Mercurial > hg > CbC > CbC_llvm
view lldb/source/Target/StackFrameList.cpp @ 227:21e6aa2e49ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 19 Jul 2021 06:57:16 +0900 |
parents | 2e18cbf3894f |
children | c4bab56944e8 |
line wrap: on
line source
//===-- StackFrameList.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Target/StackFrameList.h" #include "lldb/Breakpoint/Breakpoint.h" #include "lldb/Breakpoint/BreakpointLocation.h" #include "lldb/Core/SourceManager.h" #include "lldb/Core/StreamFile.h" #include "lldb/Symbol/Block.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/Unwind.h" #include "lldb/Utility/Log.h" #include "llvm/ADT/SmallPtrSet.h" #include <memory> //#define DEBUG_STACK_FRAMES 1 using namespace lldb; using namespace lldb_private; // StackFrameList constructor StackFrameList::StackFrameList(Thread &thread, const lldb::StackFrameListSP &prev_frames_sp, bool show_inline_frames) : m_thread(thread), m_prev_frames_sp(prev_frames_sp), m_mutex(), m_frames(), m_selected_frame_idx(0), m_concrete_frames_fetched(0), m_current_inlined_depth(UINT32_MAX), m_current_inlined_pc(LLDB_INVALID_ADDRESS), m_show_inlined_frames(show_inline_frames) { if (prev_frames_sp) { m_current_inlined_depth = prev_frames_sp->m_current_inlined_depth; m_current_inlined_pc = prev_frames_sp->m_current_inlined_pc; } } StackFrameList::~StackFrameList() { // Call clear since this takes a lock and clears the stack frame list in case // another thread is currently using this stack frame list Clear(); } void StackFrameList::CalculateCurrentInlinedDepth() { uint32_t cur_inlined_depth = GetCurrentInlinedDepth(); if (cur_inlined_depth == UINT32_MAX) { ResetCurrentInlinedDepth(); } } uint32_t StackFrameList::GetCurrentInlinedDepth() { if (m_show_inlined_frames && m_current_inlined_pc != LLDB_INVALID_ADDRESS) { lldb::addr_t cur_pc = m_thread.GetRegisterContext()->GetPC(); if (cur_pc != m_current_inlined_pc) { m_current_inlined_pc = LLDB_INVALID_ADDRESS; m_current_inlined_depth = UINT32_MAX; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log && log->GetVerbose()) LLDB_LOGF( log, "GetCurrentInlinedDepth: invalidating current inlined depth.\n"); } return m_current_inlined_depth; } else { return UINT32_MAX; } } void StackFrameList::ResetCurrentInlinedDepth() { if (!m_show_inlined_frames) return; std::lock_guard<std::recursive_mutex> guard(m_mutex); GetFramesUpTo(0); if (m_frames.empty()) return; if (!m_frames[0]->IsInlined()) { m_current_inlined_depth = UINT32_MAX; m_current_inlined_pc = LLDB_INVALID_ADDRESS; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log && log->GetVerbose()) LLDB_LOGF( log, "ResetCurrentInlinedDepth: Invalidating current inlined depth.\n"); return; } // We only need to do something special about inlined blocks when we are // at the beginning of an inlined function: // FIXME: We probably also have to do something special if the PC is at // the END of an inlined function, which coincides with the end of either // its containing function or another inlined function. Block *block_ptr = m_frames[0]->GetFrameBlock(); if (!block_ptr) return; Address pc_as_address; lldb::addr_t curr_pc = m_thread.GetRegisterContext()->GetPC(); pc_as_address.SetLoadAddress(curr_pc, &(m_thread.GetProcess()->GetTarget())); AddressRange containing_range; if (!block_ptr->GetRangeContainingAddress(pc_as_address, containing_range) || pc_as_address != containing_range.GetBaseAddress()) return; // If we got here because of a breakpoint hit, then set the inlined depth // depending on where the breakpoint was set. If we got here because of a // crash, then set the inlined depth to the deepest most block. Otherwise, // we stopped here naturally as the result of a step, so set ourselves in the // containing frame of the whole set of nested inlines, so the user can then // "virtually" step into the frames one by one, or next over the whole mess. // Note: We don't have to handle being