Mercurial > hg > CbC > CbC_llvm
view polly/lib/CodeGen/PPCGCodeGeneration.cpp @ 227:21e6aa2e49ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 19 Jul 2021 06:57:16 +0900 |
parents | 5f17cb93ff66 |
children | 5f20bc1ed4ff |
line wrap: on
line source
//===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Take a scop created by ScopInfo and map it to GPU code using the ppcg // GPU mapping strategy. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/PPCGCodeGeneration.h" #include "polly/CodeGen/CodeGeneration.h" #include "polly/CodeGen/IslAst.h" #include "polly/CodeGen/IslNodeBuilder.h" #include "polly/CodeGen/PerfMonitor.h" #include "polly/CodeGen/Utils.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopDetection.h" #include "polly/ScopInfo.h" #include "polly/Support/SCEVValidator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/InitializePasses.h" #include "llvm/Linker/Linker.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "isl/union_map.h" #include <algorithm> extern "C" { #include "ppcg/cuda.h" #include "ppcg/gpu.h" #include "ppcg/ppcg.h" } #include "llvm/Support/Debug.h" using namespace polly; using namespace llvm; #define DEBUG_TYPE "polly-codegen-ppcg" static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", cl::desc("Dump the computed GPU Schedule"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> DumpCode("polly-acc-dump-code", cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", cl::desc("Dump the kernel LLVM-IR"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", cl::desc("Dump the kernel assembly code"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> FastMath("polly-acc-fastmath", cl::desc("Allow unsafe math optimizations"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> SharedMemory("polly-acc-use-shared", cl::desc("Use shared memory"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> PrivateMemory("polly-acc-use-private", cl::desc("Use private memory"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); bool polly::PollyManagedMemory; static cl::opt<bool, true> XManagedMemory("polly-acc-codegen-managed-memory", cl::desc("Generate Host kernel code assuming" " that all memory has been" " declared as managed memory"), cl::location(PollyManagedMemory), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<bool> FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", cl::desc("Fail and generate a backtrace if" " verifyModule fails on the GPU " " kernel module."), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<std::string> CUDALibDevice( "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<std::string> CudaVersion("polly-acc-cuda-version", cl::desc("The CUDA version to compile for"), cl::Hidden, cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt<int> MinCompute("polly-acc-mincompute", cl::desc("Minimal number of compute statements to run on GPU."), cl::Hidden, cl::init(10 * 512 * 512)); GPURuntime polly::GPURuntimeChoice; static cl::opt<GPURuntime, true> XGPURuntimeChoice( "polly-gpu-runtime", cl::desc("The GPU Runtime API to target"), cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", "use the CUDA Runtime API"), clEnumValN(GPURuntime::OpenCL, "libopencl", "use the OpenCL Runtime API")), cl::location(polly::GPURuntimeChoice), cl::init(GPURuntime::CUDA), cl::ZeroOrMore, cl::cat(PollyCategory)); GPUArch polly::GPUArchChoice; static cl::opt<GPUArch, true> XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", "target NVIDIA 64-bit architecture"), clEnumValN(GPUArch::SPIR32, "spir32", "target SPIR 32-bit architecture"), clEnumValN(GPUArch::SPIR64, "spir64", "target SPIR 64-bit architecture")), cl::location(polly::GPUArchChoice), cl::init(GPUArch::NVPTX64), cl::ZeroOrMore, cl::cat(PollyCategory)); extern bool polly::PerfMonitoring; /// Return a unique name for a Scop, which is the scop region with the /// function name. std::string getUniqueScopName(const Scop *S) { return "Scop Region: " + S->getNameStr() + " | Function: " + std::string(S->getFunction().getName()); } /// Used to store information PPCG wants for kills. This information is /// used by live range reordering. /// /// @see computeLiveRangeReordering /// @see GPUNodeBuilder::createPPCGScop /// @see GPUNodeBuilder::createPPCGProg struct MustKillsInfo { /// Collection of all kill statements that will be sequenced at the end of /// PPCGScop->schedule. /// /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` /// which merges schedules in *arbitrary* order. /// (we don't care about the order of the kills anyway). isl::schedule KillsSchedule; /// Map from kill statement instances to scalars that need to be /// killed. /// /// We currently derive kill information for: /// 1. phi nodes. PHI nodes are not alive outside the scop and can /// consequently all be killed. /// 2. Scalar arrays that are not used outside the Scop. This is /// checked by `isScalarUsesContainedInScop`. /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } isl::union_map TaggedMustKills; /// Tagged must kills stripped of the tags. /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } isl::union_map MustKills; MustKillsInfo() : KillsSchedule() {} }; /// Check if SAI's uses are entirely contained within Scop S. /// If a scalar is used only with a Scop, we are free to kill it, as no data /// can flow in/out of the value any more. /// @see computeMustKillsInfo static bool isScalarUsesContainedInScop(const Scop &S, const ScopArrayInfo *SAI) { assert(SAI->isValueKind() && "this function only deals with scalars." " Dealing with arrays required alias analysis"); const Region &R = S.getRegion(); for (User *U : SAI->getBasePtr()->users()) { Instruction *I = dyn_cast<Instruction>(U); assert(I && "invalid user of scop array info"); if (!R.contains(I)) return false; } return true; } /// Compute must-kills needed to enable live range reordering with PPCG. /// /// @params S The Scop to compute live range reordering information /// @returns live range reordering information that can be used to setup /// PPCG. static MustKillsInfo computeMustKillsInfo(const Scop &S) { const isl::space ParamSpace = S.getParamSpace(); MustKillsInfo Info; // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: // 1.1 phi nodes in scop. // 1.2 scalars that are only used within the scop SmallVector<isl::id, 4> KillMemIds; for (ScopArrayInfo *SAI : S.arrays()) { if (SAI->isPHIKind() || (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); } Info.TaggedMustKills = isl::union_map::empty(ParamSpace); Info.MustKills = isl::union_map::empty(ParamSpace); // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the // schedule: // - filter: "[control] -> { }" // So, we choose to not create this to keep the output a little nicer, // at the cost of some code complexity. Info.KillsSchedule = {}; for (isl::id &ToKillId : KillMemIds) { isl::id KillStmtId = isl::id::alloc( S.getIslCtx(), std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); // NOTE: construction of tagged_must_kill: // 2. We need to construct a map: // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } // To construct this, we use `isl_map_domain_product` on 2 maps`: // 2a. StmtToScalar: // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } // 2b. PhantomRefToScalar: // [param] -> { ref_phantom[] -> scalar_to_kill[] } // // Combining these with `isl_map_domain_product` gives us // TaggedMustKill: // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } isl::map StmtToScalar = isl::map::universe(ParamSpace); StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); isl::id PhantomRefId = isl::id::alloc( S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), nullptr); // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); PhantomRefToScalar = PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); PhantomRefToScalar = PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); // 2. [param] -> { Stmt[] -> scalar_to_kill[] } Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); // 3. Create the kill schedule of the form: // "[param] -> { Stmt_phantom[] }" // Then add this to Info.KillsSchedule. isl::space KillStmtSpace = ParamSpace; KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); if (!Info.KillsSchedule.is_null()) Info.KillsSchedule = isl::manage( isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); else Info.KillsSchedule = KillSchedule; } return Info; } /// Create the ast expressions for a ScopStmt. /// /// This function is a callback for to generate the ast expressions for each /// of the scheduled ScopStmts. static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( void *StmtT, __isl_take isl_ast_build *Build_C, isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, isl_id *Id, void *User), void *UserIndex, isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), void *UserExpr) { ScopStmt *Stmt = (ScopStmt *)StmtT; if (!Stmt || !Build_C) return NULL; isl::ast_build Build = isl::manage_copy(Build_C); isl::ctx Ctx = Build.ctx(); isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); Stmt->setAstBuild(Build); for (MemoryAccess *Acc : *Stmt) { isl::map AddrFunc = Acc->getAddressFunction(); AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); isl::id RefId = Acc->getId(); isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); MPA = MPA.coalesce(); MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); isl::ast_expr Access = Build.access_from(MPA); Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); RefToExpr = RefToExpr.set(RefId, Access); } return RefToExpr.release(); } /// Given a LLVM Type, compute its size in bytes, static int computeSizeInBytes(const Type *T) { int bytes = T->getPrimitiveSizeInBits() / 8; if (bytes == 0) bytes = T->getScalarSizeInBits() / 8; return bytes; } /// Generate code for a GPU specific isl AST. /// /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which /// generates code for general-purpose AST nodes, with special functionality /// for generating GPU specific user nodes. /// /// @see GPUNodeBuilder::createUser class GPUNodeBuilder : public IslNodeBuilder { public: GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, Scop &S, BasicBlock *StartBlock, gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), Prog(Prog), Runtime(Runtime), Arch(Arch) { getExprBuilder().setIDToSAI(&IDToSAI); } /// Create after-run-time-check initialization code. void initializeAfterRTH(); /// Finalize the generated scop. void finalize() override; /// Track if the full build process was successful. /// /// This value is set to false, if throughout the build process an error /// occurred which prevents us from generating valid GPU code. bool BuildSuccessful = true; /// The maximal number of loops surrounding a sequential kernel. unsigned DeepestSequential = 0; /// The maximal number of loops surrounding a parallel kernel. unsigned DeepestParallel = 0; /// Return the name to set for the ptx_kernel. std::string getKernelFuncName(int Kernel_id); private: /// A vector of array base pointers for which a new ScopArrayInfo was created. /// /// This vector is used to delete the ScopArrayInfo when it is not needed any /// more. std::vector<Value *> LocalArrays; /// A map from ScopArrays to their corresponding device allocations. std::map<ScopArrayInfo *, Value *> DeviceAllocations; /// The current GPU context. Value *GPUContext; /// The set of isl_ids allocated in the kernel std::vector<isl_id *> KernelIds; /// A module containing GPU code. /// /// This pointer is only set in case we are currently generating GPU code. std::unique_ptr<Module> GPUModule; /// The GPU program we generate code for. gpu_prog *Prog; /// The GPU Runtime implementation to use (OpenCL or CUDA). GPURuntime Runtime; /// The GPU Architecture to target. GPUArch Arch; /// Class to free isl_ids. class IslIdDeleter { public: void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; }; /// A set containing all isl_ids allocated in a GPU kernel. /// /// By releasing this set all isl_ids will be freed. std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; IslExprBuilder::IDToScopArrayInfoTy IDToSAI; /// Create code for user-defined AST nodes. /// /// These AST nodes can be of type: /// /// - ScopStmt: A computational statement (TODO) /// - Kernel: A GPU kernel call (TODO) /// - Data-Transfer: A GPU <-> CPU data-transfer /// - In-kernel synchronization /// - In-kernel memory copy statement /// /// @param UserStmt The ast node to generate code for. void createUser(__isl_take isl_ast_node *UserStmt) override; void createFor(__isl_take isl_ast_node *Node) override; enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; /// Create code for a data transfer statement /// /// @param TransferStmt The data transfer statement. /// @param Direction The direction in which to transfer data. void createDataTransfer(__isl_take isl_ast_node *TransferStmt, enum