different // values to the predecessor. // First: when there's no VPHI placed already, propagate the live-in value of // the first RPO predecessor. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(LiveInRaxID, EmptyProps); DbgValue JoinedLoc = DbgValue(LiveInRaxID, EmptyProps); bool Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // If there is a VPHI: don't elimiante it if there are disagreeing values. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(LiveInRaxID, EmptyProps); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); // If we feed this VPHI back into itself though, we can eliminate it. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // Don't eliminate backedge VPHIs if the predecessors have different // properties. DIExpression *NewExpr = DIExpression::prepend(EmptyExpr, DIExpression::ApplyOffset, 4); DbgValueProperties PropsWithExpr(NewExpr, false, false); VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, PropsWithExpr, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); // Backedges with VPHIs, but from the wrong block, shouldn't be eliminated. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(0, EmptyProps, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); } TEST_F(InstrRefLDVTest, vlocJoinBadlyNestedLoops) { // Test PHI elimination in the presence of multiple backedges. setupBadlyNestedLoops(); // entry // | // loop1 -o // | ^ // | ^ // loop2 -o // | ^ // | ^ // loop3 -o // | // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); MTracker->lookupOrTrackRegister(RAX); Register RBX = getRegByName("RBX"); MTracker->lookupOrTrackRegister(RBX); DbgOpID LiveInRspID = DbgOpID(false, 0); DbgOpID LiveInRaxID = DbgOpID(false, 1); DbgOpID LiveInRbxID = DbgOpID(false, 2); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallVector<DbgValue, 32> VLiveOuts; VLiveOuts.resize(5, DbgValue(EmptyProps, DbgValue::Undef)); InstrRefBasedLDV::LiveIdxT VLiveOutIdx; VLiveOutIdx[MBB0] = &VLiveOuts[0]; VLiveOutIdx[MBB1] = &VLiveOuts[1]; VLiveOutIdx[MBB2] = &VLiveOuts[2]; VLiveOutIdx[MBB3] = &VLiveOuts[3]; VLiveOutIdx[MBB4] = &VLiveOuts[4]; SmallPtrSet<const MachineBasicBlock *, 8> AllBlocks; AllBlocks.insert(MBB0); AllBlocks.insert(MBB1); AllBlocks.insert(MBB2); AllBlocks.insert(MBB3); AllBlocks.insert(MBB4); // We're going to focus on block 1. SmallVector<const MachineBasicBlock *, 3> Preds; for (const auto *Pred : MBB1->predecessors()) Preds.push_back(Pred); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); // Test a normal VPHI isn't eliminated. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(LiveInRaxID, EmptyProps); VLiveOuts[2] = DbgValue(LiveInRbxID, EmptyProps); DbgValue JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); bool Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); // Common VPHIs on backedges should merge. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); VLiveOuts[2] = DbgValue(1, EmptyProps, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_TRUE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::Def); EXPECT_EQ(JoinedLoc.getDbgOpID(0), LiveInRspID); // They shouldn't merge if one of their properties is different. DbgValueProperties PropsWithIndirect(EmptyExpr, true, false); VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); VLiveOuts[2] = DbgValue(1, PropsWithIndirect, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); // VPHIs from different blocks should not merge. VLiveOuts[0] = DbgValue(LiveInRspID, EmptyProps); VLiveOuts[1] = DbgValue(1, EmptyProps, DbgValue::VPHI); VLiveOuts[2] = DbgValue(2, EmptyProps, DbgValue::VPHI); JoinedLoc = DbgValue(1, EmptyProps, DbgValue::VPHI); Result = vlocJoin(*MBB1, VLiveOutIdx, AllBlocks, JoinedLoc); EXPECT_FALSE(Result); EXPECT_EQ(JoinedLoc.Kind, DbgValue::VPHI); EXPECT_EQ(JoinedLoc.BlockNo, 1); } // Above are tests for picking VPHI locations, and eliminating VPHIs. No // unit-tests are written for evaluating the transfer function as that's // pretty straight forwards, or applying VPHI-location-picking to live-ins. // Instead, pre-set some machine locations and apply buildVLocValueMap to the // existing CFG patterns. TEST_F(InstrRefLDVTest, VLocSingleBlock) { setupSingleBlock(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(1, 2); ValueIDNum LiveInRsp = ValueIDNum(0, 0, RspLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); MInLocs[0][0] = MOutLocs[0][0] = LiveInRsp; DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); // Mild hack: rather than constructing machine instructions in each block // and creating lexical scopes across them, instead just tell // buildVLocValueMap that there's an assignment in every block. That makes // every block in scope. SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks; AssignBlocks.insert(MBB0); SmallVector<VLocTracker, 1> VLocs; VLocs.resize(1, VLocTracker(Overlaps, EmptyExpr)); InstrRefBasedLDV::LiveInsT Output; // Test that, with no assignments at all, no mappings are created for the // variable in this function. buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output.size(), 0ul); // If we put an assignment in the transfer function, that should... well, // do nothing, because we don't store the live-outs. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output.size(), 0ul); // There is pretty much nothing else of interest to test with a single block. // It's not relevant to the SSA-construction parts of variable values. } TEST_F(InstrRefLDVTest, VLocDiamondBlocks) { setupDiamondBlocks(); // entry // / \ // br1 br2 // \ / // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); unsigned EntryBlk = 0, RetBlk = 3; ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc); ValueIDNum RspPHIInBlk3 = ValueIDNum(RetBlk, 0, RspLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID RspPHIInBlk3ID = addValueDbgOp(RspPHIInBlk3); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(4, 2); initValueArray(MInLocs, 4, 2); initValueArray(MOutLocs, 4, 2); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); // Mild hack: rather than constructing machine instructions in each block // and creating lexical scopes across them, instead just tell // buildVLocValueMap that there's an assignment in every block. That makes // every block in scope. SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks; AssignBlocks.insert(MBB0); AssignBlocks.insert(MBB1); AssignBlocks.insert(MBB2); AssignBlocks.insert(MBB3); SmallVector<VLocTracker, 1> VLocs; VLocs.resize(4, VLocTracker(Overlaps, EmptyExpr)); InstrRefBasedLDV::LiveInsT Output; // Start off with LiveInRsp in every location. for (unsigned int I = 0; I < 4; ++I) { MInLocs[I][0] = MInLocs[I][1] = LiveInRsp; MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp; } auto ClearOutputs = [&]() { for (auto &Elem : Output) Elem.clear(); }; Output.resize(4); // No assignments -> no values. buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); EXPECT_EQ(Output[3].size(), 0ul); // An assignment in the end block should also not affect other blocks; or // produce any live-ins. VLocs[3].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); EXPECT_EQ(Output[3].size(), 0ul); ClearOutputs(); // Assignments in either of the side-of-diamond blocks should also not be // propagated anywhere. VLocs[3].Vars.clear(); VLocs[2].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); EXPECT_EQ(Output[3].size(), 0ul); VLocs[2].Vars.clear(); ClearOutputs(); VLocs[1].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); EXPECT_EQ(Output[3].size(), 0ul); VLocs[1].Vars.clear(); ClearOutputs(); // However: putting an assignment in the first block should propagate variable // values through to all other blocks, as it dominates. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); // Additionally, even if that value isn't available in the register file, it // should still be propagated, as buildVLocValueMap shouldn't care about // what's in the registers (except for PHIs). // values through to all other blocks, as it dominates. VLocs[0].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); // We should get a live-in to the merging block, if there are two assigns of // the same value in either side of the diamond. VLocs[1].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[2].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); ASSERT_EQ(Output[3].size(), 1ul); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[1].Vars.clear(); VLocs[2].Vars.clear(); // If we assign a value in the entry block, then 'undef' on a branch, we // shouldn't have a live-in in the merge block. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(EmptyProps, DbgValue::Undef)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[3].size(), 0ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Having different values joining into the merge block should mean we have // no live-in in that block. Block ones LiveInRax value doesn't appear as a // live-in anywhere, it's block internal. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[3].size(), 0ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // But on the other hand, if there's a location in the register file where // those two values can be joined, do so. MOutLocs[1][0] = LiveInRax; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), RspPHIInBlk3ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); } TEST_F(InstrRefLDVTest, VLocSimpleLoop) { setupSimpleLoop(); // entry // | // |/-----\ // loopblk | // |\-----/ // | // ret ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); unsigned EntryBlk = 0, LoopBlk = 1; ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc); ValueIDNum RspPHIInBlk1 = ValueIDNum(LoopBlk, 0, RspLoc); ValueIDNum RspDefInBlk1 = ValueIDNum(LoopBlk, 1, RspLoc); ValueIDNum RaxPHIInBlk1 = ValueIDNum(LoopBlk, 0, RaxLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID RspPHIInBlk1ID = addValueDbgOp(RspPHIInBlk1); DbgOpID RspDefInBlk1ID = addValueDbgOp(RspDefInBlk1); DbgOpID RaxPHIInBlk1ID = addValueDbgOp(RaxPHIInBlk1); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(3, 2); initValueArray(MInLocs, 3, 2); initValueArray(MOutLocs, 3, 2); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); DIExpression *TwoOpExpr = DIExpression::get(Ctx, {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_LLVM_arg, 1, dwarf::DW_OP_plus}); DbgValueProperties VariadicProps(TwoOpExpr, false, true); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); SmallPtrSet<MachineBasicBlock *, 4> AssignBlocks; AssignBlocks.insert(MBB0); AssignBlocks.insert(MBB1); AssignBlocks.insert(MBB2); SmallVector<VLocTracker, 3> VLocs; VLocs.resize(3, VLocTracker(Overlaps, EmptyExpr)); InstrRefBasedLDV::LiveInsT Output; // Start off with LiveInRsp in every location. for (unsigned int I = 0; I < 3; ++I) { MInLocs[I][0] = MInLocs[I][1] = LiveInRsp; MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp; } auto ClearOutputs = [&]() { for (auto &Elem : Output) Elem.clear(); }; Output.resize(3); // Easy starter: a dominating assign should propagate to all blocks. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // A variadic assignment should behave the same. DbgOpID Locs0[] = {LiveInRspID, LiveInRaxID}; VLocs[0].Vars.insert({Var, DbgValue(Locs0, VariadicProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[1][0].second.getDbgOpID(1), LiveInRaxID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Put an undef assignment in the loop. Should get no live-in value. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(EmptyProps, DbgValue::Undef)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Assignment of the same value should naturally join. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Assignment of different values shouldn't join with no machine PHI vals. // Will be live-in to exit block as it's dominated. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Install a completely unrelated PHI value, that we should not join on. Try // with unrelated assign in loop block again. MInLocs[1][0] = RspPHIInBlk1; MOutLocs[1][0] = RspDefInBlk1; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Now, if we assign RspDefInBlk1 in the loop block, we should be able to // find the appropriate PHI. MInLocs[1][0] = RspPHIInBlk1; MOutLocs[1][0] = RspDefInBlk1; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1ID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), RspPHIInBlk1ID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), RspDefInBlk1ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // If the PHI happens in a different location, the live-in should happen // there. MInLocs[1][0] = LiveInRsp; MOutLocs[1][0] = LiveInRsp; MInLocs[1][1] = RaxPHIInBlk1; MOutLocs[1][1] = RspDefInBlk1; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1ID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), RaxPHIInBlk1ID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), RspDefInBlk1ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // The PHI happening in both places should be handled too. Exactly where // isn't important, but if the location picked changes, this test will let // you know. MInLocs[1][0] = RaxPHIInBlk1; MOutLocs[1][0] = RspDefInBlk1; MInLocs[1][1] = RaxPHIInBlk1; MOutLocs[1][1] = RspDefInBlk1; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(RspDefInBlk1ID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); // Today, the first register is picked. EXPECT_EQ(Output[1][0].second.getDbgOpID(0), RspPHIInBlk1ID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), RspDefInBlk1ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // If the loop block looked a bit like this: // %0 = PHI %1, %2 // [...] // DBG_VALUE %0 // Then with instr-ref it becomes: // DBG_PHI %0 // [...] // DBG_INSTR_REF // And we would be feeding a machine PHI-value back around the loop. However: // this does not mean we can eliminate the variable value PHI and use the // variable value from the entry block: they are distinct values that must be // joined at some location by the control flow. // [This test input would never occur naturally, the machine-PHI would be // eliminated] MInLocs[1][0] = RspPHIInBlk1; MOutLocs[1][0] = RspPHIInBlk1; MInLocs[1][1] = LiveInRax; MOutLocs[1][1] = LiveInRax; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(RspPHIInBlk1ID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), RspPHIInBlk1ID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), RspPHIInBlk1ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // Test that we can eliminate PHIs. A PHI will be placed at the loop head // because there's a def in in. MInLocs[1][0] = LiveInRsp; MOutLocs[1][0] = LiveInRsp; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); } // test phi elimination with the nested situation TEST_F(InstrRefLDVTest, VLocNestedLoop) { // entry // | // loop1 // ^\ // | \ /-\ // | loop2 | // | / \-/ // ^ / // join // | // ret setupNestedLoops(); ASSERT_TRUE(MTracker->getNumLocs() == 1); LocIdx RspLoc(0); Register RAX = getRegByName("RAX"); LocIdx RaxLoc = MTracker->lookupOrTrackRegister(RAX); unsigned EntryBlk = 0, Loop1Blk = 1, Loop2Blk = 2; ValueIDNum LiveInRsp = ValueIDNum(EntryBlk, 0, RspLoc); ValueIDNum LiveInRax = ValueIDNum(EntryBlk, 0, RaxLoc); ValueIDNum RspPHIInBlk1 = ValueIDNum(Loop1Blk, 0, RspLoc); ValueIDNum RspPHIInBlk2 = ValueIDNum(Loop2Blk, 0, RspLoc); ValueIDNum RspDefInBlk2 = ValueIDNum(Loop2Blk, 1, RspLoc); DbgOpID LiveInRspID = addValueDbgOp(LiveInRsp); DbgOpID LiveInRaxID = addValueDbgOp(LiveInRax); DbgOpID RspPHIInBlk1ID = addValueDbgOp(RspPHIInBlk1); DbgOpID RspPHIInBlk2ID = addValueDbgOp(RspPHIInBlk2); DbgOpID RspDefInBlk2ID = addValueDbgOp(RspDefInBlk2); FuncValueTable MInLocs, MOutLocs; std::tie(MInLocs, MOutLocs) = allocValueTables(5, 2); initValueArray(MInLocs, 5, 2); initValueArray(MOutLocs, 5, 2); DebugVariable Var(FuncVariable, std::nullopt, nullptr); DbgValueProperties EmptyProps(EmptyExpr, false, false); SmallSet<DebugVariable, 4> AllVars; AllVars.insert(Var); SmallPtrSet<MachineBasicBlock *, 5> AssignBlocks; AssignBlocks.insert(MBB0); AssignBlocks.insert(MBB1); AssignBlocks.insert(MBB2); AssignBlocks.insert(MBB3); AssignBlocks.insert(MBB4); SmallVector<VLocTracker, 5> VLocs; VLocs.resize(5, VLocTracker(Overlaps, EmptyExpr)); InstrRefBasedLDV::LiveInsT Output; // Start off with LiveInRsp in every location. for (unsigned int I = 0; I < 5; ++I) { MInLocs[I][0] = MInLocs[I][1] = LiveInRsp; MOutLocs[I][0] = MOutLocs[I][1] = LiveInRsp; } auto ClearOutputs = [&]() { for (auto &Elem : Output) Elem.clear(); }; Output.resize(5); // A dominating assign should propagate to all blocks. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); // Test that an assign in the inner loop causes unresolved PHIs at the heads // of both loops, and no output location. Dominated blocks do get values. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[2].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[2].Vars.clear(); // Same test, but with no assignment in block 0. We should still get values // in dominated blocks. VLocs[2].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[2].Vars.clear(); // Similarly, assignments in the outer loop gives location to dominated // blocks, but no PHI locations are found at the outer loop head. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[3].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); EXPECT_EQ(Output[3].size(), 0ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[3].Vars.clear(); VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[1].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[1].Vars.clear(); // With an assignment of the same value in the inner loop, we should work out // that all PHIs can be eliminated and the same value is live-through the // whole function. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[2].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 1ul); EXPECT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRspID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRspID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[2].Vars.clear(); // If we have an assignment in the inner loop, and a PHI for it at the inner // loop head, we could find a live-in location for the inner loop. But because // the outer loop has no PHI, we can't find a variable value for outer loop // head, so can't have a live-in value for the inner loop head. MInLocs[2][0] = RspPHIInBlk2; MOutLocs[2][0] = LiveInRax; // NB: all other machine locations are LiveInRsp, disallowing a PHI in block // one. Even though RspPHIInBlk2 isn't available later in the function, we // should still produce a live-in value. The fact it's unavailable is a // different concern. VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[2].Vars.insert({Var, DbgValue(LiveInRaxID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); EXPECT_EQ(Output[1].size(), 0ul); EXPECT_EQ(Output[2].size(), 0ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), LiveInRaxID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), LiveInRaxID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[2].Vars.clear(); // Have an assignment in inner loop that can have a PHI resolved; and add a // machine value PHI to the outer loop head, so that we can find a location // all the way through the function. MInLocs[1][0] = RspPHIInBlk1; MOutLocs[1][0] = RspPHIInBlk1; MInLocs[2][0] = RspPHIInBlk2; MOutLocs[2][0] = RspDefInBlk2; MInLocs[3][0] = RspDefInBlk2; MOutLocs[3][0] = RspDefInBlk2; VLocs[0].Vars.insert({Var, DbgValue(LiveInRspID, EmptyProps)}); VLocs[2].Vars.insert({Var, DbgValue(RspDefInBlk2ID, EmptyProps)}); buildVLocValueMap(OutermostLoc, AllVars, AssignBlocks, Output, MOutLocs, MInLocs, VLocs); EXPECT_EQ(Output[0].size(), 0ul); ASSERT_EQ(Output[1].size(), 1ul); ASSERT_EQ(Output[2].size(), 1ul); ASSERT_EQ(Output[3].size(), 1ul); ASSERT_EQ(Output[4].size(), 1ul); EXPECT_EQ(Output[1][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[1][0].second.getDbgOpID(0), RspPHIInBlk1ID); EXPECT_EQ(Output[2][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[2][0].second.getDbgOpID(0), RspPHIInBlk2ID); EXPECT_EQ(Output[3][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[3][0].second.getDbgOpID(0), RspDefInBlk2ID); EXPECT_EQ(Output[4][0].second.Kind, DbgValue::Def); EXPECT_EQ(Output[4][0].second.getDbgOpID(0), RspDefInBlk2ID); ClearOutputs(); VLocs[0].Vars.clear(); VLocs[2].Vars.clear(); }