somewhere in the middle of the stack // here, since ResetCurrentInlinedDepth doesn't get called if there is a // valid inlined depth set. StopInfoSP stop_info_sp = m_thread.GetStopInfo(); if (!stop_info_sp) return; switch (stop_info_sp->GetStopReason()) { case eStopReasonWatchpoint: case eStopReasonException: case eStopReasonExec: case eStopReasonFork: case eStopReasonVFork: case eStopReasonVForkDone: case eStopReasonSignal: // In all these cases we want to stop in the deepest frame. m_current_inlined_pc = curr_pc; m_current_inlined_depth = 0; break; case eStopReasonBreakpoint: { // FIXME: Figure out what this break point is doing, and set the inline // depth appropriately. Be careful to take into account breakpoints that // implement step over prologue, since that should do the default // calculation. For now, if the breakpoints corresponding to this hit are // all internal, I set the stop location to the top of the inlined stack, // since that will make things like stepping over prologues work right. // But if there are any non-internal breakpoints I do to the bottom of the // stack, since that was the old behavior. uint32_t bp_site_id = stop_info_sp->GetValue(); BreakpointSiteSP bp_site_sp( m_thread.GetProcess()->GetBreakpointSiteList().FindByID(bp_site_id)); bool all_internal = true; if (bp_site_sp) { uint32_t num_owners = bp_site_sp->GetNumberOfOwners(); for (uint32_t i = 0; i < num_owners; i++) { Breakpoint &bp_ref = bp_site_sp->GetOwnerAtIndex(i)->GetBreakpoint(); if (!bp_ref.IsInternal()) { all_internal = false; } } } if (!all_internal) { m_current_inlined_pc = curr_pc; m_current_inlined_depth = 0; break; } } LLVM_FALLTHROUGH; default: { // Otherwise, we should set ourselves at the container of the inlining, so // that the user can descend into them. So first we check whether we have // more than one inlined block sharing this PC: int num_inlined_functions = 0; for (Block *container_ptr = block_ptr->GetInlinedParent(); container_ptr != nullptr; container_ptr = container_ptr->GetInlinedParent()) { if (!container_ptr->GetRangeContainingAddress(pc_as_address, containing_range)) break; if (pc_as_address != containing_range.GetBaseAddress()) break; num_inlined_functions++; } m_current_inlined_pc = curr_pc; m_current_inlined_depth = num_inlined_functions + 1; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log && log->GetVerbose()) LLDB_LOGF(log, "ResetCurrentInlinedDepth: setting inlined " "depth: %d 0x%" PRIx64 ".\n", m_current_inlined_depth, curr_pc); break; } } } bool StackFrameList::DecrementCurrentInlinedDepth() { if (m_show_inlined_frames) { uint32_t current_inlined_depth = GetCurrentInlinedDepth(); if (current_inlined_depth != UINT32_MAX) { if (current_inlined_depth > 0) { m_current_inlined_depth--; return true; } } } return false; } void StackFrameList::SetCurrentInlinedDepth(uint32_t new_depth) { m_current_inlined_depth = new_depth; if (new_depth == UINT32_MAX) m_current_inlined_pc = LLDB_INVALID_ADDRESS; else m_current_inlined_pc = m_thread.GetRegisterContext()->GetPC(); } void StackFrameList::GetOnlyConcreteFramesUpTo(uint32_t end_idx, Unwind &unwinder) { assert(m_thread.IsValid() && "Expected valid thread"); assert(m_frames.size() <= end_idx && "Expected there to be frames to fill"); if (end_idx < m_concrete_frames_fetched) return; uint32_t num_frames = unwinder.GetFramesUpTo(end_idx); if (num_frames <= end_idx + 1) { // Done unwinding. m_concrete_frames_fetched = UINT32_MAX; } // Don't create the frames eagerly. Defer this work to GetFrameAtIndex, // which can lazily query the unwinder to create frames. m_frames.resize(num_frames); } /// A sequence of calls that comprise some portion of a backtrace. Each frame /// is represented as a pair of a callee (Function *) and an address within the /// callee. struct CallDescriptor { Function *func; CallEdge::AddrType address_type = CallEdge::AddrType::Call; addr_t address = LLDB_INVALID_ADDRESS; }; using