DataDirection Direction); /// Find llvm::Values referenced in GPU kernel. /// /// @param Kernel The kernel to scan for llvm::Values /// /// @returns A tuple, whose: /// - First element contains the set of values referenced by the /// kernel /// - Second element contains the set of functions referenced by the /// kernel. All functions in the set satisfy /// `isValidFunctionInKernel`. /// - Third element contains loops that have induction variables /// which are used in the kernel, *and* these loops are *neither* /// in the scop, nor do they immediately surroung the Scop. /// See [Code generation of induction variables of loops outside /// Scops] std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, isl::space> getReferencesInKernel(ppcg_kernel *Kernel); /// Compute the sizes of the execution grid for a given kernel. /// /// @param Kernel The kernel to compute grid sizes for. /// /// @returns A tuple with grid sizes for X and Y dimension std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); /// Get the managed array pointer for sending host pointers to the device. /// \note /// This is to be used only with managed memory Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); /// Compute the sizes of the thread blocks for a given kernel. /// /// @param Kernel The kernel to compute thread block sizes for. /// /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); /// Store a specific kernel launch parameter in the array of kernel launch /// parameters. /// /// @param Parameters The list of parameters in which to store. /// @param Param The kernel launch parameter to store. /// @param Index The index in the parameter list, at which to store the /// parameter. void insertStoreParameter(Instruction *Parameters, Instruction *Param, int Index); /// Create kernel launch parameters. /// /// @param Kernel The kernel to create parameters for. /// @param F The kernel function that has been created. /// @param SubtreeValues The set of llvm::Values referenced by this kernel. /// /// @returns A stack allocated array with pointers to the parameter /// values that are passed to the kernel. Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, SetVector<Value *> SubtreeValues); /// Create declarations for kernel variable. /// /// This includes shared memory declarations. /// /// @param Kernel The kernel definition to create variables for. /// @param FN The function into which to generate the variables. void createKernelVariables(ppcg_kernel *Kernel, Function *FN); /// Add CUDA annotations to module. /// /// Add a set of CUDA annotations that declares the maximal block dimensions /// that will be used to execute the CUDA kernel. This allows the NVIDIA /// PTX compiler to bound the number of allocated registers to ensure the /// resulting kernel is known to run with up to as many block dimensions /// as specified here. /// /// @param M The module to add the annotations to. /// @param BlockDimX The size of block dimension X. /// @param BlockDimY The size of block dimension Y. /// @param BlockDimZ The size of block dimension Z. void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, Value *BlockDimZ); /// Create GPU kernel. /// /// Code generate the kernel described by @p KernelStmt. /// /// @param KernelStmt The ast node to generate kernel code for. void createKernel(__isl_take isl_ast_node *KernelStmt); /// Generate code that computes the size of an array. /// /// @param Array The array for which to compute a size. Value *getArraySize(gpu_array_info *Array); /// Generate code to compute the minimal offset at which an array is accessed. /// /// The offset of an array is the minimal array location accessed in a scop. /// /// Example: /// /// for (long i = 0; i < 100; i++) /// A[i + 42] += ... /// /// getArrayOffset(A) results in 42. /// /// @param Array The array for which to compute the offset. /// @returns An llvm::Value that contains the offset of the array. Value *getArrayOffset(gpu_array_info *Array); /// Prepare the kernel arguments for kernel code generation /// /// @param Kernel The kernel to generate code for. /// @param FN The function created for the kernel. void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); /// Create kernel function. /// /// Create a kernel function located in a newly created module that can serve /// as target for device code generation. Set the Builder to point to the /// start block of this newly created function. /// /// @param Kernel The kernel to generate code for. /// @param SubtreeValues The set of llvm::Values referenced by this kernel. /// @param SubtreeFunctions The set of llvm::Functions referenced by this /// kernel. void createKernelFunction(ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, SetVector<Function *> &SubtreeFunctions); /// Create the declaration of a kernel function. /// /// The kernel function takes as arguments: /// /// - One i8 pointer for each external array reference used in the kernel. /// - Host iterators /// - Parameters /// - Other LLVM Value references (TODO) /// /// @param Kernel The kernel to generate the function declaration for. /// @param SubtreeValues The set of llvm::Values referenced by this kernel. /// /// @returns The newly declared function. Function *createKernelFunctionDecl(ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues); /// Insert intrinsic functions to obtain thread and block ids. /// /// @param The kernel to generate the intrinsic functions for. void insertKernelIntrinsics(ppcg_kernel *Kernel); /// Insert function calls to retrieve the SPIR group/local ids. /// /// @param Kernel The kernel to generate the function calls for. /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); /// Setup the creation of functions referenced by the GPU kernel. /// /// 1. Create new function declarations in GPUModule which are the same as /// SubtreeFunctions. /// /// 2. Populate IslNodeBuilder::ValueMap with mappings from /// old functions (that come from the original module) to new functions /// (that are created within GPUModule). That way, we generate references /// to the correct function (in GPUModule) in BlockGenerator. /// /// @see IslNodeBuilder::ValueMap /// @see BlockGenerator::GlobalMap /// @see BlockGenerator::getNewValue /// @see GPUNodeBuilder::getReferencesInKernel. /// /// @param SubtreeFunctions The set of llvm::Functions referenced by /// this kernel. void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); /// Create a global-to-shared or shared-to-global copy statement. /// /// @param CopyStmt The copy statement to generate code for void createKernelCopy(ppcg_kernel_stmt *CopyStmt); /// Create code for a ScopStmt called in @p Expr. /// /// @param Expr The expression containing the call. /// @param KernelStmt The kernel statement referenced in the call. void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); /// Create an in-kernel synchronization call. void createKernelSync(); /// Create a PTX assembly string for the current GPU kernel. /// /// @returns A string containing the corresponding PTX assembly code. std::string createKernelASM(); /// Remove references from the dominator tree to the kernel function @p F. /// /// @param F The function to remove references to. void clearDominators(Function *F); /// Remove references from scalar evolution to the kernel function @p F. /// /// @param F The function to remove references to. void clearScalarEvolution(Function *F); /// Remove references from loop info to the kernel function @p F. /// /// @param F The function to remove references to. void clearLoops(Function *F); /// Check if the scop requires to be linked with CUDA's libdevice. bool requiresCUDALibDevice(); /// Link with the NVIDIA libdevice library (if needed and available). void addCUDALibDevice(); /// Finalize the generation of the kernel function. /// /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- /// dump its IR to stderr. /// /// @returns The Assembly string of the kernel. std::string finalizeKernelFunction(); /// Finalize the generation of the kernel arguments. /// /// This function ensures that not-read-only scalars used in a kernel are /// stored back to the global memory location they are backed with before /// the kernel terminates. /// /// @params Kernel The kernel to finalize kernel arguments for. void finalizeKernelArguments(ppcg_kernel *Kernel); /// Create code that allocates memory to store arrays on device. void allocateDeviceArrays(); /// Create code to prepare the managed device pointers. void prepareManagedDeviceArrays(); /// Free all allocated device arrays. void freeDeviceArrays(); /// Create a call to initialize the GPU context. /// /// @returns A pointer to the newly initialized context. Value *createCallInitContext(); /// Create a call to get the device pointer for a kernel allocation. /// /// @param Allocation The Polly GPU allocation /// /// @returns The device parameter corresponding to this allocation. Value *createCallGetDevicePtr(Value *Allocation); /// Create a call to free the GPU context. /// /// @param Context A pointer to an initialized GPU context. void createCallFreeContext(Value *Context); /// Create a call to allocate memory on the device. /// /// @param Size The size of memory to allocate /// /// @returns A pointer that identifies this allocation. Value *createCallAllocateMemoryForDevice(Value *Size); /// Create a call to free a device array. /// /// @param Array The device array to free. void createCallFreeDeviceMemory(Value *Array); /// Create a call to copy data from host to device. /// /// @param HostPtr A pointer to the host data that should be copied. /// @param DevicePtr A device pointer specifying the location to copy to. void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, Value *Size); /// Create a call to copy data from device to host. /// /// @param DevicePtr A pointer to the device data that should be copied. /// @param HostPtr A host pointer specifying the location to copy to. void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, Value *Size); /// Create a call to synchronize Host & Device. /// \note /// This is to be used only with managed memory. void createCallSynchronizeDevice(); /// Create a call to get a kernel from an assembly string. /// /// @param Buffer The string describing the kernel. /// @param Entry The name of the kernel function to call. /// /// @returns A pointer to a kernel object Value *createCallGetKernel(Value *Buffer, Value *Entry); /// Create a call to free a GPU kernel. /// /// @param GPUKernel THe kernel to free. void createCallFreeKernel(Value *GPUKernel); /// Create a call to launch a GPU kernel. /// /// @param GPUKernel The kernel to launch. /// @param GridDimX The size of the first grid dimension. /// @param GridDimY The size of the second grid dimension. /// @param GridBlockX The size of the first block dimension. /// @param GridBlockY The size of the second block dimension. /// @param GridBlockZ The size of the third block dimension. /// @param Parameters A pointer to an array that contains itself pointers to /// the parameter values passed for each kernel argument. void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, Value *GridDimY, Value *BlockDimX, Value *BlockDimY, Value *BlockDimZ, Value *Parameters); }; std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); } void GPUNodeBuilder::initializeAfterRTH() { BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); NewBB->setName("polly.acc.initialize"); Builder.SetInsertPoint(&NewBB->front()); GPUContext = createCallInitContext(); if (!PollyManagedMemory) allocateDeviceArrays(); else prepareManagedDeviceArrays(); } void GPUNodeBuilder::finalize() { if (!PollyManagedMemory) freeDeviceArrays(); createCallFreeContext(GPUContext); IslNodeBuilder::finalize(); } void GPUNodeBuilder::allocateDeviceArrays() { assert(!PollyManagedMemory && "Managed memory will directly send host pointers " "to the kernel. There is no need for device arrays"); isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); for (int i = 0; i < Prog->n_array; ++i) { gpu_array_info *Array = &Prog->array[i]; auto *ScopArray = (ScopArrayInfo *)Array->user; std::string DevArrayName("p_dev_array_"); DevArrayName.append(Array->name); Value *ArraySize = getArraySize(Array); Value *Offset = getArrayOffset(Array); if (Offset) ArraySize = Builder.CreateSub( ArraySize, Builder.CreateMul(Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); const SCEV *SizeSCEV = SE.getSCEV(ArraySize); // It makes no sense to have an array of size 0. The CUDA API will // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We // choose to be defensive and catch this at the compile phase. It is // most likely that we are doing something wrong with size computation. if (SizeSCEV->isZero()) { errs() << getUniqueScopName(&S) << " has computed array size 0: " << *ArraySize << " | for array: " << *(ScopArray->getBasePtr()) << ". This is illegal, exiting.