CallSequence = std::vector<CallDescriptor>; /// Find the unique path through the call graph from \p begin (with return PC /// \p return_pc) to \p end. On success this path is stored into \p path, and /// on failure \p path is unchanged. static void FindInterveningFrames(Function &begin, Function &end, ExecutionContext &exe_ctx, Target &target, addr_t return_pc, CallSequence &path, ModuleList &images, Log *log) { LLDB_LOG(log, "Finding frames between {0} and {1}, retn-pc={2:x}", begin.GetDisplayName(), end.GetDisplayName(), return_pc); // Find a non-tail calling edge with the correct return PC. if (log) for (const auto &edge : begin.GetCallEdges()) LLDB_LOG(log, "FindInterveningFrames: found call with retn-PC = {0:x}", edge->GetReturnPCAddress(begin, target)); CallEdge *first_edge = begin.GetCallEdgeForReturnAddress(return_pc, target); if (!first_edge) { LLDB_LOG(log, "No call edge outgoing from {0} with retn-PC == {1:x}", begin.GetDisplayName(), return_pc); return; } // The first callee may not be resolved, or there may be nothing to fill in. Function *first_callee = first_edge->GetCallee(images, exe_ctx); if (!first_callee) { LLDB_LOG(log, "Could not resolve callee"); return; } if (first_callee == &end) { LLDB_LOG(log, "Not searching further, first callee is {0} (retn-PC: {1:x})", end.GetDisplayName(), return_pc); return; } // Run DFS on the tail-calling edges out of the first callee to find \p end. // Fully explore the set of functions reachable from the first edge via tail // calls in order to detect ambiguous executions. struct DFS { CallSequence active_path = {}; CallSequence solution_path = {}; llvm::SmallPtrSet<Function *, 2> visited_nodes = {}; bool ambiguous = false; Function *end; ModuleList &images; Target ⌖ ExecutionContext &context; DFS(Function *end, ModuleList &images, Target &target, ExecutionContext &context) : end(end), images(images), target(target), context(context) {} void search(CallEdge &first_edge, Function &first_callee, CallSequence &path) { dfs(first_edge, first_callee); if (!ambiguous) path = std::move(solution_path); } void dfs(CallEdge ¤t_edge, Function &callee) { // Found a path to the target function. if (&callee == end) { if (solution_path.empty()) solution_path = active_path; else ambiguous = true; return; } // Terminate the search if tail recursion is found, or more generally if // there's more than one way to reach a target. This errs on the side of // caution: it conservatively stops searching when some solutions are // still possible to save time in the average case. if (!visited_nodes.insert(&callee).second) { ambiguous = true; return; } // Search the calls made from this callee. active_path.push_back(CallDescriptor{&callee}); for (const auto &edge : callee.GetTailCallingEdges()) { Function *next_callee = edge->GetCallee(images, context); if (!next_callee) continue; std::tie(active_path.back().address_type, active_path.back().address) = edge->GetCallerAddress(callee, target); dfs(*edge, *next_callee); if (ambiguous) return; } active_path.pop_back(); } }; DFS(&end, images, target, exe_ctx).search(*first_edge, *first_callee, path); } /// Given that \p next_frame will be appended to the frame list, synthesize /// tail call frames between the current end of the list and \p next_frame. /// If any frames are added, adjust the frame index of \p next_frame. /// /// -------------- /// | ... | <- Completed frames. /// -------------- /// | prev_frame | /// -------------- /// | ... | <- Artificial frames inserted here. /// -------------- /// | next_frame | /// -------------- /// | ... | <- Not-yet-visited frames. /// -------------- void StackFrameList::SynthesizeTailCallFrames(StackFrame &next_frame) { // Cannot synthesize tail call frames when the stack is empty (there is no // "previous" frame). if (m_frames.empty()) return; TargetSP target_sp = next_frame.CalculateTarget(); if (!target_sp) return; lldb::RegisterContextSP