\n"; report_fatal_error("array size was computed to be 0"); } Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); DevArray->setName(DevArrayName); DeviceAllocations[ScopArray] = DevArray; } isl_ast_build_free(Build); } void GPUNodeBuilder::prepareManagedDeviceArrays() { assert(PollyManagedMemory && "Device array most only be prepared in managed-memory mode"); for (int i = 0; i < Prog->n_array; ++i) { gpu_array_info *Array = &Prog->array[i]; ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; Value *HostPtr; if (gpu_array_is_scalar(Array)) HostPtr = BlockGen.getOrCreateAlloca(ScopArray); else HostPtr = ScopArray->getBasePtr(); HostPtr = getLatestValue(HostPtr); Value *Offset = getArrayOffset(Array); if (Offset) { HostPtr = Builder.CreatePointerCast( HostPtr, ScopArray->getElementType()->getPointerTo()); HostPtr = Builder.CreateGEP(HostPtr, Offset); } HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); DeviceAllocations[ScopArray] = HostPtr; } } void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, Value *BlockDimZ) { auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); for (auto &F : *M) { if (F.getCallingConv() != CallingConv::PTX_Kernel) continue; Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; Metadata *Elements[] = { ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), ValueAsMetadata::get(V[2]), }; MDNode *Node = MDNode::get(M->getContext(), Elements); AnnotationNode->addOperand(Node); } } void GPUNodeBuilder::freeDeviceArrays() { assert(!PollyManagedMemory && "Managed memory does not use device arrays"); for (auto &Array : DeviceAllocations) createCallFreeDeviceMemory(Array.second); } Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { const char *Name = "polly_getKernel"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } return Builder.CreateCall(F, {Buffer, Entry}); } Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { const char *Name = "polly_getDevicePtr"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } return Builder.CreateCall(F, {Allocation}); } void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, Value *GridDimY, Value *BlockDimX, Value *BlockDimY, Value *BlockDimZ, Value *Parameters) { const char *Name = "polly_launchKernel"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt32Ty()); Args.push_back(Builder.getInt32Ty()); Args.push_back(Builder.getInt32Ty()); Args.push_back(Builder.getInt32Ty()); Args.push_back(Builder.getInt32Ty()); Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, BlockDimZ, Parameters}); } void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { const char *Name = "polly_freeKernel"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {GPUKernel}); } void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { assert(!PollyManagedMemory && "Managed memory does not allocate or free memory " "for device"); const char *Name = "polly_freeDeviceMemory"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {Array}); } Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { assert(!PollyManagedMemory && "Managed memory does not allocate or free memory " "for device"); const char *Name = "polly_allocateMemoryForDevice"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt64Ty()); FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } return Builder.CreateCall(F, {Size}); } void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, Value *DeviceData, Value *Size) { assert(!PollyManagedMemory && "Managed memory does not transfer memory between " "device and host"); const char *Name = "polly_copyFromHostToDevice"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt64Ty()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {HostData, DeviceData, Size}); } void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, Value *HostData, Value *Size) { assert(!PollyManagedMemory && "Managed memory does not transfer memory between " "device and host"); const char *Name = "polly_copyFromDeviceToHost"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt8PtrTy()); Args.push_back(Builder.getInt64Ty()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {DeviceData, HostData, Size}); } void GPUNodeBuilder::createCallSynchronizeDevice() { assert(PollyManagedMemory && "explicit synchronization is only necessary for " "managed memory"); const char *Name = "polly_synchronizeDevice"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F); } Value *GPUNodeBuilder::createCallInitContext() { const char *Name; switch (Runtime) { case GPURuntime::CUDA: Name = "polly_initContextCUDA"; break; case GPURuntime::OpenCL: Name = "polly_initContextCL"; break; } Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } return Builder.CreateCall(F, {}); } void GPUNodeBuilder::createCallFreeContext(Value *Context) { const char *Name = "polly_freeContext"; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *F = M->getFunction(Name); // If F is not available, declare it. if (!F) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; Args.push_back(Builder.getInt8PtrTy()); FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); F = Function::Create(Ty, Linkage, Name, M); } Builder.CreateCall(F, {Context}); } /// Check if one string is a prefix of another. /// /// @param String The string in which to look for the prefix. /// @param Prefix The prefix to look for. static bool isPrefix(std::string String, std::string Prefix) { return String.find(Prefix) == 0; } Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { isl::ast_build Build = isl::ast_build::from_context(S.getContext()); Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); if (!gpu_array_is_scalar(Array)) { isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); isl::ast_expr Res = Build.expr_from(OffsetDimZero); for (unsigned int i = 1; i < Array->n_index; i++) { isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); isl::ast_expr Expr = Build.expr_from(Bound_I); Res = Res.mul(Expr); } Value *NumElements = ExprBuilder.create(Res.release()); if (NumElements->getType() != ArraySize->getType()) NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); ArraySize = Builder.CreateMul(ArraySize, NumElements); } return ArraySize; } Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { if (gpu_array_is_scalar(Array)) return nullptr; isl::ast_build Build = isl::ast_build::from_context(S.getContext()); isl::set Min = isl::manage_copy(Array->extent).lexmin(); isl::set ZeroSet = isl::set::universe(Min.get_space()); for (long i = 0, n = Min.tuple_dim(); i < n; i++) ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); if (Min.is_subset(ZeroSet)) { return nullptr; } isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.ctx(), 0)); for (long i = 0, n = Min.tuple_dim(); i < n; i++) { if (i > 0) { isl::pw_aff Bound_I = isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); isl::ast_expr BExpr = Build.expr_from(Bound_I); Result = Result.mul(BExpr); } isl::pw_aff DimMin = Min.dim_min(i); isl::ast_expr MExpr = Build.expr_from(DimMin); Result = Result.add(MExpr); } return ExprBuilder.create(Result.release()); } Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo) { assert(PollyManagedMemory && "Only used when you wish to get a host " "pointer for sending data to the kernel, " "with managed memory"); std::map<ScopArrayInfo *, Value *>::iterator it; it = DeviceAllocations.find(ArrayInfo); assert(it != DeviceAllocations.end() && "Device array expected to be available"); return it->second; } void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, enum DataDirection Direction) { assert(!PollyManagedMemory && "Managed memory needs no data transfers"); isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); isl_id *Id = isl_ast_expr_get_id(Arg); auto Array = (gpu_array_info *)isl_id_get_user(Id); auto ScopArray = (ScopArrayInfo *)(Array->user); Value *Size = getArraySize(Array); Value *Offset = getArrayOffset(Array); Value *DevPtr = DeviceAllocations[ScopArray]; Value *HostPtr; if (gpu_array_is_scalar(Array)) HostPtr = BlockGen.getOrCreateAlloca(ScopArray); else HostPtr = ScopArray->getBasePtr(); HostPtr = getLatestValue(HostPtr); if (Offset) { HostPtr = Builder.CreatePointerCast( HostPtr, ScopArray->getElementType()->getPointerTo()); HostPtr = Builder.CreateGEP(HostPtr, Offset); } HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); if (Offset) { Size = Builder.CreateSub( Size, Builder.CreateMul( Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); } if (Direction == HOST_TO_DEVICE) createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); else createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); isl_id_free(Id); isl_ast_expr_free(Arg); isl_ast_expr_free(Expr); isl_ast_node_free(TransferStmt); } void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); isl_id *Id = isl_ast_expr_get_id(StmtExpr); isl_id_free(Id); isl_ast_expr_free(StmtExpr); const char *Str = isl_id_get_name(Id); if (!strcmp(Str, "kernel")) { createKernel(UserStmt); if (PollyManagedMemory) createCallSynchronizeDevice(); isl_ast_expr_free(Expr); return; } if (!strcmp(Str, "init_device")) { initializeAfterRTH(); isl_ast_node_free(UserStmt); isl_ast_expr_free(Expr); return; } if (!strcmp(Str, "clear_device")) { finalize(); isl_ast_node_free(UserStmt); isl_ast_expr_free(Expr); return; } if (isPrefix(Str, "to_device")) { if (!PollyManagedMemory) createDataTransfer(UserStmt, HOST_TO_DEVICE); else isl_ast_node_free(UserStmt); isl_ast_expr_free(Expr); return; } if (isPrefix(Str, "from_device")) { if (!PollyManagedMemory) { createDataTransfer(UserStmt, DEVICE_TO_HOST); } else { isl_ast_node_free(UserStmt); } isl_ast_expr_free(Expr); return; } isl_id *Anno = isl_ast_node_get_annotation(UserStmt); struct ppcg_kernel_stmt *KernelStmt = (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); isl_id_free(Anno); switch (KernelStmt->type) { case ppcg_kernel_domain: createScopStmt(Expr, KernelStmt); isl_ast_node_free(UserStmt); return; case ppcg_kernel_copy: createKernelCopy(KernelStmt); isl_ast_expr_free(Expr); isl_ast_node_free(UserStmt); return; case ppcg_kernel_sync: createKernelSync(); isl_ast_expr_free(Expr); isl_ast_node_free(UserStmt); return; } isl_ast_expr_free(Expr); isl_ast_node_free(UserStmt); } void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { createForSequential(isl::manage(Node), false); } void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); LocalIndex = isl_ast_expr_address_of(LocalIndex); Value *LocalAddr = ExprBuilder.create(LocalIndex); isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); Index = isl_ast_expr_address_of(Index); Value *GlobalAddr = ExprBuilder.create(Index); Type *IndexTy = cast<PointerType>(GlobalAddr->getType())->getElementType(); if (KernelStmt->u.c.read) { LoadInst *Load = Builder.CreateLoad(IndexTy, GlobalAddr, "shared.read"); Builder.CreateStore(Load, LocalAddr); } else { LoadInst *Load = Builder.CreateLoad(IndexTy, LocalAddr, "shared.write"); Builder.CreateStore(Load, GlobalAddr); } } void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt) { auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; LoopToScevMapT LTS; LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); createSubstitutions(Expr, Stmt, LTS); if (Stmt->isBlockStmt()) BlockGen.copyStmt(*Stmt, LTS, Indexes); else RegionGen.copyStmt(*Stmt, LTS, Indexes); } void GPUNodeBuilder::createKernelSync() { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); const char *SpirName = "__gen_ocl_barrier_global"; Function *Sync; switch (Arch) { case GPUArch::SPIR64: case GPUArch::SPIR32: Sync = M->getFunction(SpirName); // If Sync is not available, declare it. if (!Sync) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); Sync = Function::Create(Ty, Linkage, SpirName, M); Sync->setCallingConv(CallingConv::SPIR_FUNC); } break; case GPUArch::NVPTX64: Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); break; } Builder.CreateCall(Sync, {}); } /// Collect llvm::Values referenced from @p Node /// /// This function only applies to isl_ast_nodes that are user_nodes referring /// to a ScopStmt. All other node types are ignore. /// /// @param Node The node to collect references for. /// @param User A user pointer used as storage for the data that is collected. /// /// @returns isl_bool_true if data could be collected successfully. isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { if (isl_ast_node_get_type(Node) != isl_ast_node_user) return isl_bool_true; isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); isl_id *Id = isl_ast_expr_get_id(StmtExpr); const char *Str = isl_id_get_name(Id); isl_id_free(Id); isl_ast_expr_free(StmtExpr); isl_ast_expr_free(Expr); if (!isPrefix(Str, "Stmt")) return isl_bool_true; Id = isl_ast_node_get_annotation(Node); auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; isl_id_free(Id); addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); return isl_bool_true; } /// A list of functions that are available in NVIDIA's libdevice. const std::set<std::string> CUDALibDeviceFunctions = { "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; // A map from intrinsics to their corresponding libdevice functions. const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { {"llvm.exp.f64", "exp"}, {"llvm.exp.f32", "expf"}, {"llvm.powi.f64.i32", "powi"}, {"llvm.powi.f32.i32", "powif"}}; /// Return the corresponding CUDA libdevice function name @p Name. /// Note that this function will try to convert instrinsics in the list /// IntrinsicToLibdeviceFunc into libdevice functions. /// This is because some intrinsics such as `exp` /// are not supported by the NVPTX backend. /// If this restriction of the backend is lifted, we should refactor our code /// so that we use intrinsics whenever possible. /// /// Return "" if we are not compiling for CUDA. std::string getCUDALibDeviceFuntion(StringRef NameRef) { std::string Name = NameRef.str(); auto It = IntrinsicToLibdeviceFunc.find(Name); if (It != IntrinsicToLibdeviceFunc.end()) return getCUDALibDeviceFuntion(It->second); if (CUDALibDeviceFunctions.count(Name)) return ("__nv_" + Name); return ""; } /// Check if F is a function that we can code-generate in a GPU kernel. static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { assert(F && "F is an invalid pointer"); // We string compare against the name of the function to allow // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and // "llvm.copysign". const StringRef Name = F->getName(); if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) return true; return F->isIntrinsic() && (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || Name.startswith("llvm.copysign")); } /// Do not take `Function` as a subtree value. /// /// We try to take the reference of all subtree values and pass them along /// to the kernel from the host. Taking an address of any function and /// trying to pass along is nonsensical. Only allow `Value`s that are not /// `Function`s. static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } /// Return `Function`s from `RawSubtreeValues`. static SetVector<Function *> getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, bool AllowCUDALibDevice) { SetVector<Function *> SubtreeFunctions; for (Value *It : RawSubtreeValues) { Function *F = dyn_cast<Function>(It); if (F) { assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && "Code should have bailed out by " "this point if an invalid function " "were present in a kernel."); SubtreeFunctions.insert(F); } } return SubtreeFunctions; } std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, isl::space> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { SetVector<Value *> SubtreeValues; SetVector<const SCEV *> SCEVs; SetVector<const Loop *> Loops; isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); SubtreeReferences References = { LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), &ParamSpace}; for (const auto &I : IDToValue) SubtreeValues.insert(I.second); // NOTE: this is populated in IslNodeBuilder::addParameters // See [Code generation of induction variables of loops outside Scops]. for (const auto &I : OutsideLoopIterations) SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); isl_ast_node_foreach_descendant_top_down( Kernel->tree, collectReferencesInGPUStmt, &References); for (const SCEV *Expr : SCEVs) { findValues(Expr, SE, SubtreeValues); findLoops(Expr, Loops); } Loops.remove_if([this](const Loop *L) { return S.contains(L) || L->contains(S.getEntry()); }); for (auto &SAI : S.arrays()) SubtreeValues.remove(SAI->getBasePtr()); isl_space *Space = S.getParamSpace().release(); for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); assert(IDToValue.count(Id)); Value *Val = IDToValue[Id]; SubtreeValues.remove(Val); isl_id_free(Id); } isl_space_free(Space); for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); assert(IDToValue.count(Id)); Value *Val = IDToValue[Id]; SubtreeValues.remove(Val); isl_id_free(Id); } // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions // SubtreeValues. This is important, because we should not lose any // SubtreeValues in the process of constructing the // "ValidSubtree{Values, Functions} sets. Nor should the set // ValidSubtree{Values, Functions} have any common element. auto ValidSubtreeValuesIt = make_filter_range(SubtreeValues, isValidSubtreeValue); SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), ValidSubtreeValuesIt.end()); bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; SetVector<Function *> ValidSubtreeFunctions( getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); // @see IslNodeBuilder::getReferencesInSubtree SetVector<Value *> ReplacedValues; for (Value *V : ValidSubtreeValues) { auto It = ValueMap.find(V); if (It == ValueMap.end()) ReplacedValues.insert(V); else ReplacedValues.insert(It->second); } return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, ParamSpace); } void GPUNodeBuilder::clearDominators(Function *F) { DomTreeNode *N = DT.getNode(&F->getEntryBlock()); std::vector<BasicBlock *> Nodes; for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) Nodes.push_back(I->getBlock()); for (BasicBlock *BB : Nodes) DT.eraseNode(BB); } void GPUNodeBuilder::clearScalarEvolution(Function *F) { for (BasicBlock &BB : *F) { Loop *L = LI.getLoopFor(&BB); if (L) SE.forgetLoop(L); } } void GPUNodeBuilder::clearLoops(Function *F) { SmallSet<Loop *, 1> WorkList; for (BasicBlock &BB : *F) { Loop *L = LI.getLoopFor(&BB); if (L) WorkList.insert(L); } for (auto *L : WorkList) LI.erase(L); } std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { std::vector<Value *> Sizes; isl::ast_build Context = isl::ast_build::from_context(S.getContext()); isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); for (long i = 0; i < Kernel->n_grid; i++) { isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); isl::ast_expr GridSize = Context.expr_from(Size); Value *Res = ExprBuilder.create(GridSize.release()); Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); Sizes.push_back(Res); } for (long i = Kernel->n_grid; i < 3; i++) Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); return std::make_tuple(Sizes[0], Sizes[1]); } std::tuple<Value *, Value *, Value *> GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { std::vector<Value *> Sizes; for (long i = 0; i < Kernel->n_block; i++) { Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); Sizes.push_back(Res); } for (long i = Kernel->n_block; i < 3; i++) Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); } void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, Instruction *Param, int Index) { Value *Slot = Builder.CreateGEP( Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); Builder.CreateStore(ParamTyped, Slot); } Value * GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, SetVector<Value *> SubtreeValues) { const int NumArgs = F->arg_size(); std::vector<int> ArgSizes(NumArgs); // If we are using the OpenCL Runtime, we need to add the kernel argument // sizes to the end of the launch-parameter list, so OpenCL can determine // how big the respective kernel arguments are. // Here we need to reserve adequate space for that. Type *ArrayTy; if (Runtime == GPURuntime::OpenCL) ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); else ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); BasicBlock *EntryBlock = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); std::string Launch = "polly_launch_" + std::to_string(Kernel->id); Instruction *Parameters = new AllocaInst( ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); int Index = 0; for (long i = 0; i < Prog->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); if (Runtime == GPURuntime::OpenCL) ArgSizes[Index] = SAI->getElemSizeInBytes(); Value *DevArray = nullptr; if (PollyManagedMemory) { DevArray = getManagedDeviceArray(&Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); } else { DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; DevArray = createCallGetDevicePtr(DevArray); } assert(DevArray != nullptr && "Array to be offloaded to device not " "initialized"); Value *Offset = getArrayOffset(&Prog->array[i]); if (Offset) { DevArray = Builder.CreatePointerCast( DevArray, SAI->getElementType()->getPointerTo()); DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); } Value *Slot = Builder.CreateGEP( Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); if (gpu_array_is_read_only_scalar(&Prog->array[i])) { Value *ValPtr = nullptr; if (PollyManagedMemory) ValPtr = DevArray; else ValPtr = BlockGen.getOrCreateAlloca(SAI); assert(ValPtr != nullptr && "ValPtr that should point to a valid object" " to be stored into Parameters"); Value *ValPtrCast = Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); Builder.CreateStore(ValPtrCast, Slot); } else { Instruction *Param = new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, Launch + "_param_" + std::to_string(Index), EntryBlock->getTerminator()); Builder.CreateStore(DevArray, Param); Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); Builder.CreateStore(ParamTyped, Slot); } Index++; } int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); for (long i = 0; i < NumHostIters; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); Value *Val = IDToValue[Id]; isl_id_free(Id); if (Runtime == GPURuntime::OpenCL) ArgSizes[Index] = computeSizeInBytes(Val->getType()); Instruction *Param = new AllocaInst(Val->getType(), AddressSpace, Launch + "_param_" + std::to_string(Index), EntryBlock->getTerminator()); Builder.CreateStore(Val, Param); insertStoreParameter(Parameters, Param, Index); Index++; } int NumVars = isl_space_dim(Kernel->space, isl_dim_param); for (long i = 0; i < NumVars; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); Value *Val = IDToValue[Id]; if (ValueMap.count(Val)) Val = ValueMap[Val]; isl_id_free(Id); if (Runtime == GPURuntime::OpenCL) ArgSizes[Index] = computeSizeInBytes(Val->getType()); Instruction *Param = new AllocaInst(Val->getType(), AddressSpace, Launch + "_param_" + std::to_string(Index), EntryBlock->getTerminator()); Builder.CreateStore(Val, Param); insertStoreParameter(Parameters, Param, Index); Index++; } for (auto Val : SubtreeValues) { if (Runtime == GPURuntime::OpenCL) ArgSizes[Index] = computeSizeInBytes(Val->getType()); Instruction *Param = new AllocaInst(Val->getType(), AddressSpace, Launch + "_param_" + std::to_string(Index), EntryBlock->getTerminator()); Builder.CreateStore(Val, Param); insertStoreParameter(Parameters, Param, Index); Index++; } if (Runtime == GPURuntime::OpenCL) { for (int i = 0; i < NumArgs; i++) { Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); Instruction *Param = new AllocaInst(Builder.getInt32Ty(), AddressSpace, Launch + "_param_size_" + std::to_string(i), EntryBlock->getTerminator()); Builder.CreateStore(Val, Param); insertStoreParameter(Parameters, Param, Index); Index++; } } auto Location = EntryBlock->getTerminator(); return new BitCastInst(Parameters, Builder.getInt8PtrTy(), Launch + "_params_i8ptr", Location); } void GPUNodeBuilder::setupKernelSubtreeFunctions( SetVector<Function *> SubtreeFunctions) { for (auto Fn : SubtreeFunctions) { const std::string ClonedFnName = Fn->getName().str(); Function *Clone = GPUModule->getFunction(ClonedFnName); if (!Clone) Clone = Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, ClonedFnName, GPUModule.get()); assert(Clone && "Expected cloned function to be initialized."); assert(ValueMap.find(Fn) == ValueMap.end() && "Fn already present in ValueMap"); ValueMap[Fn] = Clone; } } void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { isl_id *Id = isl_ast_node_get_annotation(KernelStmt); ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); isl_id_free(Id); isl_ast_node_free(KernelStmt); if (Kernel->n_grid > 1) DeepestParallel = std::max( DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); else DeepestSequential = std::max( DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); Value *BlockDimX, *BlockDimY, *BlockDimZ; std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); SetVector<Value *> SubtreeValues; SetVector<Function *> SubtreeFunctions; SetVector<const Loop *> Loops; isl::space ParamSpace; std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = getReferencesInKernel(Kernel); // Add parameters that appear only in the access function to the kernel // space. This is important to make sure that all isl_ids are passed as // parameters to the kernel, even though we may not have all parameters // in the context to improve compile time. Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); assert(Kernel->tree && "Device AST of kernel node is empty"); Instruction &HostInsertPoint = *Builder.GetInsertPoint(); IslExprBuilder::IDToValueTy HostIDs = IDToValue; ValueMapT HostValueMap = ValueMap; BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; ScalarMap.clear(); BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; EscapeMap.clear(); // Create for all loops we depend on values that contain the current loop // iteration. These values are necessary to generate code for SCEVs that // depend on such loops. As a result we need to pass them to the subfunction. for (const Loop *L : Loops) { const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), SE.getUnknown(Builder.getInt64(1)), L, SCEV::FlagAnyWrap); Value *V = generateSCEV(OuterLIV); OutsideLoopIterations[L] = SE.getUnknown(V); SubtreeValues.insert(V); } createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); setupKernelSubtreeFunctions(SubtreeFunctions); create(isl_ast_node_copy(Kernel->tree)); finalizeKernelArguments(Kernel); Function *F = Builder.GetInsertBlock()->getParent(); if (Arch == GPUArch::NVPTX64) addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); clearDominators(F); clearScalarEvolution(F); clearLoops(F); IDToValue = HostIDs; ValueMap = std::move(HostValueMap); ScalarMap = std::move(HostScalarMap); EscapeMap = std::move(HostEscapeMap); IDToSAI.clear(); Annotator.resetAlternativeAliasBases(); for (auto &BasePtr : LocalArrays) S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); LocalArrays.clear(); std::string ASMString = finalizeKernelFunction(); Builder.SetInsertPoint(&HostInsertPoint); Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); std::string Name = getKernelFuncName(Kernel->id); Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); Value *GPUKernel = createCallGetKernel(KernelString, NameString); Value *GridDimX, *GridDimY; std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, BlockDimZ, Parameters); createCallFreeKernel(GPUKernel); for (auto Id : KernelIds) isl_id_free(Id); KernelIds.clear(); } /// Compute the DataLayout string for the NVPTX backend. /// /// @param is64Bit Are we looking for a 64 bit architecture? static std::string computeNVPTXDataLayout(bool is64Bit) { std::string Ret = ""; if (!is64Bit) { Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" "64-v128:128:128-n16:32:64"; } else { Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" "64-v128:128:128-n16:32:64"; } return Ret; } /// Compute the DataLayout string for a SPIR kernel. /// /// @param is64Bit Are we looking for a 64 bit architecture? static std::string computeSPIRDataLayout(bool is64Bit) { std::string Ret = ""; if (!is64Bit) { Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; } else { Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; } return Ret; } Function * GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues) { std::vector<Type *> Args; std::string Identifier = getKernelFuncName(Kernel->id); std::vector<Metadata *> MemoryType; for (long i = 0; i < Prog->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; if (gpu_array_is_read_only_scalar(&Prog->array[i])) { isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); Args.push_back(SAI->getElementType()); MemoryType.push_back( ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); } else { static const int UseGlobalMemory = 1; Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); MemoryType.push_back( ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); } } int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); for (long i = 0; i < NumHostIters; i++) { Args.push_back(Builder.getInt64Ty()); MemoryType.push_back( ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); } int NumVars = isl_space_dim(Kernel->space, isl_dim_param); for (long i = 0; i < NumVars; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); Value *Val = IDToValue[Id]; isl_id_free(Id); Args.push_back(Val->getType()); MemoryType.push_back( ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); } for (auto *V : SubtreeValues) { Args.push_back(V->getType()); MemoryType.push_back( ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); } auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, GPUModule.get()); std::vector<Metadata *> EmptyStrings; for (unsigned int i = 0; i < MemoryType.size(); i++) { EmptyStrings.push_back(MDString::get(FN->getContext(), "")); } if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { FN->setMetadata("kernel_arg_addr_space", MDNode::get(FN->getContext(), MemoryType)); FN->setMetadata("kernel_arg_name", MDNode::get(FN->getContext(), EmptyStrings)); FN->setMetadata("kernel_arg_access_qual", MDNode::get(FN->getContext(), EmptyStrings)); FN->setMetadata("kernel_arg_type", MDNode::get(FN->getContext(), EmptyStrings)); FN->setMetadata("kernel_arg_type_qual", MDNode::get(FN->getContext(), EmptyStrings)); FN->setMetadata("kernel_arg_base_type", MDNode::get(FN->getContext(), EmptyStrings)); } switch (Arch) { case GPUArch::NVPTX64: FN->setCallingConv(CallingConv::PTX_Kernel); break; case GPUArch::SPIR32: case GPUArch::SPIR64: FN->setCallingConv(CallingConv::SPIR_KERNEL); break; } auto Arg = FN->arg_begin(); for (long i = 0; i < Kernel->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; Arg->setName(Kernel->array[i].array->name); isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); Type *EleTy = SAI->getElementType(); Value *Val = &*Arg; SmallVector<const SCEV *, 4> Sizes; isl_ast_build *Build = isl_ast_build_from_context(isl_set_copy(Prog->context)); Sizes.push_back(nullptr); for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); auto V = ExprBuilder.create(DimSize); Sizes.push_back(SE.getSCEV(V)); } const ScopArrayInfo *SAIRep = S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); LocalArrays.push_back(Val); isl_ast_build_free(Build); KernelIds.push_back(Id); IDToSAI[Id] = SAIRep; Arg++; } for (long i = 0; i < NumHostIters; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); Arg->setName(isl_id_get_name(Id)); IDToValue[Id] = &*Arg; KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); Arg++; } for (long i = 0; i < NumVars; i++) { isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); Arg->setName(isl_id_get_name(Id)); Value *Val = IDToValue[Id]; ValueMap[Val] = &*Arg; IDToValue[Id] = &*Arg; KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); Arg++; } for (auto *V : SubtreeValues) { Arg->setName(V->getName()); ValueMap[V] = &*Arg; Arg++; } return FN; } void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { Intrinsic::ID IntrinsicsBID[2]; Intrinsic::ID IntrinsicsTID[3]; switch (Arch) { case GPUArch::SPIR64: case GPUArch::SPIR32: llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); case GPUArch::NVPTX64: IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; break; } auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { std::string Name = isl_id_get_name(Id); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); Value *Val = Builder.CreateCall(IntrinsicFn, {}); Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); IDToValue[Id] = Val; KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); }; for (int i = 0; i < Kernel->n_grid; ++i) { isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); addId(Id, IntrinsicsBID[i]); } for (int i = 0; i < Kernel->n_block; ++i) { isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); addId(Id, IntrinsicsTID[i]); } } void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit) { const char *GroupName[3] = {"__gen_ocl_get_group_id0", "__gen_ocl_get_group_id1", "__gen_ocl_get_group_id2"}; const char *LocalName[3] = {"__gen_ocl_get_local_id0", "__gen_ocl_get_local_id1", "__gen_ocl_get_local_id2"}; IntegerType *SizeT = SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); auto createFunc = [this](const char *Name, __isl_take isl_id *Id, IntegerType *SizeT) mutable { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *FN = M->getFunction(Name); // If FN is not available, declare it. if (!FN) { GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; std::vector<Type *> Args; FunctionType *Ty = FunctionType::get(SizeT, Args, false); FN = Function::Create(Ty, Linkage, Name, M); FN->setCallingConv(CallingConv::SPIR_FUNC); } Value *Val = Builder.CreateCall(FN, {}); if (SizeT == Builder.getInt32Ty()) Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); IDToValue[Id] = Val; KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); }; for (int i = 0; i < Kernel->n_grid; ++i) createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); for (int i = 0; i < Kernel->n_block; ++i) createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); } void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { auto Arg = FN->arg_begin(); for (long i = 0; i < Kernel->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); isl_id_free(Id); if (SAI->getNumberOfDimensions() > 0) { Arg++; continue; } Value *Val = &*Arg; if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { Type *TypePtr = SAI->getElementType()->getPointerTo(); Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr); } Value *Alloca = BlockGen.getOrCreateAlloca(SAI); Builder.CreateStore(Val, Alloca); Arg++; } } void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { auto *FN = Builder.GetInsertBlock()->getParent(); auto Arg = FN->arg_begin(); bool StoredScalar = false; for (long i = 0; i < Kernel->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); isl_id_free(Id); if (SAI->getNumberOfDimensions() > 0) { Arg++; continue; } if (gpu_array_is_read_only_scalar(&Prog->array[i])) { Arg++; continue; } Value *Alloca = BlockGen.getOrCreateAlloca(SAI); Value *ArgPtr = &*Arg; Type *TypePtr = SAI->getElementType()->getPointerTo(); Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca); Builder.CreateStore(Val, TypedArgPtr); StoredScalar = true; Arg++; } if (StoredScalar) { /// In case more than one thread contains scalar stores, the generated /// code might be incorrect, if we only store at the end of the kernel. /// To support this case we need to store these scalars back at each /// memory store or at least before each kernel barrier. if (Kernel->n_block != 0 || Kernel->n_grid != 0) { BuildSuccessful = 0; LLVM_DEBUG( dbgs() << getUniqueScopName(&S) << " has a store to a scalar value that" " would be undefined to run in parallel. Bailing out.\n";); } } } void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); for (int i = 0; i < Kernel->n_var; ++i) { struct ppcg_kernel_var &Var = Kernel->var[i]; isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); Type *ArrayTy = EleTy; SmallVector<const SCEV *, 4> Sizes; Sizes.push_back(nullptr); for (unsigned int j = 1; j < Var.array->n_index; ++j) { isl_val *Val = isl_vec_get_element_val(Var.size, j); long Bound = isl_val_get_num_si(Val); isl_val_free(Val); Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); } for (int j = Var.array->n_index - 1; j >= 0; --j) { isl_val *Val = isl_vec_get_element_val(Var.size, j); long Bound = isl_val_get_num_si(Val); isl_val_free(Val); ArrayTy = ArrayType::get(ArrayTy, Bound); } const ScopArrayInfo *SAI; Value *Allocation; if (Var.type == ppcg_access_shared) { auto GlobalVar = new GlobalVariable( *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); Allocation = GlobalVar; } else if (Var.type == ppcg_access_private) { Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); } else { llvm_unreachable("unknown variable type"); } SAI = S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); IDToValue[Id] = Allocation; LocalArrays.push_back(Allocation); KernelIds.push_back(Id); IDToSAI[Id] = SAI; } } void GPUNodeBuilder::createKernelFunction( ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, SetVector<Function *> &SubtreeFunctions) { std::string Identifier = getKernelFuncName(Kernel->id); GPUModule.reset(new Module(Identifier, Builder.getContext())); switch (Arch) { case GPUArch::NVPTX64: if (Runtime == GPURuntime::CUDA) GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); else if (Runtime == GPURuntime::OpenCL) GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); break; case GPUArch::SPIR32: GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); break; case GPUArch::SPIR64: GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); break; } Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); BasicBlock *PrevBlock = Builder.GetInsertBlock(); auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); DT.addNewBlock(EntryBlock, PrevBlock); Builder.SetInsertPoint(EntryBlock); Builder.CreateRetVoid(); Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); ScopDetection::markFunctionAsInvalid(FN); prepareKernelArguments(Kernel, FN); createKernelVariables(Kernel, FN); switch (Arch) { case GPUArch::NVPTX64: insertKernelIntrinsics(Kernel); break; case GPUArch::SPIR32: insertKernelCallsSPIR(Kernel, false); break; case GPUArch::SPIR64: insertKernelCallsSPIR(Kernel, true); break; } } std::string GPUNodeBuilder::createKernelASM() { llvm::Triple GPUTriple; switch (Arch) { case GPUArch::NVPTX64: switch (Runtime) { case GPURuntime::CUDA: GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); break; case GPURuntime::OpenCL: GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); break; } break; case GPUArch::SPIR64: case GPUArch::SPIR32: std::string SPIRAssembly; raw_string_ostream IROstream(SPIRAssembly); IROstream << *GPUModule; IROstream.flush(); return SPIRAssembly; } std::string ErrMsg; auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); if (!GPUTarget) { errs() << ErrMsg << "\n"; return ""; } TargetOptions Options; Options.UnsafeFPMath = FastMath; std::string subtarget; switch (Arch) { case GPUArch::NVPTX64: subtarget = CudaVersion; break; case GPUArch::SPIR32: case GPUArch::SPIR64: llvm_unreachable("No subtarget for SPIR architecture"); } std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); SmallString<0> ASMString; raw_svector_ostream ASMStream(ASMString); llvm::legacy::PassManager PM; PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, true /* verify */)) { errs() << "The target does not support generation of this file type!