next_reg_ctx_sp = next_frame.GetRegisterContext(); if (!next_reg_ctx_sp) return; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); StackFrame &prev_frame = *m_frames.back().get(); // Find the functions prev_frame and next_frame are stopped in. The function // objects are needed to search the lazy call graph for intervening frames. Function *prev_func = prev_frame.GetSymbolContext(eSymbolContextFunction).function; if (!prev_func) { LLDB_LOG(log, "SynthesizeTailCallFrames: can't find previous function"); return; } Function *next_func = next_frame.GetSymbolContext(eSymbolContextFunction).function; if (!next_func) { LLDB_LOG(log, "SynthesizeTailCallFrames: can't find next function"); return; } // Try to find the unique sequence of (tail) calls which led from next_frame // to prev_frame. CallSequence path; addr_t return_pc = next_reg_ctx_sp->GetPC(); Target &target = *target_sp.get(); ModuleList &images = next_frame.CalculateTarget()->GetImages(); ExecutionContext exe_ctx(target_sp, /*get_process=*/true); exe_ctx.SetFramePtr(&next_frame); FindInterveningFrames(*next_func, *prev_func, exe_ctx, target, return_pc, path, images, log); // Push synthetic tail call frames. for (auto calleeInfo : llvm::reverse(path)) { Function *callee = calleeInfo.func; uint32_t frame_idx = m_frames.size(); uint32_t concrete_frame_idx = next_frame.GetConcreteFrameIndex(); addr_t cfa = LLDB_INVALID_ADDRESS; bool cfa_is_valid = false; addr_t pc = calleeInfo.address; // If the callee address refers to the call instruction, we do not want to // subtract 1 from this value. const bool behaves_like_zeroth_frame = calleeInfo.address_type == CallEdge::AddrType::Call; SymbolContext sc; callee->CalculateSymbolContext(&sc); auto synth_frame = std::make_shared<StackFrame>( m_thread.shared_from_this(), frame_idx, concrete_frame_idx, cfa, cfa_is_valid, pc, StackFrame::Kind::Artificial, behaves_like_zeroth_frame, &sc); m_frames.push_back(synth_frame); LLDB_LOG(log, "Pushed frame {0} at {1:x}", callee->GetDisplayName(), pc); } // If any frames were created, adjust next_frame's index. if (!path.empty()) next_frame.SetFrameIndex(m_frames.size()); } void StackFrameList::GetFramesUpTo(uint32_t end_idx) { // Do not fetch frames for an invalid thread. if (!m_thread.IsValid()) return; // We've already gotten more frames than asked for, or we've already finished // unwinding, return. if (m_frames.size() > end_idx || GetAllFramesFetched()) return; Unwind &unwinder = m_thread.GetUnwinder(); if (!m_show_inlined_frames) { GetOnlyConcreteFramesUpTo(end_idx, unwinder); return; } #if defined(DEBUG_STACK_FRAMES) StreamFile s(stdout, false); #endif // If we are hiding some frames from the outside world, we need to add // those onto the total count of frames to fetch. However, we don't need // to do that if end_idx is 0 since in that case we always get the first // concrete frame and all the inlined frames below it... And of course, if // end_idx is UINT32_MAX that means get all, so just do that... uint32_t inlined_depth = 0; if (end_idx > 0 && end_idx != UINT32_MAX) { inlined_depth = GetCurrentInlinedDepth(); if (inlined_depth != UINT32_MAX) { if (end_idx > 0) end_idx += inlined_depth; } } StackFrameSP unwind_frame_sp; do { uint32_t idx = m_concrete_frames_fetched++; lldb::addr_t pc = LLDB_INVALID_ADDRESS; lldb::addr_t cfa = LLDB_INVALID_ADDRESS; bool behaves_like_zeroth_frame = (idx == 0); if (idx == 0) { // We might have already created frame zero, only create it if we need // to. if (m_frames.empty()) { RegisterContextSP reg_ctx_sp(m_thread.GetRegisterContext()); if (reg_ctx_sp) { const bool success = unwinder.GetFrameInfoAtIndex( idx, cfa, pc, behaves_like_zeroth_frame); // There shouldn't be any way not to get the frame info for frame // 0. But if the unwinder can't make one, lets make one by hand // with the SP as the CFA and see if that gets any further. if (!success) { cfa = reg_ctx_sp->GetSP(); pc = reg_ctx_sp->GetPC(); } unwind_frame_sp = std::make_shared<StackFrame>( m_thread.shared_from_this(), m_frames.size(), idx, reg_ctx_sp, cfa, pc, behaves_like_zeroth_frame, nullptr); m_frames.push_back(unwind_frame_sp); } } else { unwind_frame_sp = m_frames.front(); cfa = unwind_frame_sp->m_id.GetCallFrameAddress(); } } else { const bool success = unwinder.GetFrameInfoAtIndex(idx, cfa, pc, behaves_like_zeroth_frame); if (!success) { // We've gotten to the end of the stack. SetAllFramesFetched(); break; } const bool cfa_is_valid = true; unwind_frame_sp = std::make_shared<StackFrame>( m_thread.shared_from_this(), m_frames.size(), idx, cfa, cfa_is_valid, pc, StackFrame::Kind::Regular, behaves_like_zeroth_frame, nullptr); // Create synthetic tail call frames between the previous frame and the // newly-found frame. The new frame's index may change after this call, // although its concrete index will stay the same. SynthesizeTailCallFrames(*unwind_frame_sp.get()); m_frames.push_back(unwind_frame_sp); } assert(unwind_frame_sp); SymbolContext unwind_sc = unwind_frame_sp->GetSymbolContext( eSymbolContextBlock | eSymbolContextFunction); Block *unwind_block = unwind_sc.block; TargetSP target_sp = m_thread.CalculateTarget(); if (unwind_block) { Address curr_frame_address( unwind_frame_sp->GetFrameCodeAddressForSymbolication()); SymbolContext next_frame_sc; Address next_frame_address; while (unwind_sc.GetParentOfInlinedScope( curr_frame_address, next_frame_sc, next_frame_address)) { next_frame_sc.line_entry.ApplyFileMappings(target_sp); behaves_like_zeroth_frame = false; StackFrameSP frame_sp(new StackFrame( m_thread.shared_from_this(), m_frames.size(), idx, unwind_frame_sp->GetRegisterContextSP(), cfa, next_frame_address, behaves_like_zeroth_frame, &next_frame_sc)); m_frames.push_back(frame_sp); unwind_sc = next_frame_sc; curr_frame_address = next_frame_address; } } } while (m_frames.size() - 1 < end_idx); // Don't try to merge till you've calculated all the frames in this stack. if (GetAllFramesFetched() && m_prev_frames_sp) { StackFrameList *prev_frames = m_prev_frames_sp.get(); StackFrameList *curr_frames = this; #if defined(DEBUG_STACK_FRAMES) s.PutCString("\nprev_frames:\n"); prev_frames->Dump(&s); s.PutCString("\ncurr_frames:\n"); curr_frames->Dump(&s); s.EOL(); #endif size_t curr_frame_num, prev_frame_num; for (curr_frame_num = curr_frames->m_frames.size(), prev_frame_num = prev_frames->m_frames.size(); curr_frame_num > 0 && prev_frame_num > 0; --curr_frame_num, --prev_frame_num) { const size_t curr_frame_idx = curr_frame_num - 1; const size_t prev_frame_idx = prev_frame_num - 1; StackFrameSP curr_frame_sp(curr_frames->m_frames[curr_frame_idx]); StackFrameSP prev_frame_sp(prev_frames->m_frames[prev_frame_idx]); #if defined(DEBUG_STACK_FRAMES) s.Printf("\n\nCurr frame #%u ", curr_frame_idx); if (curr_frame_sp) curr_frame_sp->Dump(&s, true, false); else s.PutCString("NULL"); s.Printf("\nPrev frame #%u ", prev_frame_idx); if (prev_frame_sp) prev_frame_sp->Dump(&s, true, false); else s.PutCString("NULL"); #endif StackFrame *curr_frame = curr_frame_sp.get(); StackFrame *prev_frame = prev_frame_sp.get(); if (curr_frame == nullptr || prev_frame == nullptr) break; // Check the stack ID to make sure they are equal. if (curr_frame->GetStackID() != prev_frame->GetStackID()) break; prev_frame->UpdatePreviousFrameFromCurrentFrame(*curr_frame); // Now copy the fixed up previous frame into the current frames so the // pointer doesn't change. m_frames[curr_frame_idx] = prev_frame_sp; #if defined(DEBUG_STACK_FRAMES) s.Printf("\n Copying previous frame to current frame"); #endif } // We are done with the old stack frame list, we can release it now. m_prev_frames_sp.reset(); } #if defined(DEBUG_STACK_FRAMES) s.PutCString("\n\nNew frames:\n"); Dump(&s); s.EOL(); #endif } uint32_t StackFrameList::GetNumFrames(bool can_create) { std::lock_guard<std::recursive_mutex> guard(m_mutex); if (can_create) GetFramesUpTo(UINT32_MAX); return GetVisibleStackFrameIndex(m_frames.size()); } void StackFrameList::Dump(Stream *s) { if (s == nullptr) return; std::lock_guard<std::recursive_mutex> guard(m_mutex); const_iterator pos, begin = m_frames.begin(), end = m_frames.end(); for (pos = begin; pos != end; ++pos) { StackFrame *frame = (*pos).get(); s->Printf("%p: ", static_cast<void *>(frame)); if (frame) { frame->GetStackID().Dump(s); frame->DumpUsingSettingsFormat(s); } else s->Printf("frame #%u", (uint32_t)std::distance(begin, pos)); s->EOL(); } s->EOL(); } StackFrameSP StackFrameList::GetFrameAtIndex(uint32_t idx) { StackFrameSP frame_sp; std::lock_guard<std::recursive_mutex> guard(m_mutex); uint32_t original_idx = idx; uint32_t inlined_depth = GetCurrentInlinedDepth(); if (inlined_depth != UINT32_MAX) idx += inlined_depth; if (idx < m_frames.size()) frame_sp = m_frames[idx]; if (frame_sp) return frame_sp; // GetFramesUpTo will fill m_frames with as many frames as you asked for, if // there are that many. If there weren't then you asked for too many frames. GetFramesUpTo(idx); if (idx < m_frames.size()) { if (m_show_inlined_frames) { // When inline frames are enabled we actually create all the frames in // GetFramesUpTo. frame_sp = m_frames[idx]; } else { addr_t pc, cfa; bool behaves_like_zeroth_frame = (idx == 0); if (m_thread.GetUnwinder().GetFrameInfoAtIndex( idx, cfa, pc, behaves_like_zeroth_frame)) { const bool cfa_is_valid = true; frame_sp = std::make_shared<StackFrame>( m_thread.shared_from_this(), idx, idx, cfa, cfa_is_valid, pc, StackFrame::Kind::Regular, behaves_like_zeroth_frame, nullptr); Function *function = frame_sp->GetSymbolContext(eSymbolContextFunction).function; if (function) { // When we aren't showing inline functions we always use the top // most function block as the scope. frame_sp->SetSymbolContextScope(&function->GetBlock(false)); } else { // Set the symbol scope from the symbol regardless if it is nullptr // or valid. frame_sp->SetSymbolContextScope( frame_sp->GetSymbolContext(eSymbolContextSymbol).symbol); } SetFrameAtIndex(idx, frame_sp); } } } else if (original_idx == 0) { // There should ALWAYS be a frame at index 0. If something went wrong with // the CurrentInlinedDepth such that there weren't as many frames as we // thought taking that into account, then reset the current inlined depth // and return the real zeroth frame. if (m_frames.empty()) { // Why do we have a thread with zero frames, that should not ever // happen... assert(!m_thread.IsValid() && "A valid thread has no frames."); } else { ResetCurrentInlinedDepth(); frame_sp = m_frames[original_idx]; } } return frame_sp; } StackFrameSP StackFrameList::GetFrameWithConcreteFrameIndex(uint32_t unwind_idx) { // First try assuming the unwind index is the same as the frame index. The // unwind index is always greater than or equal to the frame index, so it is // a good place to start. If we have inlined frames we might have 5 concrete // frames (frame unwind indexes go from 0-4), but we might have 15 frames // after we make all the inlined frames. Most of the time the unwind frame // index (or the concrete frame index) is the same as the frame index. uint32_t frame_idx = unwind_idx; StackFrameSP frame_sp(GetFrameAtIndex(frame_idx)); while (frame_sp) { if (frame_sp->GetFrameIndex() == unwind_idx) break; frame_sp = GetFrameAtIndex(++frame_idx); } return frame_sp; } static bool CompareStackID(const StackFrameSP &stack_sp, const StackID &stack_id) { return stack_sp->GetStackID() < stack_id; } StackFrameSP StackFrameList::GetFrameWithStackID(const StackID &stack_id) { StackFrameSP frame_sp; if (stack_id.IsValid()) { std::lock_guard<std::recursive_mutex> guard(m_mutex); uint32_t frame_idx = 0; // Do a binary search in case the stack frame is already in our cache collection::const_iterator begin = m_frames.begin(); collection::const_iterator end = m_frames.end(); if (begin != end) { collection::const_iterator pos = std::lower_bound(begin, end, stack_id, CompareStackID); if (pos != end) { if ((*pos)->GetStackID() == stack_id) return *pos; } } do { frame_sp = GetFrameAtIndex(frame_idx); if (frame_sp && frame_sp->GetStackID() == stack_id) break; frame_idx++; } while (frame_sp); } return frame_sp; } bool StackFrameList::SetFrameAtIndex(uint32_t idx, StackFrameSP &frame_sp) { if (idx >= m_frames.size()) m_frames.resize(idx + 1); // Make sure allocation succeeded by checking bounds again if (idx < m_frames.size()) { m_frames[idx] = frame_sp; return true; } return false; // resize failed, out of memory? } uint32_t StackFrameList::GetSelectedFrameIndex() const { std::lock_guard<std::recursive_mutex> guard(m_mutex); return m_selected_frame_idx; } uint32_t StackFrameList::SetSelectedFrame(lldb_private::StackFrame *frame) { std::lock_guard<std::recursive_mutex> guard(m_mutex); const_iterator pos; const_iterator begin = m_frames.begin(); const_iterator end = m_frames.end(); m_selected_frame_idx = 0; for (pos = begin; pos != end; ++pos) { if (pos->get() == frame) { m_selected_frame_idx = std::distance(begin, pos); uint32_t inlined_depth = GetCurrentInlinedDepth(); if (inlined_depth != UINT32_MAX) m_selected_frame_idx -= inlined_depth; break; } } SetDefaultFileAndLineToSelectedFrame(); return m_selected_frame_idx; } bool StackFrameList::SetSelectedFrameByIndex(uint32_t idx) { std::lock_guard<std::recursive_mutex> guard(m_mutex); StackFrameSP frame_sp(GetFrameAtIndex(idx)); if (frame_sp) { SetSelectedFrame(frame_sp.get()); return true; } else return false; } void StackFrameList::SetDefaultFileAndLineToSelectedFrame() { if (m_thread.GetID() == m_thread.GetProcess()->GetThreadList().GetSelectedThread()->GetID()) { StackFrameSP frame_sp(GetFrameAtIndex(GetSelectedFrameIndex())); if (frame_sp) { SymbolContext sc = frame_sp->GetSymbolContext(eSymbolContextLineEntry); if (sc.line_entry.file) m_thread.CalculateTarget()->GetSourceManager().SetDefaultFileAndLine( sc.line_entry.file, sc.line_entry.line); } } } // The thread has been run, reset the number stack frames to zero so we can // determine how many frames we have lazily. void StackFrameList::Clear() { std::lock_guard<std::recursive_mutex> guard(m_mutex); m_frames.clear(); m_concrete_frames_fetched = 0; } lldb::StackFrameSP StackFrameList::GetStackFrameSPForStackFramePtr(StackFrame *stack_frame_ptr) { const_iterator pos; const_iterator begin = m_frames.begin(); const_iterator end = m_frames.end(); lldb::StackFrameSP ret_sp; for (pos = begin; pos != end; ++pos) { if (pos->get() == stack_frame_ptr) { ret_sp = (*pos); break; } } return ret_sp; } size_t StackFrameList::GetStatus(Stream &strm, uint32_t first_frame, uint32_t num_frames, bool show_frame_info, uint32_t num_frames_with_source, bool show_unique, const char *selected_frame_marker) { size_t num_frames_displayed = 0; if (num_frames == 0) return 0; StackFrameSP frame_sp; uint32_t frame_idx = 0; uint32_t last_frame; // Don't let the last frame wrap around... if (num_frames == UINT32_MAX) last_frame = UINT32_MAX; else last_frame = first_frame + num_frames; StackFrameSP selected_frame_sp = m_thread.GetSelectedFrame(); const char *unselected_marker = nullptr; std::string buffer; if (selected_frame_marker) { size_t len = strlen(selected_frame_marker); buffer.insert(buffer.begin(), len, ' '); unselected_marker = buffer.c_str(); } const char *marker = nullptr; for (frame_idx = first_frame; frame_idx < last_frame; ++frame_idx) { frame_sp = GetFrameAtIndex(frame_idx); if (!frame_sp) break; if (selected_frame_marker != nullptr) { if (frame_sp == selected_frame_sp) marker = selected_frame_marker; else marker = unselected_marker; } if (!frame_sp->GetStatus(strm, show_frame_info, num_frames_with_source > (first_frame - frame_idx), show_unique, marker)) break; ++num_frames_displayed; } strm.IndentLess(); return num_frames_displayed; }