\n"; return ""; } PM.run(*GPUModule); return ASMStream.str().str(); } bool GPUNodeBuilder::requiresCUDALibDevice() { bool RequiresLibDevice = false; for (Function &F : GPUModule->functions()) { if (!F.isDeclaration()) continue; const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); if (CUDALibDeviceFunc.length() != 0) { // We need to handle the case where a module looks like this: // @expf(..) // @llvm.exp.f64(..) // Both of these functions would be renamed to `__nv_expf`. // // So, we must first check for the existence of the libdevice function. // If this exists, we replace our current function with it. // // If it does not exist, we rename the current function to the // libdevice functiono name. if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) F.replaceAllUsesWith(Replacement); else F.setName(CUDALibDeviceFunc); RequiresLibDevice = true; } } return RequiresLibDevice; } void GPUNodeBuilder::addCUDALibDevice() { if (Arch != GPUArch::NVPTX64) return; if (requiresCUDALibDevice()) { SMDiagnostic Error; errs() << CUDALibDevice << "\n"; auto LibDeviceModule = parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); if (!LibDeviceModule) { BuildSuccessful = false; report_fatal_error("Could not find or load libdevice. Skipping GPU " "kernel generation. Please set -polly-acc-libdevice " "accordingly.\n"); return; } Linker L(*GPUModule); // Set an nvptx64 target triple to avoid linker warnings. The original // triple of the libdevice files are nvptx-unknown-unknown. LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); } } std::string GPUNodeBuilder::finalizeKernelFunction() { if (verifyModule(*GPUModule)) { LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; verifyModule(*GPUModule, &dbgs());); if (FailOnVerifyModuleFailure) llvm_unreachable("VerifyModule failed."); BuildSuccessful = false; return ""; } addCUDALibDevice(); if (DumpKernelIR) outs() << *GPUModule << "\n"; if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { // Optimize module. llvm::legacy::PassManager OptPasses; PassManagerBuilder PassBuilder; PassBuilder.OptLevel = 3; PassBuilder.SizeLevel = 0; PassBuilder.populateModulePassManager(OptPasses); OptPasses.run(*GPUModule); } std::string Assembly = createKernelASM(); if (DumpKernelASM) outs() << Assembly << "\n"; GPUModule.release(); KernelIDs.clear(); return Assembly; } /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` /// @param PwAffs The list of piecewise affine functions to create an /// `isl_pw_aff_list` from. We expect an rvalue ref because /// all the isl_pw_aff are used up by this function. /// /// @returns The `isl_pw_aff_list`. __isl_give isl_pw_aff_list * createPwAffList(isl_ctx *Context, const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); for (unsigned i = 0; i < PwAffs.size(); i++) { List = isl_pw_aff_list_insert(List, i, PwAffs[i]); } return List; } /// Align all the `PwAffs` such that they have the same parameter dimensions. /// /// We loop over all `pw_aff` and align all of their spaces together to /// create a common space for all the `pw_aff`. This common space is the /// `AlignSpace`. We then align all the `pw_aff` to this space. We start /// with the given `SeedSpace`. /// @param PwAffs The list of piecewise affine functions we want to align. /// This is an rvalue reference because the entire vector is /// used up by the end of the operation. /// @param SeedSpace The space to start the alignment process with. /// @returns A std::pair, whose first element is the aligned space, /// whose second element is the vector of aligned piecewise /// affines. static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, __isl_take isl_space *SeedSpace) { assert(SeedSpace && "Invalid seed space given."); isl_space *AlignSpace = SeedSpace; for (isl_pw_aff *PwAff : PwAffs) { isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); } std::vector<isl_pw_aff *> AdjustedPwAffs; for (unsigned i = 0; i < PwAffs.size(); i++) { isl_pw_aff *Adjusted = PwAffs[i]; assert(Adjusted && "Invalid pw_aff given."); Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); AdjustedPwAffs.push_back(Adjusted); } return std::make_pair(AlignSpace, AdjustedPwAffs); } namespace { class PPCGCodeGeneration : public ScopPass { public: static char ID; GPURuntime Runtime = GPURuntime::CUDA; GPUArch Architecture = GPUArch::NVPTX64; /// The scop that is currently processed. Scop *S; LoopInfo *LI; DominatorTree *DT; ScalarEvolution *SE; const DataLayout *DL; RegionInfo *RI; PPCGCodeGeneration() : ScopPass(ID) { // Apply defaults. Runtime = GPURuntimeChoice; Architecture = GPUArchChoice; } /// Construct compilation options for PPCG. /// /// @returns The compilation options. ppcg_options *createPPCGOptions() { auto DebugOptions = (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); DebugOptions->dump_schedule_constraints = false; DebugOptions->dump_schedule = false; DebugOptions->dump_final_schedule = false; DebugOptions->dump_sizes = false; DebugOptions->verbose = false; Options->debug = DebugOptions; Options->group_chains = false; Options->reschedule = true; Options->scale_tile_loops = false; Options->wrap = false; Options->non_negative_parameters = false; Options->ctx = nullptr; Options->sizes = nullptr; Options->tile = true; Options->tile_size = 32; Options->isolate_full_tiles = false; Options->use_private_memory = PrivateMemory; Options->use_shared_memory = SharedMemory; Options->max_shared_memory = 48 * 1024; Options->target = PPCG_TARGET_CUDA; Options->openmp = false; Options->linearize_device_arrays = true; Options->allow_gnu_extensions = false; Options->unroll_copy_shared = false; Options->unroll_gpu_tile = false; Options->live_range_reordering = true; Options->live_range_reordering = true; Options->hybrid = false; Options->opencl_compiler_options = nullptr; Options->opencl_use_gpu = false; Options->opencl_n_include_file = 0; Options->opencl_include_files = nullptr; Options->opencl_print_kernel_types = false; Options->opencl_embed_kernel_code = false; Options->save_schedule_file = nullptr; Options->load_schedule_file = nullptr; return Options; } /// Get a tagged access relation containing all accesses of type @p AccessTy. /// /// Instead of a normal access of the form: /// /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] /// /// a tagged access has the form /// /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] /// /// where 'id' is an additional space that references the memory access that /// triggered the access. /// /// @param AccessTy The type of the memory accesses to collect. /// /// @return The relation describing all tagged memory accesses. isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); for (auto &Stmt : *S) for (auto &Acc : Stmt) if (Acc->getType() == AccessTy) { isl_map *Relation = Acc->getAccessRelation().release(); Relation = isl_map_intersect_domain(Relation, Stmt.getDomain().release()); isl_space *Space = isl_map_get_space(Relation); Space = isl_space_range(Space); Space = isl_space_from_range(Space); Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); isl_map *Universe = isl_map_universe(Space); Relation = isl_map_domain_product(Relation, Universe); Accesses = isl_union_map_add_map(Accesses, Relation); } return Accesses; } /// Get the set of all read accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedReads() { return getTaggedAccesses(MemoryAccess::READ); } /// Get the set of all may (and must) accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedMayWrites() { return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), getTaggedAccesses(MemoryAccess::MUST_WRITE)); } /// Get the set of all must accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedMustWrites() { return getTaggedAccesses(MemoryAccess::MUST_WRITE); } /// Collect parameter and array names as isl_ids. /// /// To reason about the different parameters and arrays used, ppcg requires /// a list of all isl_ids in use. As PPCG traditionally performs /// source-to-source compilation each of these isl_ids is mapped to the /// expression that represents it. As we do not have a corresponding /// expression in Polly, we just map each id to a 'zero' expression to match /// the data format that ppcg expects. /// /// @returns Retun a map from collected ids to 'zero' ast expressions. __isl_give isl_id_to_ast_expr *getNames() { auto *Names = isl_id_to_ast_expr_alloc( S->getIslCtx().get(), S->getNumParams() + std::distance(S->array_begin(), S->array_end())); auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); for (const SCEV *P : S->parameters()) { isl_id *Id = S->getIdForParam(P).release(); Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); } for (auto &Array : S->arrays()) { auto Id = Array->getBasePtrId().release(); Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); } isl_ast_expr_free(Zero); return Names; } /// Create a new PPCG scop from the current scop. /// /// The PPCG scop is initialized with data from the current polly::Scop. From /// this initial data, the data-dependences in the PPCG scop are initialized. /// We do not use Polly's dependence analysis for now, to ensure we match /// the PPCG default behaviour more closely. /// /// @returns A new ppcg scop. ppcg_scop *createPPCGScop() { MustKillsInfo KillsInfo = computeMustKillsInfo(*S); auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); PPCGScop->options = createPPCGOptions(); // enable live range reordering PPCGScop->options->live_range_reordering = 1; PPCGScop->start = 0; PPCGScop->end = 0; PPCGScop->context = S->getContext().release(); PPCGScop->domain = S->getDomains().release(); // TODO: investigate this further. PPCG calls collect_call_domains. PPCGScop->call = isl_union_set_from_set(S->getContext().release()); PPCGScop->tagged_reads = getTaggedReads(); PPCGScop->reads = S->getReads().release(); PPCGScop->live_in = nullptr; PPCGScop->tagged_may_writes = getTaggedMayWrites(); PPCGScop->may_writes = S->getWrites().release(); PPCGScop->tagged_must_writes = getTaggedMustWrites(); PPCGScop->must_writes = S->getMustWrites().release(); PPCGScop->live_out = nullptr; PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); PPCGScop->must_kills = KillsInfo.MustKills.release(); PPCGScop->tagger = nullptr; PPCGScop->independence = isl_union_map_empty(isl_set_get_space(PPCGScop->context)); PPCGScop->dep_flow = nullptr; PPCGScop->tagged_dep_flow = nullptr; PPCGScop->dep_false = nullptr; PPCGScop->dep_forced = nullptr; PPCGScop->dep_order = nullptr; PPCGScop->tagged_dep_order = nullptr; PPCGScop->schedule = S->getScheduleTree().release(); // If we have something non-trivial to kill, add it to the schedule if (KillsInfo.KillsSchedule.get()) PPCGScop->schedule = isl_schedule_sequence( PPCGScop->schedule, KillsInfo.KillsSchedule.release()); PPCGScop->names = getNames(); PPCGScop->pet = nullptr; compute_tagger(PPCGScop); compute_dependences(PPCGScop); eliminate_dead_code(PPCGScop); return PPCGScop; } /// Collect the array accesses in a statement. /// /// @param Stmt The statement for which to collect the accesses. /// /// @returns A list of array accesses. gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { gpu_stmt_access *Accesses = nullptr; for (MemoryAccess *Acc : Stmt) { auto Access = isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); Access->read = Acc->isRead(); Access->write = Acc->isWrite(); Access->access = Acc->getAccessRelation().release(); isl_space *Space = isl_map_get_space(Access->access); Space = isl_space_range(Space); Space = isl_space_from_range(Space); Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); isl_map *Universe = isl_map_universe(Space); Access->tagged_access = isl_map_domain_product(Acc->getAccessRelation().release(), Universe); Access->exact_write = !Acc->isMayWrite(); Access->ref_id = Acc->getId().release(); Access->next = Accesses; Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); // TODO: Also mark one-element accesses to arrays as fixed-element. Access->fixed_element = Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; Accesses = Access; } return Accesses; } /// Collect the list of GPU statements. /// /// Each statement has an id, a pointer to the underlying data structure, /// as well as a list with all memory accesses. /// /// TODO: Initialize the list of memory accesses. /// /// @returns A linked-list of statements. gpu_stmt *getStatements() { gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, std::distance(S->begin(), S->end())); int i = 0; for (auto &Stmt : *S) { gpu_stmt *GPUStmt = &Stmts[i]; GPUStmt->id = Stmt.getDomainId().release(); // We use the pet stmt pointer to keep track of the Polly statements. GPUStmt->stmt = (pet_stmt *)&Stmt; GPUStmt->accesses = getStmtAccesses(Stmt); i++; } return Stmts; } /// Derive the extent of an array. /// /// The extent of an array is the set of elements that are within the /// accessed array. For the inner dimensions, the extent constraints are /// 0 and the size of the corresponding array dimension. For the first /// (outermost) dimension, the extent constraints are the minimal and maximal /// subscript value for the first dimension. /// /// @param Array The array to derive the extent for. /// /// @returns An isl_set describing the extent of the array. isl::set getExtent(ScopArrayInfo *Array) { unsigned NumDims = Array->getNumberOfDimensions(); if (Array->getNumberOfDimensions() == 0) return isl::set::universe(Array->getSpace()); isl::union_map Accesses = S->getAccesses(Array); isl::union_set AccessUSet = Accesses.range(); AccessUSet = AccessUSet.coalesce(); AccessUSet = AccessUSet.detect_equalities(); AccessUSet = AccessUSet.coalesce(); if (AccessUSet.is_empty()) return isl::set::empty(Array->getSpace()); isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); isl::local_space LS = isl::local_space(Array->getSpace()); isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); isl::pw_aff OuterMin = AccessSet.dim_min(0); isl::pw_aff OuterMax = AccessSet.dim_max(0); OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); isl::set Extent = isl::set::universe(Array->getSpace()); Extent = Extent.intersect(OuterMin.le_set(Val)); Extent = Extent.intersect(OuterMax.ge_set(Val)); for (unsigned i = 1; i < NumDims; ++i) Extent = Extent.lower_bound_si(isl::dim::set, i, 0); for (unsigned i = 0; i < NumDims; ++i) { isl::pw_aff PwAff = Array->getDimensionSizePw(i); // isl_pw_aff can be NULL for zero dimension. Only in the case of a // Fortran array will we have a legitimate dimension. if (PwAff.is_null()) { assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); continue; } isl::pw_aff Val = isl::aff::var_on_domain( isl::local_space(Array->getSpace()), isl::dim::set, i); PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); isl::set Set = PwAff.gt_set(Val); Extent = Set.intersect(Extent); } return Extent; } /// Derive the bounds of an array. /// /// For the first dimension we derive the bound of the array from the extent /// of this dimension. For inner dimensions we obtain their size directly from /// ScopArrayInfo. /// /// @param PPCGArray The array to compute bounds for. /// @param Array The polly array from which to take the information. void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { std::vector<isl_pw_aff *> Bounds; if (PPCGArray.n_index > 0) { if (isl_set_is_empty(PPCGArray.extent)) { isl_set *Dom = isl_set_copy(PPCGArray.extent); isl_local_space *LS = isl_local_space_from_space( isl_space_params(isl_set_get_space(Dom))); isl_set_free(Dom); isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); Bounds.push_back(Zero); } else { isl_set *Dom = isl_set_copy(PPCGArray.extent); Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); isl_set_free(Dom); Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); isl_aff *One = isl_aff_zero_on_domain(LS); One = isl_aff_add_constant_si(One, 1); Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); Bound = isl_pw_aff_gist(Bound, S->getContext().release()); Bounds.push_back(Bound); } } for (unsigned i = 1; i < PPCGArray.n_index; ++i) { isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); auto LS = isl_pw_aff_get_domain_space(Bound); auto Aff = isl_multi_aff_zero(LS); // We need types to work out, which is why we perform this weird dance // with `Aff` and `Bound`. Consider this example: // LS: [p] -> { [] } // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. // This `~` is used to denote a "null space" (which is different from // a *zero dimensional* space), which is something that ISL does not // show you when pretty printing. // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* // space, not a "null space" which does not exist at all. // When we pullback (precompose) `Bound` with `Zero`, we get: // Bound . Zero = // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = // [p] -> { ~ -> [(10p)] } = // [p] -> [(10p)] (as ISL pretty prints it) // Bound Pullback: [p] -> { [(10p)] } // We want this kind of an expression for Bound, without a // zero dimensional input, but with a "null space" input for the types // to work out later on, as far as I (Siddharth Bhat) understand. // I was unable to find a reference to this in the ISL manual. // References: Tobias Grosser. Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); Bounds.push_back(Bound); } /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` /// to have the same parameter dimensions. So, we need to align them to an /// appropriate space. /// Scop::Context is _not_ an appropriate space, because when we have /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not /// contain all parameter dimensions. /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. isl_space *SeedAlignSpace = S->getParamSpace().release(); SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); isl_space *AlignSpace = nullptr; std::vector<isl_pw_aff *> AlignedBounds; std::tie(AlignSpace, AlignedBounds) = alignPwAffs(std::move(Bounds), SeedAlignSpace); assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); isl_pw_aff_list *BoundsList = createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); assert(BoundsSpace && "Unable to access space of array."); assert(BoundsList && "Unable to access list of bounds."); PPCGArray.bound = isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); } /// Create the arrays for @p PPCGProg. /// /// @param PPCGProg The program to compute the arrays for. void createArrays(gpu_prog *PPCGProg, const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { int i = 0; for (auto &Array : ValidSAIs) { std::string TypeName; raw_string_ostream OS(TypeName); OS << *Array->getElementType(); TypeName = OS.str(); gpu_array_info &PPCGArray = PPCGProg->array[i]; PPCGArray.space = Array->getSpace().release(); PPCGArray.type = strdup(TypeName.c_str()); PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); PPCGArray.name = strdup(Array->getName().c_str()); PPCGArray.extent = nullptr; PPCGArray.n_index = Array->getNumberOfDimensions(); PPCGArray.extent = getExtent(Array).release(); PPCGArray.n_ref = 0; PPCGArray.refs = nullptr; PPCGArray.accessed = true; PPCGArray.read_only_scalar = Array->isReadOnly() && Array->getNumberOfDimensions() == 0; PPCGArray.has_compound_element = false; PPCGArray.local = false; PPCGArray.declare_local = false; PPCGArray.global = false; PPCGArray.linearize = false; PPCGArray.dep_order = nullptr; PPCGArray.user = Array; PPCGArray.bound = nullptr; setArrayBounds(PPCGArray, Array); i++; collect_references(PPCGProg, &PPCGArray); PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); } } /// Create an identity map between the arrays in the scop. /// /// @returns An identity map between the arrays in the scop. isl_union_map *getArrayIdentity() { isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); for (auto &Array : S->arrays()) { isl_space *Space = Array->getSpace().release(); Space = isl_space_map_from_set(Space); isl_map *Identity = isl_map_identity(Space); Maps = isl_union_map_add_map(Maps, Identity); } return Maps; } /// Create a default-initialized PPCG GPU program. /// /// @returns A new gpu program description. gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { if (!PPCGScop) return nullptr; auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); PPCGProg->ctx = S->getIslCtx().get(); PPCGProg->scop = PPCGScop; PPCGProg->context = isl_set_copy(PPCGScop->context); PPCGProg->read = isl_union_map_copy(PPCGScop->reads); PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); PPCGProg->tagged_must_kill = isl_union_map_copy(PPCGScop->tagged_must_kills); PPCGProg->to_inner = getArrayIdentity(); PPCGProg->to_outer = getArrayIdentity(); // TODO: verify that this assignment is correct. PPCGProg->any_to_outer = nullptr; PPCGProg->n_stmts = std::distance(S->begin(), S->end()); PPCGProg->stmts = getStatements(); // Only consider arrays that have a non-empty extent. // Otherwise, this will cause us to consider the following kinds of // empty arrays: // 1. Invariant loads that are represented by SAI objects. // 2. Arrays with statically known zero size. auto ValidSAIsRange = make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { return !getExtent(SAI).is_empty(); }); SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), ValidSAIsRange.end()); PPCGProg->n_array = ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); PPCGProg->array = isl_calloc_array( S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); createArrays(PPCGProg, ValidSAIs); PPCGProg->array_order = nullptr; collect_order_dependences(PPCGProg); PPCGProg->may_persist = compute_may_persist(PPCGProg); return PPCGProg; } struct PrintGPUUserData { struct cuda_info *CudaInfo; struct gpu_prog *PPCGProg; std::vector<ppcg_kernel *> Kernels; }; /// Print a user statement node in the host code. /// /// We use ppcg's printing facilities to print the actual statement and /// additionally build up a list of all kernels that are encountered in the /// host ast. /// /// @param P The printer to print to /// @param Options The printing options to use /// @param Node The node to print /// @param User A user pointer to carry additional data. This pointer is /// expected to be of type PrintGPUUserData. /// /// @returns A printer to which the output has been printed. static __isl_give isl_printer * printHostUser(__isl_take isl_printer *P, __isl_take isl_ast_print_options *Options, __isl_take isl_ast_node *Node, void *User) { auto Data = (struct PrintGPUUserData *)User; auto Id = isl_ast_node_get_annotation(Node); if (Id) { bool IsUser = !strcmp(isl_id_get_name(Id), "user"); // If this is a user statement, format it ourselves as ppcg would // otherwise try to call pet functionality that is not available in // Polly. if (IsUser) { P = isl_printer_start_line(P); P = isl_printer_print_ast_node(P, Node); P = isl_printer_end_line(P); isl_id_free(Id); isl_ast_print_options_free(Options); return P; } auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); isl_id_free(Id); Data->Kernels.push_back(Kernel); } return print_host_user(P, Options, Node, User); } /// Print C code corresponding to the control flow in @p Kernel. /// /// @param Kernel The kernel to print void printKernel(ppcg_kernel *Kernel) { auto *P = isl_printer_to_str(S->getIslCtx().get()); P = isl_printer_set_output_format(P, ISL_FORMAT_C); auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); P = isl_ast_node_print(Kernel->tree, P, Options); char *String = isl_printer_get_str(P); outs() << String << "\n"; free(String); isl_printer_free(P); } /// Print C code corresponding to the GPU code described by @p Tree. /// /// @param Tree An AST describing GPU code /// @param PPCGProg The PPCG program from which @Tree has been constructed. void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { auto *P = isl_printer_to_str(S->getIslCtx().get()); P = isl_printer_set_output_format(P, ISL_FORMAT_C); PrintGPUUserData Data; Data.PPCGProg = PPCGProg; auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); Options = isl_ast_print_options_set_print_user(Options, printHostUser, &Data); P = isl_ast_node_print(Tree, P, Options); char *String = isl_printer_get_str(P); outs() << "# host\n"; outs() << String << "\n"; free(String); isl_printer_free(P); for (auto Kernel : Data.Kernels) { outs() << "# kernel" << Kernel->id << "\n"; printKernel(Kernel); } } // Generate a GPU program using PPCG. // // GPU mapping consists of multiple steps: // // 1) Compute new schedule for the program. // 2) Map schedule to GPU (TODO) // 3) Generate code for new schedule (TODO) // // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer // is mostly CPU specific. Instead, we use PPCG's GPU code generation // strategy directly from this pass. gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); PPCGGen->ctx = S->getIslCtx().get(); PPCGGen->options = PPCGScop->options; PPCGGen->print = nullptr; PPCGGen->print_user = nullptr; PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; PPCGGen->prog = PPCGProg; PPCGGen->tree = nullptr; PPCGGen->types.n = 0; PPCGGen->types.name = nullptr; PPCGGen->sizes = nullptr; PPCGGen->used_sizes = nullptr; PPCGGen->kernel_id = 0; // Set scheduling strategy to same strategy PPCG is using. isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); isl_options_set_schedule_whole_component(PPCGGen->ctx, false); isl_schedule *Schedule = get_schedule(PPCGGen); int has_permutable = has_any_permutable_node(Schedule); Schedule = isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); if (!has_permutable || has_permutable < 0) { Schedule = isl_schedule_free(Schedule); LLVM_DEBUG(dbgs() << getUniqueScopName(S) << " does not have permutable bands. Bailing out\n";); } else { const bool CreateTransferToFromDevice = !PollyManagedMemory; Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); } if (DumpSchedule) { isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); P = isl_printer_print_str(P, "Schedule\n"); P = isl_printer_print_str(P, "========\n"); if (Schedule) P = isl_printer_print_schedule(P, Schedule); else P = isl_printer_print_str(P, "No schedule found\n"); outs() << isl_printer_get_str(P) << "\n"; isl_printer_free(P); } if (DumpCode) { outs() << "Code\n"; outs() << "====\n"; if (PPCGGen->tree) printGPUTree(PPCGGen->tree, PPCGProg); else outs() << "No code generated\n"; } isl_schedule_free(Schedule); return PPCGGen; } /// Free gpu_gen structure. /// /// @param PPCGGen The ppcg_gen object to free. void freePPCGGen(gpu_gen *PPCGGen) { isl_ast_node_free(PPCGGen->tree); isl_union_map_free(PPCGGen->sizes); isl_union_map_free(PPCGGen->used_sizes); free(PPCGGen); } /// Free the options in the ppcg scop structure. /// /// ppcg is not freeing these options for us. To avoid leaks we do this /// ourselves. /// /// @param PPCGScop The scop referencing the options to free. void freeOptions(ppcg_scop *PPCGScop) { free(PPCGScop->options->debug); PPCGScop->options->debug = nullptr; free(PPCGScop->options); PPCGScop->options = nullptr; } /// Approximate the number of points in the set. /// /// This function returns an ast expression that overapproximates the number /// of points in an isl set through the rectangular hull surrounding this set. /// /// @param Set The set to count. /// @param Build The isl ast build object to use for creating the ast /// expression. /// /// @returns An approximation of the number of points in the set. __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, __isl_keep isl_ast_build *Build) { isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); isl_space *Space = isl_set_get_space(Set); Space = isl_space_params(Space); auto *Univ = isl_set_universe(Space); isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); Expr = isl_ast_expr_mul(Expr, DimSizeExpr); } isl_set_free(Set); isl_pw_aff_free(OneAff); return Expr; } /// Approximate a number of dynamic instructions executed by a given /// statement. /// /// @param Stmt The statement for which to compute the number of dynamic /// instructions. /// @param Build The isl ast build object to use for creating the ast /// expression. /// @returns An approximation of the number of dynamic instructions executed /// by @p Stmt. __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, __isl_keep isl_ast_build *Build) { auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); long InstCount = 0; if (Stmt.isBlockStmt()) { auto *BB = Stmt.getBasicBlock(); InstCount = std::distance(BB->begin(), BB->end()); } else { auto *R = Stmt.getRegion(); for (auto *BB : R->blocks()) { InstCount += std::distance(BB->begin(), BB->end()); } } isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); auto *InstExpr = isl_ast_expr_from_val(InstVal); return isl_ast_expr_mul(InstExpr, Iterations); } /// Approximate dynamic instructions executed in scop. /// /// @param S The scop for which to approximate dynamic instructions. /// @param Build The isl ast build object to use for creating the ast /// expression. /// @returns An approximation of the number of dynamic instructions executed /// in @p S. __isl_give isl_ast_expr * getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { isl_ast_expr *Instructions; isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); Instructions = isl_ast_expr_from_val(Zero); for (ScopStmt &Stmt : S) { isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); Instructions = isl_ast_expr_add(Instructions, StmtInstructions); } return Instructions; } /// Create a check that ensures sufficient compute in scop. /// /// @param S The scop for which to ensure sufficient compute. /// @param Build The isl ast build object to use for creating the ast /// expression. /// @returns An expression that evaluates to TRUE in case of sufficient /// compute and to FALSE, otherwise. __isl_give isl_ast_expr * createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { auto Iterations = getNumberOfIterations(S, Build); auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); return isl_ast_expr_ge(Iterations, MinComputeExpr); } /// Check if the basic block contains a function we cannot codegen for GPU /// kernels. /// /// If this basic block does something with a `Function` other than calling /// a function that we support in a kernel, return true. bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, bool AllowCUDALibDevice) { for (const Instruction &Inst : *BB) { const CallInst *Call = dyn_cast<CallInst>(&Inst); if (Call && isValidFunctionInKernel(Call->getCalledFunction(), AllowCUDALibDevice)) continue; for (Value *Op : Inst.operands()) // Look for (<func-type>*) among operands of Inst if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { if (isa<FunctionType>(PtrTy->getElementType())) { LLVM_DEBUG(dbgs() << Inst << " has illegal use of function in kernel.\n"); return true; } } } return false; } /// Return whether the Scop S uses functions in a way that we do not support. bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { for (auto &Stmt : S) { if (Stmt.isBlockStmt()) { if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), AllowCUDALibDevice)) return true; } else { assert(Stmt.isRegionStmt() && "Stmt was neither block nor region statement"); for (const BasicBlock *BB : Stmt.getRegion()->blocks()) if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) return true; } } return false; } /// Generate code for a given GPU AST described by @p Root. /// /// @param Root An isl_ast_node pointing to the root of the GPU AST. /// @param Prog The GPU Program to generate code for. void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { ScopAnnotator Annotator; Annotator.buildAliasScopes(*S); Region *R = &S->getRegion(); simplifyRegion(R, DT, LI, RI); BasicBlock *EnteringBB = R->getEnteringBlock(); PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), IRInserter(Annotator)); Builder.SetInsertPoint(EnteringBB->getTerminator()); // Only build the run-time condition and parameters _after_ having // introduced the conditional branch. This is important as the conditional // branch will guard the original scop from new induction variables that // the SCEVExpander may introduce while code generating the parameters and // which may introduce scalar dependences that prevent us from correctly // code generating this scop. BBPair StartExitBlocks; BranchInst *CondBr = nullptr; std::tie(StartExitBlocks, CondBr) = executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); BasicBlock *StartBlock = std::get<0>(StartExitBlocks); assert(CondBr && "CondBr not initialized by executeScopConditionally"); GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, StartBlock, Prog, Runtime, Architecture); // TODO: Handle LICM auto SplitBlock = StartBlock->getSinglePredecessor(); Builder.SetInsertPoint(SplitBlock->getTerminator()); isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); isl::ast_expr Condition = IslAst::buildRunCondition(*S, isl::manage_copy(Build)); isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); Condition = isl::manage(isl_ast_expr_and(Condition.release(), SufficientCompute)); isl_ast_build_free(Build); // preload invariant loads. Note: This should happen before the RTC // because the RTC may depend on values that are invariant load hoisted. if (!NodeBuilder.preloadInvariantLoads()) { // Patch the introduced branch condition to ensure that we always execute // the original SCoP. auto *FalseI1 = Builder.getFalse(); auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); SplitBBTerm->setOperand(0, FalseI1); LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + S->getFunction().getName() + " | Scop Region: " + S->getNameStr()); // adjust the dominator tree accordingly. auto *ExitingBlock = StartBlock->getUniqueSuccessor(); assert(ExitingBlock); auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); assert(MergeBlock); polly::markBlockUnreachable(*StartBlock, Builder); polly::markBlockUnreachable(*ExitingBlock, Builder); auto *ExitingBB = S->getExitingBlock(); assert(ExitingBB); DT->changeImmediateDominator(MergeBlock, ExitingBB); DT->eraseNode(ExitingBlock); isl_ast_node_free(Root); } else { if (polly::PerfMonitoring) { PerfMonitor P(*S, EnteringBB->getParent()->getParent()); P.initialize(); P.insertRegionStart(SplitBlock->getTerminator()); // TODO: actually think if this is the correct exiting block to place // the `end` performance marker. Invariant load hoisting changes // the CFG in a way that I do not precisely understand, so I // (Siddharth<siddu.druid@gmail.com>) should come back to this and // think about which exiting block to use. auto *ExitingBlock = StartBlock->getUniqueSuccessor(); assert(ExitingBlock); BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); P.insertRegionEnd(MergeBlock->getTerminator()); } NodeBuilder.addParameters(S->getContext().release()); Value *RTC = NodeBuilder.createRTC(Condition.release()); Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); Builder.SetInsertPoint(&*StartBlock->begin()); NodeBuilder.create(Root); } /// In case a sequential kernel has more surrounding loops as any parallel /// kernel, the SCoP is probably mostly sequential. Hence, there is no /// point in running it on a GPU. if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) CondBr->setOperand(0, Builder.getFalse()); if (!NodeBuilder.BuildSuccessful) CondBr->setOperand(0, Builder.getFalse()); } bool runOnScop(Scop &CurrentScop) override { S = &CurrentScop; LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) << " | loop depth: " << S->getMaxLoopDepth() << "\n"); // We currently do not support functions other than intrinsics inside // kernels, as code generation will need to offload function calls to the // kernel. This may lead to a kernel trying to call a function on the host. // This also allows us to prevent codegen from trying to take the // address of an intrinsic function to send to the kernel. if (containsInvalidKernelFunction(CurrentScop, Architecture == GPUArch::NVPTX64)) { LLVM_DEBUG( dbgs() << getUniqueScopName(S) << " contains function which cannot be materialised in a GPU " "kernel. Bailing out.\n";); return false; } auto PPCGScop = createPPCGScop(); auto PPCGProg = createPPCGProg(PPCGScop); auto PPCGGen = generateGPU(PPCGScop, PPCGProg); if (PPCGGen->tree) { generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); CurrentScop.markAsToBeSkipped(); } else { LLVM_DEBUG(dbgs() << getUniqueScopName(S) << " has empty PPCGGen->tree. Bailing out.\n"); } freeOptions(PPCGScop); freePPCGGen(PPCGGen); gpu_prog_free(PPCGProg); ppcg_scop_free(PPCGScop); return true; } void printScop(raw_ostream &, Scop &) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { ScopPass::getAnalysisUsage(AU); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<RegionInfoPass>(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<ScopDetectionWrapperPass>(); AU.addRequired<ScopInfoRegionPass>(); AU.addRequired<LoopInfoWrapperPass>(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. } }; } // namespace char PPCGCodeGeneration::ID = 1; Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { PPCGCodeGeneration *generator = new PPCGCodeGeneration(); generator->Runtime = Runtime; generator->Architecture = Arch; return generator; } INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", "Polly - Apply PPCG translation to SCOP", false, false) INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", "Polly - Apply PPCG translation to SCOP", false, false)